Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 704
Filter
1.
Pharmacol Res ; 207: 107341, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39134188

ABSTRACT

Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.


Subject(s)
Antineoplastic Agents , Biological Products , Immunoconjugates , Neoplasms , Humans , Neoplasms/drug therapy , Animals , Biological Products/therapeutic use , Biological Products/chemistry , Biological Products/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Immunoconjugates/pharmacology
2.
Bioorg Med Chem ; 111: 117869, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39126834

ABSTRACT

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.


Subject(s)
Adaptor Proteins, Vesicular Transport , Antineoplastic Agents , Camptothecin , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Adaptor Proteins, Vesicular Transport/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Movement/drug effects
3.
Nat Prod Res ; : 1-10, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155512

ABSTRACT

With the intention of advancing our research on diverse C-20 derivatives of camptothecin (CPT), 38 CPT derivatives bearing sulphonamide and sulfonylurea chemical scaffolds and different substituent groups have been designed, synthesised and evaluated in vitro for cytotoxicity against four tumour cell lines, A-549 (lung carcinoma), KB (nasopharyngeal carcinoma), MDA-MB-231 (triple-negative breast cancer) and KBvin (an MDR KB subiline). As a result, all the synthesised compounds showed promising in vitro cytotoxic activity against the four cancer cell lines tested, and were more potent than irinotecan. Importantly, compounds 12b, 12f, 12j and 13 l possessed better antiproliferative activity against all tested tumour cell lines with IC50 values of 0.0118 - 0.5478 µM, and resulted approximately 3 to 4 times more cytotoxic than topotecan against multidrug-resistant KBvin subline. Convincing evidences are achieved that incorporation of sulphonamide and sulfonylurea motifs into position-20 of camptothecin confers markedly enhanced cytotoxic activity against cancer cell lines.

4.
Bioact Mater ; 41: 413-426, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39184827

ABSTRACT

Camptothecin (CPT) exhibits potent antitumor activity; however, its clinical application is limited by significant gastrointestinal adverse effects (GAEs). Although the severity of GAEs associated with CPT derivatives has decreased, the incidence rate of these adverse effects has remained high. CPT multifunctional nanoparticles (PCRHNs) have the potential to increase the efficacy of CPT while reducing side effects in major target organs; however, the impact of PCRHNs on the GAEs from CPT remains uncertain. Here, we investigated the therapeutic effects of PCRHNs and different doses of CPT and examined their impacts on the intestinal barrier and the intestinal microbiota. We found that the therapeutic efficacy of PCRHNs + Laser treatment was superior to that of high-dose CPT, and PCRHNs + Laser treatment also provided greater benefits by helping maintain intestinal barrier integrity, intestinal microbiota diversity, and intestinal microbiota abundance. In summary, compared to high-dose CPT treatment, PCRHNs + Laser treatment can effectively balance therapeutic effects and GAEs. A high dose of CPT promotes the enrichment of the pathogenic bacteria Escherichia-Shigella, which may be attributed to diarrhea caused by CPT, thus leading to a reduction in microbial burden; additionally, Escherichia-Shigella rapidly grows and occupies niches previously occupied by other bacteria that are lost due to diarrhea. PCRHNs + Laser treatment increased the abundance of Lactobacillus (probiotics), possibly due to the photothermal effect of the PCRHNs. This effect increased catalase activity, thus facilitating the conversion of hydrogen peroxide into oxygen within tumors and increasing oxygen levels in the body, which is conducive to the growth of facultative anaerobic bacteria.

5.
Int J Nanomedicine ; 19: 8501-8517, 2024.
Article in English | MEDLINE | ID: mdl-39185344

ABSTRACT

Background: A successful immune response against tumors depends on various cellular processes. Hence, there is an urgent need to construct a proficient nanoplatform for immunotherapy that can concurrently regulate the activities of various cells participating in the immune process. We have developed zeolitic imidazolate framework-8 (ZIF-8) formula, with good pH sensitivity, which is conducive to the release of drugs in the tumor site (acidic environment) and significantly improves immunotherapy. This is achieved through the coordinated action of different therapeutic agents, such as the photothermal agent polydopamine (PDA), the chemodrug camptothecin (CPT), and the immunomodulator 1-methyl-D-tryptophan (1-MT). Materials and Methods: In this study, we evaluated the antitumor effect of PDA/(CPT + 1-MT) @ZIF-8 (PCMZ) nanoparticles (NPs) in vitro and in vivo and investigated the molecular mechanism of PCMZ NPs in tumor suppression via photothermal-chemo-immunotherapy. Results: MTT and Annexin V-FITC/PI double staining apoptosis test showed that PCMZ NPs could induce apoptosis of 4T1 cell, and PCMZ NPs could cause 4T1 cell necrosis under 808 nm laser irradiation. The objective is to establish a unilateral breast cancer model in mice and investigate the effect of PCMZ NPs on tumor growth and tumor suppression in tumor bearing mice. The results showed that PCMZ NPs showed good heating effect in vivo and effectively inhibited tumor growth under 808 nm laser irradiation. In addition, PCMZ NPs could induce the immunogenic death of tumor cells, promote the maturation of DCs, inhibit IDO pathway, and finally differentiate T cells into cytotoxic T cells and helper T cells, so as to effectively activate the anti-tumor immune response. Conclusion: The PCMZ NPs, possessing good photothermal conversion capabilities due to join of PDA, effectively overcome two main challenges in immunotherapy: insufficient stimulation of the immune response and evasion of the immune system. This provides a robust platform against invasive cancer and recurrent tumors.


