Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Article in English | MEDLINE | ID: mdl-38890255

ABSTRACT

This article compares the influence of blending the low-viscous oxygenated camphor oil with hydrocarbon diesel fuel and high-viscous oxygenated Karanja oil. The experiment is conducted in a four-stroke one-cylinder naturally aspirated Kirloskar compression ignition (CI) engine coupled with an eddy current dynamometer. The three types of fuel blends are prepared by blending the camphor oil with Karanja oil on the volume ratio of 30:70 (C30K70), 50:50 (C50K50), and 70:30 (C70K30), and the other three types of fuels are prepared by blending the camphor oil with diesel on the volume ratio of 30:70 (C30D70), 50:50 (C50D50), and 70:30 (C70D30). The experimental efficiency results show higher thermal efficiency of 31.86% and 30.84% for C70D30 and C70K30 at rated operating conditions. The brake-specific energy consumptions of C70D30 and C70K30 were found to be 11.29 and 11.67 MJ/kWh, respectively, at rated operating conditions. The lowest CO, CO2, HC, and smoke emissions are found for C70D30 at rated operating conditions, which are 96.58%, 6.15%, 34.20%, and 7.59% lower than diesel. However, the NO emissions were found to be 27.62% higher for C70D30 than diesel at full load. The rate of pressure rise, net heat release rate, and cyclic variations were found to increase with increase in proportion of the camphor oil. The P-v diagram also confirms the lower heat addition period for the C70D30 and C70K30 with an increase in brake thermal efficiency. The actual compression ratio and the actual cutoff ratio are found to have a reasonable correlation with the thermal efficiency of the engine. The exergy efficiency of C30K70 is found higher which is 2.11% higher than diesel fuel at rated power. Second-order polynomial equations were obtained for the engine characteristics using the curve fitting method, and the characteristic equations confirmed the confidence level of 95%.

2.
Pharmaceuticals (Basel) ; 17(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38931382

ABSTRACT

The aim of this review is to present the potential application of camphor-a bicyclic monoterpene ketone-in the prevention of skin infections. Skin diseases represent a heterogeneous group of disorders characterized by prolonged symptoms that significantly diminish the quality of life. They affect the dermis, the epidermis, and even subcutaneous tissue. They very often have a bacterial or fungal background. Therapy for dermatological skin disorders is difficult and long-term. Therefore, it is important to find a compound, preferably of natural origin, that (i) prevents the initiation of this infection and (ii) supports the skin's repair process. Based on its documented anti-inflammatory, antibacterial, antifungal, anti-acne, anesthetic, strengthening, and warming properties, camphor can be used as a preventative measure in dermatological infectious diseases and as a component in medical and cosmetic products. This work discusses the structure and physicochemical properties of camphor, its occurrence, and methods of obtaining it from natural sources as well as through chemical synthesis. The use of camphor in industrial preparations is also presented. Additionally, after a detailed review of the literature, the metabolism of camphor, its interactions with other medicinal substances, and its antimicrobial properties against bacteria and fungi involved in skin diseases are discussed with regard to their resistance.

3.
J Agric Food Chem ; 72(20): 11415-11428, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727515

ABSTRACT

Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.


Subject(s)
Camphor , Fungicides, Industrial , Molecular Docking Simulation , Oryza , Plant Diseases , Rhizoctonia , Rhizoctonia/drug effects , Oryza/microbiology , Plant Diseases/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Animals , Camphor/pharmacology , Camphor/chemistry , Bees/microbiology , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Structure-Activity Relationship
4.
Uisahak ; 33(1): 1-57, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38768990

