Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
1.
Sci Rep ; 14(1): 15649, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977748

ABSTRACT

In order to enhance the hyperspectral camouflage efficacy of stealth coatings against a natural vegetative backdrop, LiCl, known for its significant hygroscopic properties, was incorporated into green Mg-Al layered double hydroxide (Mg-Al LDHs) material. Micron-sized composite microspheres were subsequently synthesized via the spray-drying granulation technique. The structure, morphology, and chemical composition of these microspheres were thoroughly characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, nitrogen adsorption-desorption isotherms, and Fourier-transform infrared spectroscopy. The effect of LiCl content on the moisture absorption capacity and near-infrared reflectance spectra of the microspheres was systematically evaluated. We found that incorporating an optimal amount of LiCl into the internal pores of the Mg-Al LDHs microspheres did not compromise their smooth surface morphology and uniform particulate distribution. Notably, when the LiCl content was 10%, the maximum saturation moisture uptake ratio of the coating increased to 0.75 g/g. This hygroscopicity significantly enhanced the absorption and scattering of near-infrared radiation by the coating while concurrently improving its ability to modulate the shape and reflectance of both the visible and near-infrared spectral curves. Spectral congruence between the synthetic coating and natural green foliage was quantified at 97.41%. Moreover, this performance was maintained over 10 cycles of programmed drying and re-humidification, and the coating consistently demonstrated stable hygroscopic properties and sustained over 95% spectral congruence. These optimized artificial coatings were found to effectively confuse hyperspectral classification algorithms, thus blending seamlessly into a natural foliage backdrop. This study provides a new method for regulating VIS and NIR spectral (visible-near infrared spectrum) features, which will be critical for applications in advanced hyperspectral camouflage materials.

2.
Adv Sci (Weinh) ; : e2400979, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994880

ABSTRACT

Reconstructing the visible spectra of real objects is critical to the spectral camouflage from emerging spectral imaging. Electrochromic materials exhibit unique superiority for this goal due to their subtractive color-mixing model and structural diversity. Herein, a simulation model is proposed and a method is developed to fabricate electrochromic devices for dynamically reproducing the visible spectrum of the natural leaf. Over 20 kinds of pH-dependent leuco dyes have been synthesized/prepared through molecular engineering and offered available spectra/bands to reconstruct the spectrum of the natural leaf. More importantly, the spectral variance between the device and leaf is optimized from an initial 98.9 to an ideal 10.3 through the simulation model, which means, the similarity increased nearly nine-fold. As a promising spectrum reconstruction approach, it will promote the development of smart photoelectric materials in adaptive camouflage, spectral display, high-end encryption, and anti-counterfeiting.

3.
Ecol Evol ; 14(7): e11693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952662

ABSTRACT

Masquerade is a form of camouflage in which animals use their body size, shape, and coloration to resemble inanimate objects in their environment to deceive predators. However, there is a lack of experimental evidence to show that animals actively choose objects that match these body parameters. To explore how the Hainan four-eyed turtle, Sacalia insulensis, masquerades using suitable stones, we used indoor video surveillance technology to study the preferences of juvenile S. insulensis for stones of different sizes, shapes, and colors. The results indicated that under normal conditions, during the day, juvenile S. insulensis preferred larger oval or round stones, while at night, they preferred oval stones that were closer to their own size, with no significant preference for stone color during either time. When disturbed (by a researcher swinging their arm back and forth above the experimental setup every hour to mimic a predator), the turtles showed a preference for brown stones that were closer to their size and oval in shape. These findings suggest that juvenile S. insulensis prefer stones that resemble their carapace size and shape to masquerade when undisturbed, and that this preference is reinforced when they masquerade to reduce the risk of predation. The preference for stones that resemble their carapace color is significant only when there is a disturbance. To the best of our knowledge, this is the first study to provide evidence that vertebrates can selectively choose objects that resemble their own morphology for masquerading to reduce predation risk.

