Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Head Face Med ; 20(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172921

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the physicochemical properties of two newly introduced premixed calcium silicate-based root canal sealers (AH Plus Bioceramic Sealer and Bio-C Sealer) compared to a resin-based root canal sealer (ADseal root canal sealer). METHODS: Solubility, pH analysis, calcium ion release, and film thickness of each sealer were evaluated following ISO guidelines. The data were examined using the two-way ANOVA test. Furthermore, X-ray diffraction (XRD) examination was performed to investigate the crystalline phase of each type of sealer. X-ray fluorescence (XRF) analysis was done for the chemical elemental analysis of each sealer. RESULTS: The least film thickness, highest alkalinity, and highest calcium ion release were all displayed by AH Plus Bioceramic Sealer. High solubility, high alkalinity, intermediate calcium ion release, and intermediate film thickness were all displayed by Bio-C Sealer. While ADseal root canal sealer displayed the greatest film thickness, least solubility, alkalinity, and calcium ion release. CONCLUSIONS: Both AH Plus Bioceramic Sealer and Bio-C Sealer represented adequate properties to be considered a good sealer that could be used as a potential alternative to resin-based root canal sealers.


Subject(s)
Calcium , Root Canal Filling Materials , Humans , Calcium/chemistry , Dental Pulp Cavity , Root Canal Filling Materials/chemistry , Epoxy Resins/chemistry , Calcium Compounds/chemistry , Silicates/chemistry , Materials Testing
2.
Braz. dent. j ; 34(4): 54-61, July-Aug. 2023. tab, graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1520342

ABSTRACT

Abstract This study compared the pH and calcium ion release of calcium silicate- (Bio-C Temp) and calcium hydroxide-based (Ultracal XS) medications. Intracanal remnants of both medications were also evaluated using SEM-EDS after the removal protocol. Thirty-five bovine teeth were prepared. Fifteen were filled with Bio-C Temp and 15 with Ultracal XS. Five remained without intracanal medication (control group). Five samples from each experimental time (i.e.. 24, 72, and 168 hours) were used to measure pH and calcium ions release using a digital pH meter and microplate reader, respectively. Afterward, the peaks of the chemical elements composing both medications were analyzed in SEM-EDS. One-way ANOVA and Tukey's post hoc test analyzed the pH and calcium ion release data. Student's t-test compared the medications in each experimental time. SEM-EDS described the percentage of chemical elements in the samples. Bio-C Temp and Ultracal XS showed a significant pH increase from 24 to 168 hours (p<0.05). Ultracal XS showed a higher pH value at 24 hours than Bio-C Temp (p<0.05) but were similar at 72 and 168h (p > 0.05). Calcium ion release did not depend on the experimental period (p > 0.05). Bio-C Temp showed lower calcium ions release than Ultracal XS at 24 hours (p<0.05). SEM-EDS analyses showed the remains of both medications, but the concentration of Si, Al, and W ions was present only in the calcium silicate-based medication. Bio-C Temp presented alkaline pH and a satisfactory calcium ion release over the time. The remaining of both medications were present after the protocols for paste removal.


Resumo Este estudo comparou o pH e a liberação de íons cálcio de medicações intracanais a à base de silicato de cálcio (Bio-C Temp) e à base de hidróxido de cálcio (Ultracal XS). Remanescentes de ambas as medicações também foram avaliados usando microscopia eletrônica de varredura e espectroscopia de dispersão de energia após o protocolo de remoção. Trinta e cinco dentes bovinos foram preparados. Quinze dentes foram preenchidos com Bio-C Temp e 15 com Ultracal XS. Cinco permaneceram sem medicação intracanal (grupo controle). Cinco amostras de cada tempo experimental (ou seja, 24, 72 e 168 horas) foram usadas para medir o pH e a liberação de íons de cálcio usando um medidor de pH digital e um leitor de microplacas, respectivamente. Em seguida, os picos dos elementos químicos que compõem os dois medicamentos foram analisados ​​em microscopia eletrônica de varredura e por espectroscopia de dispersão de energia. Os testes One-way ANOVA e post hoc de Tukey analisaram os dados de pH e liberação de íons cálcio. O teste t de Student comparou as medicações em cada tempo experimental. A microscopia eletrônica de varredura e a espectroscopia de dispersão de energia descreveu a porcentagem de elementos químicos nas amostras. O Bio-C Temp e o Ultracal XS mostraram um aumento significativo de pH de 24 a 168 horas (p<0,05). O Ultracal XS apresentou um valor de pH mais alto em 24 horas do que o Bio-C Temp (p<0,05), mas foi semelhante em 72 e 168h (p > 0,05). A liberação de íons cálcio não dependeu do período experimental (p> 0,05). O Bio-C Temp apresentou menor liberação de íons de cálcio do que Ultracal XS em 24 horas (p<0,05). As análises de microscopia eletrônica de varredura e espectroscopia de dispersão de energia mostraram remanescentes de ambas as medicações, mas a concentração de íons Si, Al e W estavam presentes apenas na medicação à base de silicato de cálcio. O Bio-C Temp apresentou pH alcalino e maior liberação de íons cálcio. Remanescentes de ambas as medicações estiveram presentes após os protocolos de remoção da pasta.

3.
Dent Mater ; 34(8): e214-e223, 2018 08.
Article in English | MEDLINE | ID: mdl-29789161

ABSTRACT

OBJECTIVE: To synthetize calcium aluminate (C3A) and silver-containing C3A particles (C3A+Ag) testing their effects on the properties of a MTA-based endodontic sealer in comparison to an epoxy resin- and a calcium silicate-based sealer. METHODS: Pure C3A and C3A+Ag particles were synthesized by a chemical method and characterized using XRD to identify crystalline phases. SEM/EDS analysis investigated morphology, particle size, and elemental composition of particles. Setting time, flow, radiopacity, water sorption and solubility of commercial and modified sealers were evaluated according to ISO 6876/2012. The pH and ions release were measured using a pHmeter and a microwave induced plasma optical emission spectrometer. The inhibition of biofilm growth was evaluated by confocal laser scanning microscopy (CLSM). Data were rank transformed and analyzed by ANOVA and Tukey test (P<0.05). RESULTS: The C3A particles showed an irregular grain agglomerated structure with voids and pores. In C3A+Ag particles, Ag modified the material morphology, confirming the deposition of Ag. The physicochemical properties of the modified MTA-based sealer were similar to the commercial material, except for the significant increase in Ca+2 release. However, there was no Ag release. Setting time, flow, radiopacity, water sorption and solubility were adequate for all materials. All the materials showed alkaline pH. Antibiofilm effect was improved in the presence of C3A particles, while the biofilm inhibition was lower in the presence of Ag. SIGNIFICANCE: The modified sealer presented improved antibiofilm properties and calcium release, without dramatic effects on the other characteristics. It is expected a positive effect in its antimicrobial behavior.


Subject(s)
Aluminum Compounds/chemistry , Aluminum Compounds/chemical synthesis , Calcium Compounds/chemistry , Calcium Compounds/chemical synthesis , Oxides/chemistry , Root Canal Filling Materials/chemical synthesis , Silicates/chemistry , Silver/chemistry , Biofilms/drug effects , Drug Combinations , Epoxy Resins/chemistry , Hydrogen-Ion Concentration , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Solubility , Spectrometry, X-Ray Emission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...