ABSTRACT

Borneol(yongnoe) was a fragrance and medicinal ingredient with unique efficacy. However, it could be produced only in tropical Southeast Asia and obtained only through international trade. In addition, camphor(jangnoe) with similar material properties was developed and distributed as an inexpensive replacement for borneol, although the processing method is different from that of borneol. Even in Joseon Korea, borneol and camphor were recognized as separate medicines, and efforts were made to obtain a high-quality borneol. Borneol and camphor have a unique effect of relieving inflammation, pain and heavy feeling, so it could be widely applied to symptoms in various diseases. During the Joseon period, borneol was a rare item that could only be obtained through foreign trade, and it was also used for perfumes and insect repellents, but most widely used as medicine. There are many records of actually prescribing borneol to the royal family, and many medicines containing borneol and its effective symptoms were also recorded in the medical books. Borneol was able to spread widely in Joseon society thanks to the practice of distributing 'nabyak' to court officials every year in the twelfth month of the lunar calendar. Since nabyak was used as a household medicine that was stored and used when necessary, pills containing borneol that could be applied to various symptoms were suitable for this purpose. Despite considerable medical demand, borneol was one of the important 'dangyakjae', the Chinese medicines imported to Joseon. During the Joseon period, borneol was imported through China and Japan, but genuine borneol was difficult to obtain, so it was often presented to Joseon as gifts of envoy trade. It is thought that camphor was also imported, but it is not well mentioned in official records or medical books reflecting national demand. Perhaps this is thought to be because the government prioritized securing better quality borneol rather than campher. In the early 17th century, due to the instability of the envoy's route to the Ming Dynasty, Joseon had to import borneol only through the sea. As a result, there were problems with the supply and quality of borneol, and national interest in Japanese borneol temporarily increased. However, as the relationship with the Qing Dynasty stabilized, a system was established to import national borneol demand through the annual envoy trade. Naeuiwon, the medical center for the royal family is in charge of securing and prescribing Chinese medicines, but the cost was covered by the silver paid by Hojo, the ministry of finance of Joseon Dynasty. Since the amount of Chinese medicines used in the preparation of nabyak was not small, the financial burden of importing enough medicines including borneol increased. The purveyors for government played a role in supplying Chinese medicines to the government. Their appearance shows that private merchants were actively involved in the trade of Chinese medicines including borneol. The formation of the medicinal market by private merchants' activities greatly contributed to the widespread expansion of the applications and distribution of borneol.


Subject(s)
Camphanes , Camphanes/history , Humans , Camphor/history , Insect Repellents/history
5.
BMC Complement Med Ther ; 24(1): 138, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566054

ABSTRACT

Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology holds great promise as an approach to enhance the effectiveness and develop the composition of these substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in vivo studies.


Subject(s)
Camphor , Polyethylene Glycols , Polyethyleneimine , Thymol , Thymol/pharmacology , Nanogels , Camphor/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli
6.
Open Vet J ; 14(1): 500-511, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633158

ABSTRACT

Background: One of the most challenging pests to control is the wild rat (Rattus norvegicus), which poses serious risks to both human health and the economy. Fertilizers are a more recent method of pest management with various action modes and are considered safe control agents when applied at low doses. Aim: The present study aimed to examine the toxicological impacts of the contaminated water with urea and camphor oil individually, post-treatment of rats with camphor oil after the pre-treatment with urea and post-treatment of rats with urea mixed with camphor oil after urea pre-treatment against the wild rats (R. norvegicus). Methods: The study extends to explore the influence of these treatments on the physicochemical parameters of the water administered by rats. Moreover, the effect of the most three toxic treatments was studied on the blood and renal functional parameters and the kidney tissue of rats after 21 days of treatment. Results: The study showed that urea was more potent than camphor oil when applied individually and increasing the concentration of urea in the pre-treatment or when combined with camphor oil in the post-treatment caused a significant increase in the mortality of rats. The post-treatment of rats with camphor oil only or camphor oil mixed with urea after the pre-treatment with urea induced a synergistic activity against rats. In addition, the exposed water to urea and camphor oil has been modified in physicochemical parameters and formed ulcers and harm to the kidneys of the exposed wild rats. Conclusion: This study significantly contributes to the ecological and toxicological potential risk indexes of urea and camphor oil together, which are restricted on the perceptible value relevance in the literature of water quality and renal pathology. Therefore, urea and camphor oil represent successful agents for the wild rat's control.