4.
Curr Biol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38959882

ABSTRACT

Many animals avoid detection or recognition using camouflage tailored to the visual features of their environment.1,2,3 The appearance of those features, however, can be affected by fluctuations in local lighting conditions, making them appear different over time.4,5 Despite dynamic lighting being common in many terrestrial and aquatic environments, it is unknown whether dynamic lighting influences the camouflage patterns that animals adopt. Here, we test whether a common form of underwater dynamic lighting, consisting of moving light bands that can create local fluctuations in the intensity of light ("water caustics"), affects the camouflage of cuttlefish (Sepia officinalis). Owing to specialized pigment cells (chromatophores) in the skin,6 these cephalopod mollusks can dynamically adjust their body patterns in response to features of their visual scene.7,8,9 Although cuttlefish resting on plain or patterned backgrounds usually expressed uniform or disruptive body patterns, respectively,10,11,12 exposure to these backgrounds in dynamic lighting induced stronger disruptive patterns regardless of the background type. Dynamic lighting increased the maximum contrast levels within scenes, and these maximum contrast levels were associated with the degree of cuttlefish disruptive camouflage. This adoption of disruptive camouflage in dynamically lit scenes may be adaptive, reducing the likelihood of detection, or alternatively, it could represent a constraint on visual processing.

5.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893828

ABSTRACT

Bioinspired structural color represents a burgeoning field that draws upon principles, strategies, and concepts derived from biological systems to inspire the design of novel technologies or products featuring reversible color changing mechanisms, with significant potential applications for camouflage, sensors, anticounterfeiting, etc. This mini-review focuses specifically on the research progress of bioinspired structural color in the realm of camouflage. Firstly, it discusses fundamental mechanisms of coloration in biological systems, encompassing pigmentation, structural coloration, fluorescence, and bioluminescence. Subsequently, it delineates three modulation strategies-namely, photonic crystals, film interference, and plasmonic modulation-that contribute to the development of bioinspired structural color materials or devices. Moreover, the review critically assesses the integration of bioinspired structural color materials with environmental contexts, with a particular emphasis on their application in camouflage. Finally, the paper outlines persisting challenges and suggests future development trends in the camouflage field via bioinspired structural color.

6.
Adv Mater ; : e2406007, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847583

ABSTRACT

Natural plant leaves with multiple functions, for example, spectral features, transpiration, photosynthesis, etc., have played a significant role in the ecosystem, and artificial synthesis of plant leaves with multiple functions of natural ones is still a great challenge. Herein, this work presents an aerogel-involved living leaf (AL), most similar to natural ones so far, by embedding super-hydrophobic SiO2 aerogel microparticles in polyvinyl alcohol hydrogel in the presence of hygroscopic salt and chlorophyllin copper sodium to form solid-liquid-vapor triple-state gel. The AL shows a high spectral similarity with all sampled 15 species of natural leaves and exhibits ≈4-7 times transpiration speed higher than natural leaves. More importantly, AL can achieve several times higher photosynthesis than natural leaves without the energy provided by the respiratory action of natural ones. This work demonstrates the feasibility of creating ALs with natural leaf-like triple-state gel structures and multiple functions, opening up new avenues for energy conversion, environmental engineering, and biomimetic applications.

7.
ACS Appl Mater Interfaces ; 16(23): 30421-30429, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832560

ABSTRACT

Electrochromic devices (ECDs), which are capable of modulating optical properties in the visible and long-wave infrared (LWIR) spectra under applied voltage, are of great significance for military camouflage. However, there are a few materials that can modulate dual frequency bands. In addition, the complex and specialized structural design of dual-band ECDs poses significant challenges. Here, we propose a novel approach for a bendable ECD capable of modulating LWIR radiation and displaying multiple colors. Notably, it eliminates the need for a porous electrode or a grid electrode, thereby improving both the response speed and fabrication feasibility. The device employs multiwalled carbon nanotubes (MWCNTs) as both the transparent electrode and the LWIR modulator, polyaniline (PANI) as the electrochromic layer, and ionic liquids (HMIM[TFSI]) as the electrolyte. The ECD is able to reduce its infrared emissivity (Δε = 0.23) in a short time (resulting in a drop in infrared temperature from 50 to 44 °C) within a mere duration of 0.78 ± 0.07 s while changing its color from green to yellow within 3 s when a positive voltage of 4 V is applied. In addition, it exhibits excellent flexibility, even under bending conditions. This simplified structure provides opportunities for applications such as wearable adaptive camouflage and multispectral displays.

