Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Drug Discov Ther ; 18(3): 167-177, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38945877

ABSTRACT

Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Caesalpinia , Copper , Metal Nanoparticles , Plant Extracts , Caesalpinia/chemistry , Copper/chemistry , Copper/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Glycation End Products, Advanced , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Serum Albumin, Bovine/chemistry , Escherichia coli/drug effects
2.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945155

ABSTRACT

In this study, a previously undescribed cassane diterpenoid, named caesalpinin JF (1), along with two known cassane diterpenoids caesanine C (2) and tomocinol B (3), was isolated from 95% EtOH extract of the seeds of Caesalpinia sappan Linn. Additionally, three known compounds including pulcherrin R (4), syringaresinol-4'-O-ß-D-glucopyranoside (5) and kaempferol (6) were also identified. The structures of the isolated compounds were elucidated by comprehensive 1D and 2D NMR spectroscopic analyses. Additionally, electronic circular dichroism (ECD) calculation was used to identify the absolute structure of compound 1. Among the isolated compounds, compound 1 displayed a potent anti-neuroinflammation with an IC50 value of 9.87 ± 1.71 µM.

3.
Phytochemistry ; 222: 114105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657886

ABSTRACT

Three undescribed cassane diterpenoids, caesalpanins D-F (1-3), and seven known ones were isolated from the seeds of Caesalpinia sappan. Structures and absolute configurations of 1-3 were elucidated based on the extensive spectroscopic analysis, single-crystal X-ray diffraction analysis, and ECD calculations. Structurally, compound 1 was the first example of 18-norcassane diterpenoid and 2 was a rare 20-norcassane diterpenoid having an unusual five-membered oxygen bridge between C-10/C-18. The anti-proliferative activity of 1, 3, and 4-10 against PANC-1 cells (pancreatic ductal adenocarcinoma cell line) was evaluated, and phanginin H (4) was found to exhibit anti-cancer activity with IC50 value of 18.13 ± 0.63 µM. Compound 4 inhibited PANC-1 cell growth by arresting the cell cycle at G2/M phase via regulation of cyclin-dependent kinases, and the self-renewal and metastasis of PANC-1 cells by suppressing cancer cell stemness. Furthermore, compound 4 induced ROS generation and subsequently activated autophagy, which was demonstrated by the formation of autophagic vacuoles and dynamic change of autophagic flux. The induced ROS accumulation resulted in AMPK activation and subsequently regulation of mTORC1 activity and ULK phosphorylation, indicating that 4 triggered autophagy through ROS/AMPK/mTORC1 pathway. These findings suggested that 4 might potentially be an autophagy inducer for the therapy of pancreatic cancer.


Subject(s)
AMP-Activated Protein Kinases , Antineoplastic Agents, Phytogenic , Autophagy , Caesalpinia , Cell Proliferation , Diterpenes , Drug Screening Assays, Antitumor , Mechanistic Target of Rapamycin Complex 1 , Pancreatic Neoplasms , Reactive Oxygen Species , Seeds , Caesalpinia/chemistry , Humans , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Seeds/chemistry , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Structure-Activity Relationship , Dose-Response Relationship, Drug
4.
BMC Vet Res ; 20(1): 111, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38515094