Subject(s)
Camphor , Urea , Rats , Animals , Humans
7.
Angew Chem Int Ed Engl ; 63(22): e202403321, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38482551

ABSTRACT

Rational design of unnatural amino acid building blocks capable of stabilizing predictable secondary structures similar to protein fragments is pivotal for foldamer chemistry/catalysis. Here, we introduce novel ß-amino acid building blocks: [1S,2R,4R]exoCDA and [1S,2S,4R]endoCDA, derived from the abundantly available R(+)-camphor, which is traditionally known for its medicinal value. Further, we demonstrate that the homooligomers of exoCDA adopt 6-strand conformation, which switches to a robust 10/12-helix simply by inserting flexible ß-hGly spacer at alternate positions (1 : 1 ß-hGly/exoCDA heterooligomers), as evident by DFT-calculations, solution-state NMR spectroscopy and X-ray crystallography. To the best of our knowledge, this is the first example of crystalline-state structure of left-handed 10/12-mixed helix, that is free from the conventional approach of employing ß-amino acids of either alternate chirality or alternate ß2/ß3 substitutions, to access the 10/12-helix. The results also show that the homooligomers of heterochiral exoCDA don't adopt helical fold, instead exhibit banana-shaped strands, whereas the homodimers of the other diastereomer endoCDA, nucleate 8-membered turns. Furthermore, the homo-exoCDA and hetero-[ß-hGly-exoCDA] oligomers are found to exhibit self-association properties with distinct morphological features. Overall, the results offer new possibilties of constructing discrete stable secondary and tertiary structures based on CDAs, which can accommodate flexible residues with desired side-chain substitutions.


Subject(s)
Amino Acids , Camphor , Crystallography, X-Ray , Amino Acids/chemistry , Camphor/chemistry , Models, Molecular , Magnetic Resonance Spectroscopy
8.
Pharmaceutics ; 16(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38543261

ABSTRACT

The formulation of biphasic gels as potential semi-solid carriers for hydrophilic and lipophilic active substances is promising for the development of pharmaceutical preparations. The aim of this study was to design a stable bigel composition and to determine the influence of the organogel/hydrogel ratio on the gel's physical-chemical and structural-mechanical properties. The investigated compositions of organogel/hydrogel remained stable at ratios ranging from 5/95 to 40/60. After texture and microstructure analysis, bigels with 20/80 and 25/75 ratios were selected as carriers for the active ingredients, sodium diclofenac and camphor, for use as topical preparations for the treatment of muscle-joint inflammation and pain. Although other researchers have published data on the preparation and evaluation of bigels, there are no scientific results on the development of a two-phase gel with our proposed combination of APIs. Sodium diclofenac release was found to be higher when combined with camphor, which revealed the advantages of the biphasic formulation. The pseudoplastic behavior, thixotropy, and thermal stability of flow of the studied bigel samples was investigated by rheological analysis. Ongoing stability studies confirmed the minimal 6-month period.