8.
Sci Rep ; 14(1): 13128, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849400

ABSTRACT

Non-visual auditory camouflage plays a major role in the art of underwater deception. In this work, a hybrid active/semi-active omnidirectional cloaking shell structure composed of alternate complementary piezoelectric and smart viscoelastic (PZT/SVE) actuator layers is proposed that can effectively conceal a three dimensional underwater macroscopic object from broadband incident sound waves. The smart hybrid structure incorporates a finite sequence of fully active parallel-connected multimorph PZT constraining layers inter-stacked with semi-active SVE core layers both of which are collaboratively operative in the framework of a Particle Swarm Optimized (PSO) multiple-input multiple-output active damping control (MIMO-ADC) scheme. The elasto-acoustic modeling of the problem is conducted by coupling the spatial state space methodology based on the classical three-dimensional exact piezoelasticity theory with the wave equations for the inner and outer acoustic domains. The acoustic cloaking performance of proposed configuration is evaluated for four distinct classes of highly functional SVE interlayer materials with tunable (field-dependent) rheological properties, namely, magnetorheological elastomer (MRE), shape memory polymer (SMP), electrorheological fluid (ERF), and magnetorheological shear thickening polishing fluid (MRSTPF). Extensive numerical results reveal significant broadband reductions of the far-field backscattering amplitude in the ( f ∞ θ = π , k ex R ex ) as well as the percentage error of external cloaked field ( % Err ) by incorporating a sufficient number of smart multimorph PZT/SVE material layers. Furthermore, it is concluded that comparable low frequency acoustic cloaking effects is possible without expenditure of any external energy just by employing the entirely inactive MRSTPF-based cloak as an alternative to the semiactive or fully active multimorph PZT/SVE cloaks. The outcome of proposed study can advantageously serve as the first step towards practical development and experimental implementation of future high performance smart acoustic cloaking devices with expanded broadband near-perfect omnidirectional invisibility for three dimensional objects of diverse geometries.

9.
Nanomicro Lett ; 16(1): 216, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874857

ABSTRACT

Multifunctional, flexible, and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications. This study presents a multifunctional Janus film integrating highly-crystalline Ti3C2Tx MXene and mechanically-robust carbon nanotube (CNT) film through strong hydrogen bonding. The hybrid film not only exhibits high electrical conductivity (4250 S cm-1), but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments, showing exceptional resistance to thermal shock. This hybrid Janus film of 15 µm thickness reveals remarkable multifunctionality, including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range, excellent infrared (IR) shielding capability with an average emissivity of 0.09 (a minimal value of 0.02), superior thermal camouflage performance over a wide temperature range (- 1 to 300 °C) achieving a notable reduction in the radiated temperature by 243 °C against a background temperature of 300 °C, and outstanding IR detection capability characterized by a 44% increase in resistance when exposed to 250 W IR radiation. This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.