ABSTRACT

BACKGROUND: At present, porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe epidemics impacting pig farming globally. Despite the fact that a number of studies have been conducted on potential solutions to this problem, none have proven effective. The focus of problem solving is the use of natural ingredients such as plant extracts. Popular throughout Asia, Caesalpinia sappan (CS) is a therapeutic plant that inhibits PRRSV in vitro. Therefore, this study was performed to determine the efficacy of CS extract dietary supplementation on the productive performance, antibody levels, immunological indicators, and lung pathology of PRRSV-challenged weaned pigs. A total of 32 weaned piglets (28 days old) were randomized into 4 groups and kept separately for 14 days. The treatments were organized in a 2 × 2 factorial design involving two factors: PRRSV challenge and supplementation with 1 mg/kg CS extract. The pigs in the PRRSV-challenged groups were intranasally inoculated with 2 mL of PRRSV (VR2332) containing 104 TCID50/mL, while those in the groups not challenged with PRRSV were inoculated with 2 mL of normal saline. RESULTS: In the PRRSV-challenged group (CS + PRRSV), supplementation with CS extract led to an increase in white blood cells (WBCs) on Day 7 post infection (p < 0.05) and particularly in lymphocytes on Days 7 and 14. The antibody titer was significantly greater in the CS + PRRSV group than in the PRRSV-challenged group not administered CS (PRRSV group) on Day 14 postinfection (S/P = 1.19 vs. 0.78). In addition, CS extract administration decreased the prevalence of pulmonary lesions, which were more prevalent in the PRRSV-challenged pigs that did not receive the CS extract. CONCLUSION: The findings of this study suggest that supplementation with CS extract is beneficial for increasing WBC counts, especially lymphocytes, increasing the levels of antibodies and reducing the prevalence of lung lesions in PRRSV-infected pigs.


Subject(s)
Caesalpinia , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Viral Vaccines , Animals , Antibodies, Viral , Dietary Supplements , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine , Swine Diseases/drug therapy , Swine Diseases/prevention & control
5.
AAPS PharmSciTech ; 24(8): 230, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964017

ABSTRACT

The main components of Caesalpinia sappan L. (CS) are brazilin and brazilein, which show high potential in pharmacologic applications. However, these have been drastically limited by the poor water solubility and stability. The present study investigates the formation of inclusion complexes F1, F2, and F3 between CS and ß-cyclodextrin (ßCD), hydroxypropyl-ß-cyclodextrin (HPßCD), and methyl-ß-cyclodextrin (MßCD), respectively. These complexes were characterized by Fourier transform infrared spectroscopy (FT-IR). The results showed that the highest encapsulation efficiency and loading capacity of CS extract were 44.24% and 9.67%, respectively. The solubility and stability of CS extract were significantly increased through complexation in phase solubility and stability studies. The complexes F1-F3 showed mainly significant antibacterial activities on gram-positive bacteria pathogens causing mastitis. Moreover, the expression levels of COX-2 and iNOS were significantly decreased in LPS-induced inflammatory cells at concentrations of 50 and 100 µg/mL. In addition, treatment of complex F3 (CS/MßCD) in bovine endothelial cells remarkably increased the chemokine gene expression of CXCL3 and CXCL8, which were responsible for immune cell recruitment (9.92 to 11.17 and 8.23 to 9.51-fold relative to that of the LPS-treated group, respectively). This study provides a complete characterization of inclusion complexes between CS extract and ßCD, HPßCD, and MßCD for the first time, highlighting the impact of complex formation on the pharmacologic activities of bovine mastitis.


Subject(s)
Caesalpinia , Cyclodextrins , Mastitis, Bovine , Animals , Cattle , Female , Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Spectroscopy, Fourier Transform Infrared , Mastitis, Bovine/drug therapy , Endothelial Cells , Lipopolysaccharides , Solubility
6.
Drug Discov Ther ; 17(4): 238-247, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37612046

ABSTRACT

Synthesis of nanoparticles using natural organic substances has attracted more attention due to avoiding inorganic toxicity. This work aimed to synthesize copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract as a reducing agent. The effects of pH of synthesis reaction were investigated. The obtained CuONPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Their particle size, size distribution, and zeta potential were determined using photon correlation spectrophotometry. Candida albicans is a major cause of chronic fungal infections due to its biofilms leading to severe drug resistance problems. In this study, in vitro antifungal and antibiofilm activities as well as killing kinetics of the synthesized CuONPs against C. albicans were investigated. Additionally, fungal biofilm was observed by using confocal laser scanning microscopy. The results showed that the pH of the synthesis reaction played an important role in the physicochemical properties and antifungal activities of the obtained CuONPs. CuONPs synthesized at pH 10 and 12 showed the relatively small and narrow size distribution with high negative zeta potential and time-dependent killing kinetics. Confocal laser scanning microscopy confirms obvious fungal biofilm reduction and increased fungal cell death after exposure to CuONPs. These findings suggest the optimal pH of CuONPs synthesis using C. sappan extract as a reducing agent. The results on antifungal and antibiofilm activities indicate that the obtained CuONPs can be a promising agent for treating fungal infection.