Subject(s)
Camptothecin , Immunotherapy , Indoles , Mice, Inbred BALB C , Polymers , Tryptophan , Zeolites , Animals , Indoles/chemistry , Indoles/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Immunotherapy/methods , Tryptophan/chemistry , Tryptophan/pharmacology , Tryptophan/analogs & derivatives , Mice , Hydrogen-Ion Concentration , Cell Line, Tumor , Female , Polymers/chemistry , Polymers/pharmacology , Camptothecin/chemistry , Camptothecin/pharmacology , Nanoparticles/chemistry , Apoptosis/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Photothermal Therapy/methods , Imidazoles/chemistry , Imidazoles/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Combined Modality Therapy
6.
Bioorg Chem ; 152: 107723, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39182258

ABSTRACT

Colorectal cancer (CRC) remains one of the most prevalent malignant tumors of the digestive system, yet the availability of safe and effective chemotherapeutic agents for clinical use remains limited. Camptothecin (CPT) and its derivatives, though approved for cancer treatment, have encountered significant challenges in clinical application due to their low bioavailability and high systemic toxicity. Strategic modification at the 7-position of CPT enables the development of novel CPT derivatives with high activity. In the present study, a series of compounds incorporating aminoureas, amino thioureas, and acylamino thioureas as substituents at the 7-position were screened. These compounds were subsequently evaluated for their cytotoxicity against the human gastric cancer (GC) cell line AGS and the CRC cell line HCT116. Two derivatives, XSJ05 (IC50 = 0.006 ± 0.003 µM) and XSJ07 (IC50 = 0.013 ± 0.003 µM), exhibited remarkably effective anti-CRC activity, being better than TPT. In addition, they have a better safety profile. In vitro mechanistic studies revealed that XSJ05 and XSJ07 exerted their inhibitory effects on CRC cell proliferation by suppressing the activity of topoisomerase I (Topo I). This suppression triggers DNA double-strand breaks, leads to DNA damage and subsequently causes CRC cells to arrest in the G2/M phase. Ultimately, the cells undergo apoptosis. Collectively, these findings indicate that XSJ05 and XSJ07 possess superior activity coupled with favorable safety profiles, suggesting their potential as lead compounds for the development of CRC therapeutics.


Subject(s)
Antineoplastic Agents , Apoptosis , Camptothecin , Cell Proliferation , Colorectal Neoplasms , DNA Topoisomerases, Type I , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type I/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Molecular Structure , Apoptosis/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Cell Line, Tumor
7.
Microb Cell Fact ; 23(1): 214, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060918

ABSTRACT

Suppression of fungal camptothecin (CPT) biosynthesis with the preservation and successive subculturing is the challenge that impedes fungi from the industrial application, so, screening for a novel fungal isolate with a conceivable stable producing potency of CPT was the main objective of this work. Catharanthus roseus with diverse contents of bioactive metabolites could have a plethora of novel endophytes with unique metabolic properties. Among the endophytes of C. roseus, Alternaria brassicicola EFBL-NV OR131587.1 was the highest CPT producer (96.5 µg/L). The structural identity of the putative CPT was verified by HPLC, FTIR, HNMR and LC-MS/MS, with a molecular mass 349 m/z, and molecular fragmentation patterns that typically identical to the authentic one. The purified A. brassicicola CPT has a strong antiproliferative activity towards UO-31 (0.75 µM) and MCF7 (3.2 µM), with selectivity index 30.8, and 7.1, respectively, in addition to resilient activity to inhibit Topo II (IC50 value 0.26 nM) than Topo 1 (IC50 value 3.2 nM). The purified CPT combat the wound healing of UO-31 cells by ~ 52%, stops their matrix formation, cell migration and metastasis. The purified CPT arrest the cellular division of the UO-31 at the S-phase, and inducing their cellular apoptosis by ~ 20.4 folds, compared to the control cells. Upon bioprocessing with the surface response methodology, the CPT yield by A. brassicicola was improved by ~ 3.3 folds, compared to control. The metabolic potency of synthesis of CPT by A. brassicicola was attenuated with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by the 6th month of storage and 6th generation. Practically, the CPT productivity of the attenuated A. brassicicola was restored by addition of 1% surface sterilized leaves of C. roseus, ensuring the eliciting of cryptic gene cluster of A. brassicicola CPT via the plant microbiome-A. brassicicola interactions. So, for the first time, a novel endophytic isolate A. brassicicola, from C. roseus, was explored to have a relatively stable CPT biosynthetic machinery, with an affordable feasibility to restore their CPT productivity using C. roseus microbiome, in addition to the unique affinity of the extracted CPT to inhibit Topoisomerase I and II.