10.
BMC Oral Health ; 24(1): 711, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902685

ABSTRACT

BACKGROUND: The aim of the study was to assess the thickness of the soft tissue facial profile (STFP) in relation to the skeletal malocclusion, age and gender. METHODS: All patients, aged 7-35 years, who were seeking orthodontic treatment at the Department of Orthodontics, Medical University of Warsaw between 2019 and 22 were included in the study. All patients had lateral head radiographs taken before the treatment. The cephalometric analysis was performed including the STFP analysis. The patients were allocated to one of six groups based on age and skeletal relations (ANB angle). The minimum number of patients in each group was 60 with equal gender distribution. The STFP analysis included ten linear measurements. RESULTS: A total of 300 patients were included in the study and allocated to five groups. Group 6 (growing patients with skeletal Class III malocclusion) was not included in the study as it failed to achieve the assumed group size. There were significant differences in the thickness of the STFP in relation to the skeletal malocclusions. Adults with skeletal Class III malocclusion had significantly thicker subnasal soft tissues compared to patients with skeletal Class I and Class II malocclusions. The thickness of the lower lip in patients with Class II skeletal malocclusion was significantly bigger compared to the other groups. Children and adolescents with Class II malocclusions had thicker lower lip in comparison to the group with Class I malocclusion. The majority of the STFP measurements were significantly smaller in children and adolescents compared to adults. The thickness of the STFP in males was significantly bigger in all age groups compared to females. CONCLUSIONS: The thickness of facial soft tissues depends on the patient's age and gender. The degree of compensation of the skeletal malocclusion in the STFP may be a decisive factor during orthodontic treatment planning regarding a surgical approach or a camouflage treatment of skeletal defects.


Subject(s)
Cephalometry , Face , Malocclusion , Humans , Adolescent , Male , Female , Child , Face/anatomy & histology , Face/diagnostic imaging , Adult , Age Factors , Young Adult , Malocclusion/diagnostic imaging , Malocclusion/pathology , Sex Factors , Malocclusion, Angle Class III/diagnostic imaging , Malocclusion, Angle Class III/pathology , Malocclusion, Angle Class II/diagnostic imaging , Malocclusion, Angle Class II/pathology
11.
Micromachines (Basel) ; 15(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930778

ABSTRACT

Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural colors modulated by nano-helical structures can continuously and selectively reflect specific wavelengths of light, breaking the limit of colors recognizable by the human eye. In this review, the current state of research on cholesteric liquid crystal photonic actuators and their technological applications is presented. First, the basic concepts of cholesteric liquid crystals and their nanostructural modulation are outlined. Then, the cholesteric liquid crystal photonic actuators responding to different stimuli (mechanical, thermal, electrical, light, humidity, magnetic, pneumatic) are presented. This review describes the practical applications of cholesteric liquid crystal photonic actuators and summarizes the prospects for the development of these advanced structures as well as the challenges and their promising applications.

12.
Small ; : e2401755, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698572

ABSTRACT

Infrared and radar detectors posed substantial challenges to weapon equipment and personnel due to their continuous surveillance and reconnaissance capabilities. Traditional single-band stealth devices are insufficient for dual-band detection in both infrared and microwave bands. To overcome this limitation, a gradient-structured MXene/reduced graphene oxide (rGO) composite aerogel (GMXrGA) is fabricated through a two-step bidirectional freeze casting process, followed by freeze-drying and thermal annealing. GMXrGA exhibits a distinct three-layered structure, with each layer playing a crucial role in microwave absorption. This deliberate design amplifies both the efficiency of microwave absorption and the material's effectiveness in dynamic infrared camouflage. GMXrGA displays an ultralow density of 5.2 mg∙cm-3 and demonstrates exceptional resistance to compression, enduring 200 cycles at a maximum strain of 80%. Moreover, it shows superior microwave absorption performance, with a minimum reflection loss (RLmin) of -60.1 dB at a broad effective absorption bandwidth (EAB) of 14.1 GHz (3.9-18.0 GHz). Additionally, the aerogel exhibits low thermal conductivity (≈26 mW∙m-1∙K-1) and displays dynamic infrared camouflage capabilities within the temperature range of 50-120 °C, achieving rapid concealment within 30 s. Consequently, they hold great potential for diverse applications, including intelligent buildings, wearable electronics, and weapon equipment.