Subject(s)
Caesalpinia , Nanoparticles , Antifungal Agents/pharmacology , Candida albicans , Copper , Reducing Agents , Biofilms , Excipients , Plant Extracts/pharmacology , Oxides
7.
J Public Health Afr ; 14(Suppl 1): 2509, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37492550

ABSTRACT

Background: Hand gel is a preparation used to protect hand skin from dryness. The antioxidant compounds in sappan wood and limau citrus peel can moisturize hands by preventing the oxidation of oils and fats on the surface of the (sebaceous glands). Objective: This study aims to formulate hand gel from ethanol extract of sappan wood with a combination of limau citrus peel extract that can moisturize hands and not to cause irritation. Methods: Sappan wood and limau citrus peel simplicia were macerated using 96% ethanol. The ethanolic extracts were then formulated into hand gel by varying the concentration of the ethanol extracts. The evaluation of the hand gel involved an organoleptic test, homogeneity test, pH test, spreadability test, viscosity test, and skin moisture test. A primary irritation test was carried out to ensure the hand gel's safety. Results: The results shows that the three hand gel formulas produce an orange-red color and soft scent of roses and citrus, with a pH of 7.8 and with good homogeneity. The formulas also have a spreading level of FI (5 cm), FII (5.2 cm), and FIII (5, 1 cm), and viscosity values were FI 12000 mPas, F II 12500 mPas, and F III 12400 mPas. The humidity test results on the three formulas shows different moisture values of 45.16%, 46.17%, and 45.09%, respectively (category of normal or moisture). The hand gel formulas have an irritation index of 0 (no irritation category). Conclusion: The hand gel formulas meet the quality requirements of hand gel, have moisturizing agent, and are not irritating.

8.
Chem Biodivers ; 20(5): e202300211, 2023 May.
Article in English | MEDLINE | ID: mdl-37014182

ABSTRACT

Guided by an MS/MS-based molecular networking, six undescribed cassane diterpenoids and three known ones were isolated and identified from the seeds of Caesalpinia sappan. Their structures were unequivocally elucidated by extensive spectroscopic analyses and electronic circular dichroism (ECD) calculations. Cytotoxic evaluation showed that phanginin JA exhibited significant antiproliferative activities against human non-small cell lung cancer (A549) cells with IC50 values of 16.79±0.83 µM. Further flow cytometry analysis revealed that phanginin JA could exert apoptotic effect of A549 cells by arresting cell cycle in G0/G1 phase.


Subject(s)
Antineoplastic Agents , Caesalpinia , Carcinoma, Non-Small-Cell Lung , Diterpenes , Lung Neoplasms , Humans , Caesalpinia/chemistry , Molecular Structure , Tandem Mass Spectrometry , Antineoplastic Agents/pharmacology , Diterpenes/chemistry , Seeds/chemistry
9.
Food Chem ; 398: 133898, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35969994

ABSTRACT

This review gives, for the first time, a systematic presentation and discussion on the chemistry and use of brazilein in foods. Processes of isolation, purification and quantification of this alternative pigment are firstly reviewed. Molecular structure and color stabilities as well as ways to enhance stability of the pigment are then discussed. Selected applications of the pigment in foods are given. Based on the review of the literature, future studies should focus on the isolation and purification of the pigment prior to its use in foods. Extraction yield and purity of brazilein obtained from the different methods should also be compared. Since the pigment is very sensitive to pH change, its stability should be enhanced prior to its use. Co-pigmentation is among the methods that exhibits potential for stability enhancement of the pigment.