9.
Heliyon ; 10(5): e27492, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463888

ABSTRACT

The Zingiberaceae family serves as a diverse repository of bioactive phytochemicals, comprising approximately 52 genera and 1300 species of aromatic perennial herbs distinguished by their distinct creeping horizontal or tuberous rhizomes. Amomum villosum Lour. and Amomum tsao-ko Crevost & Lemaire., are the important plants of family Zingiberaceae that have been widely used in traditional medicine for the treatment of many ailments. The Amomum species are employed for their aromatic qualities and are valued as spices and flavorings. In the essential oils (EOs) of Amomum species, notable constituents include, camphor, methyl chavicol, bornyl acetate, trans-p-(1-butenyl) anisole, α-pinene, and ß-pinene. OBJECTIVE: The aim of this review is to present an overview of pharmacological studies pertaining to the extracts and secondary metabolites isolated from both species. The foremost objective of review is not only to increase the popularity of Amomum as a healthy food choice but also to enhance its status as a staple ingredient for the foreseeable future. RESULT: We endeavored to gather the latest information on antioxidant, antidiabetic, anticancer, antiobesity, antimicrobial, and anti-inflammatory properties of plants as well as their role in neuroprotective diseases. Research conducted through in-vitro studies, animal model, and compounds analysis have revealed that both plants exhibit a diverse array health promoting properties. CONCLUSION: the comprehensive review paper provides valuable insights into the diverse range of bioactive phytochemicals found in A. villosum and A. tsao-ko, showcasing their potential in preventing diseases and promoting overall human well-being. The compilation of information on their various health-enhancing properties contributes to the broader understanding of these plants and their potential applications in traditional medicine and beyond.

10.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398563

ABSTRACT

We synthesized six new camphor-derived homochiral thioureas 1-6, from commercially available (1R)-(-)-camphorquinone. These new compounds 1-6 were evaluated as asymmetric organocatalysts in the stereoselective formation of glycosidic bonds, with 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl and 2,3,4,6-tetra-O-benzyl-D-galactopyranosyl trichloroacetimidates as donors, and several alcohols as glycosyl acceptors, such as methanol, ethanol, 1-propanol, 1-butanol, 1-octanol, iso-propanol, tert-butanol, cyclohexanol, phenol, 1-naphtol, and 2-naphtol. Optimization of the asymmetric glycosylation reaction was achieved by modifying reaction conditions such as solvent, additive, loading of catalyst, temperature, and time of reaction. The best result was obtained with 2,3,4,6-tetra-O-benzyl-D-galactopyranosyl trichloroacetimidates, using 15 mol% of organocatalyst 1, in the presence of 2 equiv of MeOH in solvent-free conditions at room temperature for 1.5 h, affording the glycosidic compound in a 99% yield and 1:73 α:ß stereoselectivity; under the same reaction conditions, without using a catalyst, the obtained stereoselectivity was 1:35 α:ß. Computational calculations prior to the formation of the products were modeled, using density functional theory, M06-2X/6-31G(d,p) and M06-2X/6-311++G(2d,2p) methods. We observed that the preference for ß glycoside formation, through a stereoselective inverted substitution, relies on steric effects and the formation of hydrogen bonds between thiourea 1 and methanol in the complex formed.

11.
J Agric Food Chem ; 72(5): 2689-2696, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38267394

ABSTRACT

Camphor has been used as an effective repellent and pesticide to stored products for a long history, but Orthaga achatina (Lepidoptera: Pyralidae) has evolved to specifically feed on the camphor tree Cinnamomum camphora. However, the behavioral response of O. achatina to camphor and the molecular basis of camphor perception are totally unknown. Here, we demonstrated that both male and female adults were behaviorally attracted to camphor, suggesting the adaptation of O. achatina to and utilization of camphor as a signal of C. camphora. Second, in 40 O. achatina OR genes obtained by analyzing antenna transcriptomes, only OachOR16/Orco significantly responded to camphor in the Xenopus oocyte system. Finally, by molecular docking analysis and site-directed mutagenesis, the Ser209 residue is confirmed to be essential for binding of the oachOR16 with camphor. This study not only reveals the camphor-based host plant choice and olfactory mechanisms of O. achatina but also provides a molecular target for screening more potential insect repellents.