13.
Adv Healthc Mater ; : e2400127, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691349

ABSTRACT

Venous/arterial thrombosis poses significant threats to human health. However, drug-enabled thrombolysis treatment often encounters challenges such as short half-life and low bioavailability. To address these issues, the design of erythrocyte-membrane (EM) camouflaged nanocapsules (USIO/UK@EM) incorporating ultra-small iron oxide (USIO) and urokinase (UK) drug, which exhibits remarkable photothermal/magnetothermal effects and drug delivery ability for venous/arterial thrombolysis, is reported. USIO, UK, and EM are coextruded to fabricate USIO/UK@EM with average sizes of 103.7 nm. As USIO/UK@EM possesses wide photoabsorption and good magnetic properties, its solution demonstrates a temperature increase to 41.8-42.9 °C within 5 min when exposed to an 808 nm laser (0.33 mW cm-2) or alternating magnetic field (AMF). Such photothermal/magnetothermal effect along with UK confers impressive thrombolytic rates of 82.4% and 74.2%, higher than that (≈15%) achieved by UK alone. Further, the EM coating extends the circulating half-life (t1/2 = 3.28 h). When USIO/UK@EM is administered to mice and rabbits, tail vein thrombus in mice and femoral artery thrombus in rabbits can be dissolved by the synergetic effect of thermothrombolysis and UK. Therefore, this study not only offers insights into the rational design of multifunctional biomimetic nanocapsules but also showcases a promising thrombolysis strategy utilizing nanomedicine.

14.
Ann Bot ; 134(2): 325-336, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38720433

ABSTRACT

BACKGROUND AND AIMS: There are intrinsic conflicts between signalling to mutualists and concealing (camouflaging) from antagonists. Like animals, plants also use camouflage as a defence against herbivores. However, this can potentially reduce their attractiveness to pollinators. METHODS: Using Fritillaria delavayi, an alpine camouflaged plant with inter-population floral colour divergence, we tested the influence of floral trait differences on reproduction. We conducted pollination experiments, measured floral morphological characteristics, estimated floral colours perceived by pollinators, analysed floral scent and investigated reproductive success in five populations. KEY RESULTS: We found that the reproduction of F. delavayi depends on pollinators. Under natural conditions, a flower-camouflaged population had 100 % fruit set and similar seed set to three out of four yellow-flowered populations. Bumblebees are important pollinators in the visually conspicuous yellow-flowered populations, whereas flies are the only pollinator in the flower-camouflaged population, visiting flowers more frequently than bumblebees. The camouflaged flowers cannot be discriminated from the rock background as perceived by pollinators, but may be located by flies through olfactory cues. CONCLUSIONS: Collectively, our results demonstrate that the flower-camouflaged population has different reproductive traits from the visually conspicuous yellow-flowered populations. A pollinator shift from bumblebees to flies, combined with high visitation frequency, compensates for the attractiveness disadvantage in camouflaged plants.


Subject(s)
Flowers , Fritillaria , Pollination , Reproduction , Pollination/physiology , Animals , Flowers/physiology , Flowers/anatomy & histology , Reproduction/physiology , Bees/physiology , Fritillaria/physiology , Diptera/physiology , Color , Fruit/physiology , Biological Mimicry/physiology , Pigmentation/physiology
15.
Front Pharmacol ; 15: 1376955, 2024.
Article in English | MEDLINE | ID: mdl-38689664

ABSTRACT

Hematologic malignancies (HMs), also referred to as hematological or blood cancers, pose significant threats to patients as they impact the blood, bone marrow, and lymphatic system. Despite significant clinical strategies using chemotherapy, radiotherapy, stem cell transplantation, targeted molecular therapy, or immunotherapy, the five-year overall survival of patients with HMs is still low. Fortunately, recent studies demonstrate that the nanodrug delivery system holds the potential to address these challenges and foster effective anti-HMs with precise treatment. In particular, cell membrane camouflaged nanodrug offers enhanced drug targeting, reduced toxicity and side effects, and/or improved immune response to HMs. This review firstly introduces the merits and demerits of clinical strategies in HMs treatment, and then summarizes the types, advantages, and disadvantages of current nanocarriers helping drug delivery in HMs treatment. Furthermore, the types, functions, and mechanisms of cell membrane fragments that help nanodrugs specifically targeted to and accumulate in HM lesions are introduced in detail. Finally, suggestions are given about their clinical translation and future designs on the surface of nanodrugs with multiple functions to improve therapeutic efficiency for cancers.