Subject(s)
Indenes , Benzopyrans/chemistry , Indenes/chemistry , Molecular Structure , Pigmentation
10.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421442

ABSTRACT

Allergic rhinitis (AR) is a common upper-airway inflammatory disease of the nasal mucosa caused by immunoglobulin (IgE)-mediated inflammation. AR causes various painful clinical symptoms of the nasal mucosa that worsen the quality of daily life, necessitating the urgent development of therapeutic agents. Herein, we investigated the effects of Caesalpinia sappan Linn. heartwood water extract (CSLW), which has anti-inflammatory and antioxidant properties, on AR-related inflammatory responses. We examined the anti-inflammatory and anti-allergic effects of CSLW in ovalbumin (OVA)-induced AR mice and in primary human nasal epithelial cells (HNEpCs). Administration of CSLW mitigated allergic nasal symptoms in AR mice, decreased total immune cell and eosinophil counts in nasal lavage fluid, and significantly reduced serum levels of OVA-specific IgE, histamine, and Th2 inflammation-related cytokines. CSLW also inhibited the infiltration of several inflammatory and goblet cells, thereby ameliorating OVA-induced thickening of the nasal mucosa tissue. We found that CSLW treatment significantly reduced infiltration of eosinophils and production of periostin, MUC5AC, and intracellular reactive oxygen species through the Keap1/Nrf2/HO-1 pathway in HNEpCs. Thus, our findings strongly indicate that CSLW is a potent therapeutic agent for AR and can improve the daily life of patients by controlling the allergic inflammatory reaction of the nasal epithelium.

11.
F1000Res ; 11: 169, 2022.
Article in English | MEDLINE | ID: mdl-36128561

ABSTRACT

Background: The standardization and mechanism of action of  Caesalpinia sappan as an anticancer agent are still lacking. This study aimed to understand the mechanism of action of  C,sappan extract as an anticancer agent. Methods: This study was conducted using the A549 lung cancer cell line to understand the mechanism of action of  C. sappan extract as an anticancer agent. The cytotoxicity activity, cell cycle progression, apoptosis, protein-related apoptosis (i.e., BCL-2and BAX protein) assays, and RNA sequencing were performed level were measured. Moreover, the antioxidant activity, total flavonoids, and phenolics of C.sappan were also assessed. Results: C.sappan has strong antioxidant activity (22.14 ± 0.93 ppm) total flavonoid content of (529.3 ± 4.56 mgQE/g), and phenolics content of (923.37 ± 5 mgGAE/g). The C.sappan ethanol extract inhibited cancer cell growth and arrested at G0/G1 phase of cell cycle, inducing apoptosis by increasing BAX/BCL-2 protein ratio in A549 lung cancer cell line. Furthermore, results from RNA sequencing analysis showed that C.sappan ethanol extract caused downregulation of genes acting on mitochondrial function including adenosine triphosphate (ATP) production and respiration. Conclusions: This study demonstrated that C.sappan has the ability to inhibit cancer cell growth by inducing apoptosis and mitochondrial dysfunction in A549 cells.


Subject(s)
Antineoplastic Agents , Caesalpinia , Lung Neoplasms , A549 Cells , Adenosine Triphosphate , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Ethanol , Flavonoids/pharmacology , Genes, Mitochondrial , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Plant Extracts/pharmacology , bcl-2-Associated X Protein/genetics
12.
Asian Pac J Cancer Prev ; 23(8): 2623-2632, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36037115