Subject(s)
Cinnamomum camphora , Insect Repellents , Moths , Receptors, Odorant , Animals , Camphor/chemistry , Cinnamomum camphora/chemistry , Receptors, Odorant/genetics , Molecular Docking Simulation , Insect Repellents/chemistry
12.
Plant Dis ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173261

ABSTRACT

Cinnamomum camphora, known as the camphor tree, is an evergreen tree widely cultivated in Asia as an ornamental plant (Singh and Jawaid, 2012). In June 2023, several leaves on a total of 10 trees planted on a street in Suncheon, Jeonnam Province, Korea showed black spots. Disease incidence was observed in at least 15% of the 10 trees. The symptoms included circular spots with a light ash-colored center and dark brown borders. The size of lesions varied depending on the progress of the disease. The disease progressed by 30% on the tree leaves. To isolate the pathogen, we cut out the lesions on the leaf surface sterilized with 70% ethanol for one minute, washed three times with sterilized distilled water, dried, and placed on water agar. Then, it was incubated at 25°C for three days. Emerging hyphae from the samples were subcultured on potato dextrose agar (PDA), resulting in three independent isolates (SYP-F1226-1 to SYP-F1226-3) after single spore isolation from 3 independent trees. The isolates exhibited grayish fluffy mycelium in the center of the colony, while the edges were white on PDA. Conidia had rounded cylindrical shape and were 4.9 to 8.4 µm  1.4 to 3.1 µm (avg. 5.9  2.1 µm, n = 100) in size. Appressoria were round, dark gray, produced at the tip of the germ tube after a septum formed the conidium. The morphological characteristics matched those of Colletotrichum species complexes. (Damm et al., 2012; Weir et al., 2012). For molecular identification, ITS (OR647338 to 40), GAPDH (OR657042 to 44), CHS-1 (OR657045 to 47), ACT (OR657048 to 50), and CAL (OR657051 to 53) sequences from isolates SYP-F1226-1~3 showed a 99.65%, 98.56%, 99.00%, 99.28%, and 99.52% identity with that of type strain C. gloeosporioides ICMP 17821 (JX010152, JX010056, JX009818, JX009531, and JX010445, respectively). Using the MEGA X program (Kumar et al. 2018), maximum likelihood analysis based on the concatenated sequences placed the isolates within a clade comprising C. gloeosporioides. Pathogenicity of SYP-F1226-1 was tested using three leaves from a 1-year-old branch of three independent healthy C. camphora plants. The leaf surfaces were sterilized by rubbing a cotton pad soaked in 70% ethanol and then wiping them with a sterilized cotton pad. The leaves per plant were inoculated with 5 mL of a conidial suspension (1 × 105 conidia/mL), both with and without wounding. Another three control leaves were inoculated with sterile distilled water, both with and without wounding. The inoculated leaves were wrapped in a plastic bag for 48 hours under conditions of 100% relative humidity. Spot symptoms were observed on both wounded and non-wounded leaves 21 days after inoculation. No symptoms were observed in the control on either of the wounded leaves. Pathogenicity tests were performed three times. The pathogen was re-isolated from the lesion after treatment, and its identity was confirmed using the five genes and morphological characteristics. This confirms the fulfillment of Koch's postulates. C. fioriniae (Liu et al, 2022) and C. siamens (Liu et al, 2022; Khoo et al, 2023) have been reported as the causal pathogen of anthracnose in C. camphora, but C. gloeosporioides has not been reported as a pathogen in C. camphora. To our knowledge, this is the first report of anthracnose caused by C. gloeosporioides on C. camphora in Korea. This study will provide symptomatic, mycological, and molecular biological information for the early detection of anthracnose disease in C. camphora plants.