16.
ACS Appl Mater Interfaces ; 16(21): 27627-27639, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38766902

ABSTRACT

Ultrawide-spectra-compatible camouflage materials are imperative for military science and national security due to the continuous advancement of various sophisticated multispectral detectors. However, ultrawide spectra camouflage still has challenges, as the spectral requirements for different bands are disparate and even conflicting. This work demonstrates an ultrawide spectra camouflage material compatible with visible (VIS, 400-800 nm), infrared (IR, 3-5 and 8-14 µm), and microwave (S-Ku bands, 2-12 GHz). The carbon nanotubes adsorbed on porous anodic alumina/aluminum flake powder (CNTs@PAA/AFP) material for ultrawide spectra camouflage is composed of bioinspired porous alumina surface layers for low visible reflection and aluminum flake powder substrate for low infrared emissivity, while the surface of the porous alumina layers is loaded with carbon nanotubes for microwave absorption. Compared with previous low-emissivity materials, CNTs@PAA/AFP has omnidirectional low reflectance (Ravg = 0.29) and high gray scale (72%) in the visible band. Further, it exhibits low emissivity (ε3-5µm = 0.15 and ε8-14µm = 0.18) in the dual infrared atmospheric window, which reduces the infrared lock-on range by 59.6%/49.8% in the mid/far-infrared band at high temperatures (573 K). The infrared camouflage performance calculated from the radiation temperature of CNTs@PAA/AFP coatings is enhanced to over 65%, which is at least 4 times greater than that of its substrate. In addition, the CNTs@PAA/AFP coating achieves high microwave absorption (RLmin = -42.46 dB) and an effective absorption bandwidth (EAB = 7.43 GHz) in the microwave band (S-Ku bands) due to the enhancement of interfacial polarization and conductive losses. This study may introduce new insight and feasible methods for multispectral manipulation, electromagnetic signal processing, and thermal management via bioinspired structural design and fabrication.

17.
Int J Biol Macromol ; 271(Pt 1): 132435, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759856

ABSTRACT

The increasing electromagnetic pollution is urgently needed as an electromagnetic interference shielding protection device for wearable devices. Two-dimensional transition metal carbides and nitrides (MXene), due to their interesting layered structure and high electrical conductivity, are ideal candidates for constructing efficient conductive networks in electromagnetic interference shielding materials. In this work, lightweight and robust cellulose/MXene/polyurethane composite aerogels were prepared by mixing cellulose nanofiber (CNF) suspensions with MXene, followed by freeze-drying and coating with polyurethane. In this process, CNF effectively assembled MXene nanosheets into a conductive network by enhancing the interactions between MXene nanosheets. The prepared aerogel exhibited the shielding effectiveness of 48.59 dB in the X-band and an electrical conductivity of 0.34 S·cm-1. Meanwhile, the composite aerogel also possessed excellent thermal insulation, infrared stealth, mechanical and hydrophobic properties, and can be used as a wearable protective device to protect the human body from injuries in different scenarios while providing electromagnetic interference shielding protection.


Subject(s)
Cellulose , Polyurethanes , Wearable Electronic Devices , Cellulose/chemistry , Cellulose/analogs & derivatives , Polyurethanes/chemistry , Gels/chemistry , Humans , Electric Conductivity , Nanocomposites/chemistry , Nanofibers/chemistry
18.
Medicina (B.Aires) ; 84(supl.1): 37-42, mayo 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1558482