ABSTRACT

OBJECTIVE: The present research aims to report cytotoxic and antimigratory activities of the oxidized form of brazilin, i.e., brazilein, and the effects of the combination of brazilein-doxorubicin on MCF-7/HER2 cells. METHODS: The MTT assay was conducted to test the cytotoxic activity, while flow cytometry with PI and PI-annexin V staining were respectively performed for cell cycle and apoptosis analyses. Migration and invasion analyses were assessed via Boyden chamber assay, while HER2, Rac1, p120, MMP2, and MMP9 protein levels were determined by immunoblotting and gelatin zymography. Molecular docking of ligands with HER2, Src, PI3Kα, PI3KΔ, and PI3Kγ proteins was evaluated using MOE 2010. RESULTS: The MTT assay showed that the IC50 value of brazilein against MCF-7/HER2 cells was 51 ± 2.1 µM. Moreover, brazilein and its combination with doxorubicin-induced G2/M accumulation and apoptosis. Combination of brazilein-doxorubicin inhibited cell migration and tended to decrease HER2, Rac1, p120, MMP2, and MMP9 protein expression levels. Based on our molecular docking study, the docking score of brazilein with PI3Kγ is comparable to that of the native ligand. CONCLUSION: Taken together, a combination of brazilein-doxorubicin exhibited synergistic cytotoxic and antimigratory effects on MCF-7/HER2 cells.
.


Subject(s)
Antineoplastic Agents , Matrix Metalloproteinase 9 , Antineoplastic Agents/pharmacology , Apoptosis , Benzopyrans , Doxorubicin/pharmacology , Humans , Indenes , Matrix Metalloproteinase 2 , Molecular Docking Simulation
13.
Plants (Basel) ; 11(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807650

ABSTRACT

Caesalpinia sappan L. heartwood was collected from Mae Chaem District, Chiang Mai Province, Thailand. Crude extracts were prepared by Soxhlet's extraction using 50, 60, and 70% of ethanol (EtOH) at 50, 60, and 70 °C, and the brazilin content was measured using reversed-phase high performance liquid chromatography (RP-HPLC). The antibacterial activity against foodborne pathogens and anti-inflammatory aspects were investigated. C. sappan, prepared from 70% EtOH at 70 °C (E70T70), significantly (p < 0.05) exhibited the highest amount of brazilin (7.90 ± 0.50% w/w). All extracts were investigated for anti-inflammatory activity through an inhibition effect on nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production in RAW264.7 mouse macrophage cells. The inhibitory effect on cyclooxygenase-2 (COX-2) production in HT-29 and HCT116 was also studied. All the extracts inhibited NO, iNOS, and COX-2 production induced by combined lipopolysaccharide and interferon-γ, especially E70T70, indicating the highest inhibition effect among other extracts. Additionally, E70T70 was selected to determine the antibacterial activity against foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, and Vibrio parahaemolyticus. The result showed that 200 µg/mL extract reduced all test pathogens 100% at 24 h. These results suggested the potential of using C. sappan L. extract as a natural preservative in food and a natural active pharmaceutical ingredient.

14.
Polymers (Basel) ; 14(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35746061

ABSTRACT

This study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.25, 0.50, 0.75, and 1.00%, w/v). The thickness of the developed films ranged from 43 to 63 µm. The lightness and transparency of the films decreased with the increasing concentration of SE (p < 0.05). All concentrations of gelatin films incorporated with SE exhibited great pH sensitivity, as indicated by changes in film color at different pH levels (pH 1−12). Significant decreases in tensile strength were observed at 1.00% SE film (p < 0.05). The addition of SE reduced gelatin films' solubility and water vapor permeability (p < 0.05). The chemical and physical interactions between gelatin and SE affected the absorption peaks in FTIR spectra. SE was affected by increased total phenolic content (TPC) and antioxidant activity of the gelatin film, and the 1.00% SE film showed the highest TPC (15.60 mg GAE/g db.) and antioxidant activity (DPPH: 782.71 µM Trolox/g db. and FRAP: 329.84 mM/g db.). The gelatin films combined with SE could inhibit S. aureus and E. coli, while the inhibition zone was not observed for E. coli; it only affected the film surface area. The result suggested that gelatin films incorporated with SE can be used as an intelligent film for pH indicators and prolong the shelf life of food due to their antioxidant and antimicrobial activities.