13.
J Biomol Struct Dyn ; 42(4): 2013-2033, 2024.
Article in English | MEDLINE | ID: mdl-37166274

ABSTRACT

The advent of influenza A (H1N1) drug-resistant strains led to the search quest for more potent inhibitors of the influenza A virus, especially in this devastating COVID-19 pandemic era. Hence, the present research utilized some molecular modelling strategies to unveil new camphor imine-based compounds as anti-influenza A (H1N1) pdm09 agents. The 2D-QSAR results revealed GFA-MLR (R2train = 0.9158, Q2=0.8475) and GFA-ANN (R2train = 0.9264, Q2=0.9238) models for the anti-influenza A (H1N1) pdm09 activity prediction which have passed the QSAR model acceptability thresholds. The results from the 3D-QSAR studies also revealed CoMFA (R2train =0.977, Q2=0.509) and CoMSIA_S (R2train =0.976, Q2=0.527) models for activity predictions. Based on the notable information derived from the 2D-QSAR, 3D-QSAR, and docking analysis, ten (10) new camphor imine-based compounds (22a-22j) were designed using the most active compound 22 as the template. Furthermore, the high predicted activity and binding scores of compound 22j were further justified by the high reactive sites shown in the electrostatic potential maps and other quantum chemical calculations. The MD simulation of 22j in the active site of the influenza hemagglutinin (HA) receptor confirmed the dynamic stability of the complex. Moreover, the appraisals of drug-likeness and ADMET properties of the proposed compounds showed zero violation of Lipinski's criteria with good pharmacokinetic profiles. Hence, the outcomes in this work recommend further in-depth in vivo and in-vitro investigations to validate these theoretical findings.Communicated by Ramaswamy H. Sarma.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/drug therapy , Camphor/pharmacology , Camphor/chemistry , Imines/pharmacology , Imines/chemistry , Pandemics , Quantitative Structure-Activity Relationship , Antibodies , Molecular Docking Simulation
14.
JACC Heart Fail ; 12(2): 366-376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897461

ABSTRACT

BACKGROUND: Despite the greater sensitivity and specificity of disease-specific patient-reported outcome measures (PROM) to detect clinical change, only recently have such instruments been developed for pulmonary hypertension (PH), specifically pulmonary arterial hypertension (PAH) and chronic thromboembolic disease (CTEPH). Although these valuable tools are now being incorporated into clinical studies of PH, they have not yet reached widespread integration into routine clinical care. OBJECTIVES: In this systematic review, the authors assess the psychometric properties of PROM developed for PH, compare PROM with other clinical outcomes in PH, and address the utility of PROM in clinical care. METHODS: The authors performed a systematic search of papers published between January 1, 2006, and October 1, 2022, using the MEDLINE database to identify PROM developed and validated for PH. The identified PROM were found to have been developed only in groups with PAH and CTEPH. The authors evaluated the identified instruments according to established psychometric criteria. An additional search was performed to identify randomized controlled trials (RCTs) utilizing these PROM for comparison with clinical outcomes. RESULTS: From 527 papers retrieved, a total of 35 PROM were identified. Of these, 5 disease-specific instruments were included in the final analysis. While both CAMPHOR (Cambridge Pulmonary Hypertension Outcome Review) and emPHasis-10 performed well in patients with PAH and CTEPH with regard to their psychometric properties, emPHasis-10 demonstrated superior feasibility for use in clinical practice due to its concise format. The Pulmonary Arterial Hypertension-Symptoms and Impacts Questionnaire performed well in the authors' analysis, though additional data is needed regarding interpretability and feasibility. CONCLUSIONS: EmPHasis-10 demonstrated strong psychometric properties and the greatest feasibility for clinical use. Further study assessing the integration of PROM into routine clinical care for PH is needed.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Hypertension, Pulmonary/therapy , Chronic Disease , Patient Reported Outcome Measures
15.
Plant Sci ; 339: 111956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101618