ABSTRACT

Resumen El autismo es un trastorno del neurodesarrollo de base neurobiológica con alta prevalencia y claro predo mino en varones. Se caracteriza por déficits en la cog nición social y la comunicación, intereses restringidos y conductas estereotipadas, frecuentemente asociado a disfunciones sensoriales, otras condiciones del neuro desarrollo, trastornos neuropsiquiátricos, epilepsia y/o trastornos de sueño. Esta condición acompañará a las personas a lo largo de toda la vida, lo cual generará diversas necesidades de apoyo y tratamientos. Las personas con autismo muchas veces necesitan "encajar", para ello utilizan técnicas como el camuflaje, también denominada enmascara miento. Esta actitud se ha observado en personas con desarrollo típico y en personas con autismo en la infan cia, adolescencia y vida adulta, aunque en los autistas esta conducta es más intensa y lleva más tiempo, y se la identifica con más frecuencia e intensidad en mujeres adultas autistas. Esto podría explicar el subregistro de autismo, el diagnóstico más tardío, el retraso en el abordaje tera péutico y la mayor presencia de trastornos de ansiedad y depresión relacionados al esfuerzo que implica "pa recer normal". Si bien las personas al camuflar parecen ser "normales" y encajan perfectamente, ésta no es una actitud que debiera propiciarse, por el contrario es imperativo trabajar para mejorar el entorno y la com prensión de cada persona. En este trabajo analizamos los aspectos clínicos, su relación con la edad, sexo, y formas de detección del mismo.


Abstract Autism is a neurobiologically based neurodevelop mental disorder with high prevalence and a clear pre dominance in males. It is characterized by deficits in social cognition and communication, restricted inter ests, and stereotyped behaviors, frequently associated with sensory dysfunction others neurodevelopmental conditions, neuropsychiatric disorders, epilepsy, and/or sleep disorders. This condition will accompany people throughout their lives, which will generate various sup port and treatment needs. People with autism often need to "fit in" and for this they use techniques such as camouflage, also called masking. This attitude has been observed in people with typical development and in people with autism in childhood, adolescence and adult life, although in autistic people this behavior is more intense and takes longer and with more frequency and intensity in autistic adult women. This could explain the underreporting of autism, the later diagnosis, the delay in the therapeutic approach, and the greater presence of anxiety and depression disorders related to the effort that "appearing normal" implies. Even though camouflage people appear to be "normal" and fit in perfectly, this is not an attitude that we should promote and, on the contrary, it is imperative to work to improve the environment and the under standing of each person. In this paper we will analyze the clinical aspects, their relationship with age, sex, and ways of detecting it.

19.
J Fish Biol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747400

ABSTRACT

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.

20.
Ecol Evol ; 14(5): e11434, 2024 May.
Article in English | MEDLINE | ID: mdl-38746542

ABSTRACT

Animal camouflage serves a dual purpose in that it enhances both predation efficiency and anti-predation strategies, such as background matching, disruptive coloration, countershading, and masquerade, for predators and prey, respectively. Although body size and shape determine the appearance of animals, potentially affecting their camouflage effectiveness, research over the past two centuries has primarily focused on animal coloration. Over the past two decades, attention has gradually shifted to the impact of body size and shape on camouflage. In this review, we discuss the impact of animal body size and shape on camouflage and identify research issues and challenges. A negative correlation between background matching effectiveness and an animal's body size has been reported, whereas flatter body shapes enhance background matching. The effectiveness of disruptive coloration is also negatively correlated with body size, whereas irregular body shapes physically disrupt the body outline, reducing the visibility of true edges and making it challenging for predators to identify prey. Countershading is most likely in larger mammals with smaller individuals, whereas body size is unrelated to countershading in small-bodied taxa. Body shape influences a body reflectance, affecting the form of countershading coloration exhibited by animals. Animals employing masquerade achieve camouflage by resembling inanimate objects in their habitats in terms of body size and shape. Empirical and theoretical research has found that body size affects camouflage strategies by determining key aspects of an animal's appearance and predation risk and that body shape plays a role in the form and effectiveness of camouflage coloration. However, the mechanisms underlying these adaptations remain elusive, and a relative dearth of research on other camouflage strategies. We underscore the necessity for additional research to investigate the interplay between animal morphology and camouflage strategies and their coevolutionary development, and we recommend directions for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...