15.
Asian Pac J Cancer Prev ; 23(4): 1337-1343, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35485694

ABSTRACT

OBJECTIVE: Lung cancer is the leading cause of death among cancer patients. The majority of lung cancer is the Non-Small Lung Carcinoma (NSLC). This study evaluated the potency of brazilin isolated from Caesalpinia sappan wood to induce apoptosis on non-small lung carcinoma cell line, A549, by examining the expression of p53, caspase-9, and caspase-3. METHODS: Brazilin was isolated from Caesalpinia sappan wood following a guided assay and it was determined by using Brazilin®SIGMA as standard. The activity of brazilin on the growth of A549 cell line was analysed by MTT assay and the apoptosis was evaluated by flowcytometer following Annexin V (FITC) and PI staining. The expression of p53, caspase-9, and caspase-3 was examined by immunocytochemistry. RESULT: The IC50 of brazilin on A549 cell line was 43µg/mL. Cell treatment with 20 µg/mL and 40 µg/mL of brazilin significantly increased early apoptosis (p<0.001). Cell treatment with 40 µg/mL  of Brazilin significantly increased late apoptosis (p<0.001). Brazilin significantly increased the expression of p53, Caspase-9, and caspase-3 (p<0.001). CONCLUSION: This study showed evidence of the activity of brazilin to induce intrinsic apoptosis on a NSLC cell line A549.


Subject(s)
Carcinoma , Lung Neoplasms , A549 Cells , Apoptosis , Benzopyrans , Caspase 3 , Caspase 9 , Humans , Lung Neoplasms/drug therapy , Tumor Suppressor Protein p53 , Wood
16.
Asian Pac J Cancer Prev ; 23(2): 743-752, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35225488

ABSTRACT

OBJECTIVE: To evaluate the anti-cancer properties of Caesalpinia sappan and Ficus septica in combination with doxorubicin on 4T1 cells, confirm their nephroprotective activities, and predict the molecular targets of the underlying mechanisms. METHODS: The cytotoxic activities of all extracts and doxorubicin were determined by MTT assay followed by cell cycle and apoptosis analysis using flow cytometry. Immunoblotting was used to determine the protein expressions. The proteins involved in the cell proliferation and migration were analyzed through bioinformatics approaches, whereas, the interaction between compounds and protein targets was observed through molecular docking. Furthermore, the effect of the extracts on cell migration was analyzed by scratch wound healing assay. The intracellular ROS after treatment with extracts was observed using DCFDA staining flow cytometry. RESULTS: Both ECS and EFS performed cytotoxic properties and significantly enhanced doxorubicin's cytotoxic effects against 4T1 cells. However, these cytotoxic activities did not correlate with the cell cycle progression. On the contrary, the combination treatment caused apoptosis that may correlate with the decreasing of IκBα phosphorylation, indicating that all agents targeted the inhibition of NF-κB activation. The combination treatments also inhibited cell migration and decreased MMP-9 expression. TNBC proliferation and metastasis needed at least 54 proteins to be activated, some of them are related to NF-κB activation. The inhibitory effect of ECS correlated with the interaction of brazilin and brazilein to IKK, a kinase protein that plays a role in IκBα phosphorylation. In addition, ECS and EFS reduced ROS expression in Vero cells caused by doxorubicin. CONCLUSION: In conclusion, ECS and EFS effectively enhanced the cytotoxic effect of doxorubicin and inhibit cell migration on 4T1 cells and these activities may correlate to the inhibitory effect of NF-κB activation. ECS and EFS also exhibit ROS suppressing effect on Vero cells that may be beneficent to reduce nephrotoxicity of chemotherapeutic treatment.


Subject(s)
Caesalpinia/chemistry , Doxorubicin/pharmacology , Ficus/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chlorocebus aethiops , Drug Therapy, Combination , Humans , Signal Transduction/drug effects , Vero Cells/drug effects
17.
Life (Basel) ; 12(2)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35207564

ABSTRACT

Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein-protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein-protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM.