ABSTRACT

Cinnamomum camphora has great economic value for its wide utilization in traditional medicine and furniture material, and releases lots of monoterpenes to tolerate high temperature. To uncover the adjusting function of monoterpenes on primary metabolism and promoting their utilization as anti-high temperature agents, the photosynthetic capacities, primary metabolite levels, cell ultrastructure and associated gene expression were surveyed in C. camphora when it was blocked monoterpene biosynthesis with fosmidomycin (Fos) and fumigated with camphor (a typical monoterpene in the plant) under high temperature (Fos+38 °C+camphor). Compared with the control (28 °C), high temperature at 38 °C decreased the starch content and starch grain size, and increased the fructose, glucose, sucrose and soluble sugar content. Meanwhile, high temperature also raised the lipid content, with the increase of lipid droplet size and numbers. These variations were further intensified in Fos+ 38 °C treatment. Compared with Fos+ 38 °C treatment, Fos+ 38 °C+camphor treatment improved the starch accumulation by promoting 4 gene expression in starch biosynthesis, and lowered the sugar content by suppressing 3 gene expression in pentose phosphate pathway and promoting 15 gene expression in glycolysis and tricarboxylic acid cycle. Meanwhile, Fos+ 38 °C+camphor treatment also lowered the lipid content, which may be caused by the down-regulation of 2 genes in fatty acid formation and up-regulation of 4 genes in fatty acid decomposition. Although Fos+ 38 °C+camphor treatment improved the photosynthetic capacities in contrast to Fos+ 38 °C treatment, it cannot explain the variations of these primary metabolite levels. Therefore, camphor should adjust related gene expression to maintain the primary metabolism in C. camphora tolerating high temperature.


Subject(s)
Camphor , Cinnamomum camphora , Camphor/chemistry , Camphor/metabolism , Cinnamomum camphora/chemistry , Cinnamomum camphora/genetics , Cinnamomum camphora/metabolism , Temperature , Monoterpenes/metabolism , Sugars/metabolism , Fatty Acids/metabolism , Starch/metabolism , Lipids
17.
Cureus ; 15(10): e47412, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022187

ABSTRACT

Camphor is a highly toxic ingredient that can be found in commonly used rubs and preparations such as Tiger balm and Vicks. There is a wide range of symptoms resulting from camphor oil toxicity, manifesting in sweating and agitation and can progress to more serious symptoms of seizures, cardiac arrhythmias, and cardiopulmonary arrest. We present a 61-year-old male, who is a known case of major depressive disorder, was brought to the emergency department on 10/09/2022, two hours after ingesting approximately 500 mL of camphor oil in its liquid form. He developed two episodes of tonic-clonic seizures at home and then later had another episode in the emergency department. As he presented to the emergency room, he was confused, agitated, restless, and diaphoretic. The management in the Emergency Department started with assessing his airway and administration of intravenous (IV) benzodiazepines and IV fluids. The ECG revealed sinus rhythm with borderline QT and QRS. During his stay in the emergency room, his mental status worsened and he became more confused and restless, and he developed another tonic-conic seizure. Therefore, he was intubated. The patient was shifted and managed in the intensive care unit, and 48 hours later the patient was extubated. This case report illustrates the importance of addressing the potential risks of home remedies as they are increasingly being used by the population considering them as safe. Camphor, being the most cultivated essential oil, is a highly toxic compound that, even in very small concentrations, can be lethal to infants and children. It is a component of numerous over-the-counter remedies and has the potential for accidental consumption. Generalized tonic-clonic seizure being the most prominent manifestation which can occur as early as five minutes after exposure needs to be anticipated and treated accordingly. Treatment for symptomatic patients is primarily supportive with special attention paid to QRS complex widening in the ECG.