18.
Phytochemistry ; 197: 113111, 2022 May.
Article in English | MEDLINE | ID: mdl-35124529

ABSTRACT

Two undescribed nitrogen bridged cassane alkaloids (caesanamides A-B) and five undescribed oxygen bridged cassane diterpenoids (caesalpinins JA-JE), together with six known analogs, were isolated and identified from the seeds of Caesalpinia sappan. Their structures, including the absolute configurations, were unequivocally elucidated by the analysis of comprehensive spectroscopic data, ECD calculations, single-crystal X-ray diffraction and the CASE algorithm. Among them, caesanamides A and B represent the first examples of cassane alkaloids bearing unique ring systems of an amide bridge between C-19/C-20 incorporating a 1,3-oxazolidine (6/6/6/5/6/5) or a 7-one-1,3-oxazepine (6/6/6/5/6/7). Caesalpinin JA is an A/B cis-20-norcassane diterpenoid with a rare five-membered oxygen bridge between C-10/C-18. Biological evaluation showed that cassane alkaloids exhibited significant cytotoxicity against HepG2 cells with IC50 values of 13.48 ± 1.07 µM (caesanamide A), 18.91 ± 0.98 µM (caesanamide B), and 7.82 ± 0.65 µM (caesanine B). Further flow cytometry analysis revealed that caesanine B could cause G0G1 cell cycle arrest and promote apoptosis in a dose- and time-dependent manner in HepG2 cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Caesalpinia , Diterpenes , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Caesalpinia/chemistry , Diterpenes/chemistry , Molecular Structure , Seeds/chemistry
19.
Nat Prod Res ; 36(8): 2078-2084, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33213201

ABSTRACT

A new cassane diterpenoid, caesappine A (1), and a new natural cassane diterpenoid, caesappine B (2) were isolated from the seeds of Caesalpinia sappan. The new structures of compounds 1 and 2 were elucidated by analysing their 1D NMR, 2D NMR and HR-ESI-MS spectra. Compounds 1 and 2 were evaluated for the cytotoxic activities on Hela and HepG-2 human cancer cell lines.


Subject(s)
Caesalpinia , Diterpenes , Caesalpinia/chemistry , Diterpenes/chemistry , HeLa Cells , Humans , Molecular Structure , Seeds/chemistry
20.
Heliyon ; 7(12): e08561, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950791

ABSTRACT

Andrographis paniculata, Syzygium cumini, and Caesalpinia sappan are used as traditional medicines to treat diabetes mellitus. Therefore, this study aims to examine the antidiabetic effects and the acute toxicity of combined extract (1:1:1) of A. paniculata, S. cumini, and C. sappan (ASCE). The antidiabetic effect was tested using the rats model, induced by a high-fat diet and a double dose of streptozotocin injection of 35 mg/kg BW. Subsequently, diabetic rats in the experimental group were treated with 75 mg/kg BW and 150 mg/kg BW of ASCE, and those in the diabetic control group were treated with metformin 250 mg/kg BW. After seven days of treatment, fasting blood glucose (FBG), pancreatic ß-cells numbers, and lipid profiles were used to analyze the antidiabetic effect. The results showed that the administration of 150 mg/kg BW ASCE significantly reduced FBG (p < 0.01), cholesterol levels (p < 0.05), LDL levels (p < 0.05), but not triglycerides, compared to diabetic control, this effect was comparable to metformin treatment. In addition, the pancreatic ß-cells numbers were likely increased after ASCE treatment in a dose-dependent manner. The oral administration of a single dose of ASCE was safe up to 5000 mg/kg BW and did not result in any significant difference in body weight, relative organ weight, hematological and biochemical parameters compared with the control group. Therefore, it can be concluded that ASCE has a potential antidiabetic effect and can be safely developed as alternative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...