18.
MethodsX ; 11: 102429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867914

ABSTRACT

Camphor is synthesized from the Sumatran camphor plant (Dryobalanops aromatica) in previous experiments. It can be synthesized with thiosemicarbazide, ethy-2­chloro acetoacetate, and sodium acetate (catalyze) to form camphor derivate with thiazole ring structure. Hydrazine and phenylhydrazine were both used to make the thiazole ring variations. All the compounds were purified by recrystallization method and characterized by TLC, FTIR, UV-vis, and LC-MS. Camphor thiazole (Product 1), camphor thiazole hydrazine (Product 2), and camphor thiazole phenylhydrazine (Product 3) were successfully synthesized with%yields of 73.24 %; 77.36 %; and 72.91 % respectively. Furthermore, their antioxidant activity was measured using the DPPH free radical method. Product 2 had the strongest antioxidant activity with IC50 value of 6.93 ppm. The antidiabetic activity was measured using the α-glucosidase enzyme. This indicated that product 1 had the best inhibitory activity against the α-glucosidase enzyme with IC50 values of 869.06 ppm.•We developed an alternative method to utilize camphor extracted from the D. aromatica plant to be used as an alternative medicinal ingredient related to antioxidants and antidiabetes.•All products were successfully synthesized and have the potential to be used as antioxidants with an IC50 value of 6.93 ppm for Product 2 and as antidiabetics by means of an α-glucosidase inhibitor with an IC50 value of 869.06 ppm for Product 1.

19.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836162

ABSTRACT

Plants of arid regions have adapted to harsh environments during the long span of their evolution and have developed a set of features necessary for their survival in water-limited conditions. Artemisia frigida Willd. (Asteraceae) is a widely distributed species possessing significant cenotic value in steppe ecosystems due to its high frequency and abundance. This study examines different patterns of formation of essential oil composition in A. frigida plants under the influence of heterogeneous factors, including climate and its integral characteristics (HTC, Cextr, SPEI and others). The work is based on the results of our research conducted in Russia (Republic of Buryatia, Irkutsk region), Mongolia, and China, from 1998 to 2021. A total of 32 constant compounds have been identified in the essential oil of A. frigida throughout its habitat range in Eurasia, from Kazakhstan to Qinghai Province, China. Among them, camphor, 1,8-cineol and bornyl acetate are the dominant components, contained in 93-95% of the samples. Among the sesquiterpenoids, germacrene D is the dominant component in 67% of the samples. The largest variability within the composition of the essential oils of A. frigida is associated with significant differences in the climatic parameters when plants grow in high-altitude and extrazonal conditions.

20.
Drugs Context ; 122023.
Article in English | MEDLINE | ID: mdl-37849655

ABSTRACT

Background: Over-the-counter therapies, such as Vicks VapoRub, are frequently used in the management of upper respiratory tract infection symptoms. Of these, acute cough is the most bothersome; however, the mechanisms involved have not been fully elucidated. The temperature-sensitive transient receptor potential (TRP) channels, including TRPA1, TRPV1, TRPM8 and TRPV4, are potential candidates. TRPV4 is also thought to be involved in cough through the TRPV4-ATP-P2X3 pathway. Here, we hypothesise that Vicks VapoRub ingredients (VVRIs) modulate the TRP cough channels. Methods: Stably transfected HEK cells expressing TRP channels were challenged with VVRIs, individually or in combination, and the agonist and antagonist effects were measured using calcium signalling responses. In addition, rhinovirus serotype-16 (RV16)-infected A549 airway epithelial cells were pre-incubated with individual or combinations of VVRIs prior to hypotonic challenge and extracellular ATP release analysis. Results: Calcium signalling reconfirmed some previously defined activation of TRP channels by specific VVRIs. The combined VVRIs containing menthol, camphor and eucalyptus oil activated TRPV1, TRPV4, TRPM8 and untransfected wild-type HEK293 cells. However, pre-incubation with VVRIs did not significantly inhibit any of the channels compared with the standard agonist responses. Pre-incubation of RV16-infected A549 cells with individual or combined VVRIs, except menthol, resulted in a 0.45-0.55-fold reduction in total ATP release following hypotonic stimulation, compared with infected cells not treated with VVRIs. Conclusion: These findings suggest that some VVRIs may reduce symptoms associated with upper respiratory tract infection by modulating specific TRP receptors and by reducing RV16-induced ATP release.

SELECTION OF CITATIONS
SEARCH DETAIL
...