Subject(s)
Alternaria , Camptothecin , Catharanthus , Cell Proliferation , Endophytes , Camptothecin/pharmacology , Camptothecin/biosynthesis , Camptothecin/metabolism , Endophytes/metabolism , Catharanthus/microbiology , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , MCF-7 Cells , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Apoptosis/drug effects
8.
Int J Biol Macromol ; 277(Pt 2): 133901, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038585

ABSTRACT

In this study, thermo-sensitive poly(N-isopropyl acrylamide) (PNP) was polymerized with pH-sensitive poly(acrylic acid) (PAA) to prepare a PAA-b-PNP block copolymer. Above its cloud point, the block copolymer self-assembled into nanoparticles (NPs), encapsulating the anticancer drug camptothecin (CPT) in situ. Chitosan (CS) and fucoidan (Fu) further modified these NPs, forming Fu-CPT-NPs to enhance biocompatibility, drug encapsulation efficiency (EE), and loading content (LC), crucially facilitating P-selectin targeting of lung cancer cells through a drug delivery system. The EE and LC reached 82 % and 3.5 %, respectively. According to transmission electron microscope observation, these Fu-CPT-NPs had uniform spherical shapes with an average diameter of ca. 250 nm. They could maintain their stability in a pH range of 5.0-6.8. In vitro experimental results revealed that the Fu-CPT-NPs exhibited good biocompatibility and had anticancer activity after encapsulating CPT. It could deliver CPT to cancer cells by targeting P-selectin, effectively increasing cell uptake and inducing cell apoptosis. Animal study results showed that the Fu-CPT-NPs inhibited lung tumor growth by increasing tumor cell apoptosis without causing significant tissue damage related to generating reactive oxygen species in lung cancer cells. This system can effectively improve drug-delivery efficiency and treatment effects and has great potential for treating lung cancer.


Subject(s)
Camptothecin , Chitosan , Lung Neoplasms , Nanoparticles , Polysaccharides , Chitosan/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Nanoparticles/chemistry , Animals , Mice , Apoptosis/drug effects , Drug Carriers/chemistry , A549 Cells , Cell Line, Tumor , Acrylic Resins/chemistry , Drug Liberation , Hydrogen-Ion Concentration , P-Selectin/metabolism , Polymers/chemistry
9.
Int J Pharm ; 661: 124387, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38925238

ABSTRACT

Breast cancer treatment can be challenging, but a targeted drug delivery system (DDS) has the potential to make it more effective and reduce side effects. This study presents a novel nanotherapeutic targeted DDS developed through the self-assembly of an amphiphilic di-block copolymer to deliver the chemotherapy drug SN38 specifically to breast cancer cells. The vehicle was constructed from the PHPMA-b-PEAMA diblock copolymer synthesized via RAFT polymerization. A single emulsion method was then used to encapsulate SN38 within nanoparticles (NPs) formed from the PHPMA-b-PEAMA copolymer. The AS1411 DNA aptamer was covalently bonded to the surface of the micellar NPs, producing a targeted DDS. Molecular dynamics (MD) simulation studies were also performed on the di block polymeric system, demonstrating that SN38 interacted well with the di block. The in vitro results demonstrated that AS1411- decorated SN38-loaded HPMA NPs were highly toxic to breast cancer cells while having a minimal effect on non-cancerous cells. Remarkably, in vivo studies elucidated the ability of the targeted DDS to enhance the antitumor effect of SN38, suppressing tumor growth and improving survival rates compared to free SN38.


Subject(s)
Aptamers, Nucleotide , Breast Neoplasms , Drug Carriers , Irinotecan , Micelles , Oligodeoxyribonucleotides , Polymers , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/administration & dosage , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , Animals , Drug Carriers/chemistry , Polymers/chemistry , Irinotecan/administration & dosage , Irinotecan/chemistry , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Drug Delivery Systems/methods , Mice, Inbred BALB C , Mice , Molecular Dynamics Simulation , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , MCF-7 Cells
10.
Int J Pharm ; 660: 124340, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38878838

ABSTRACT

The therapeutic efficacy of camptothecin (CPT), a potent antitumor alkaloid, is hindered by its hydrophobic nature and instability, limiting its clinical use in treating cutaneous squamous cell carcinoma (SCC). This study introduces a novel nano drug delivery system (NDDS) utilizing functionalized mesoporous silica nanoparticles (FMSNs) for efficient CPT delivery. The FMSNs were loaded with CPT and subsequently coated with chitosan (CS) for enhanced stability and bioadhesion. Importantly, CpG oligodeoxynucleotide (CpG ODN) was attached onto the CS-coated FMSNs to leverage the immunostimulatory properties of CpG ODN, augmenting the chemotherapy's efficacy. The final formulation FMSN-CPT-CS-CpG displayed an average size of 241 nm and PDI of 0.316 with an encapsulation efficiency of 95 %. Comprehensive in vitro and in vivo analyses, including B16F10 cells and DMBA/TPA-induced SCC murine model, demonstrated that the FMSN-CPT-CS-CpG formulation significantly enhanced cytotoxicity against B16F10 cells and induced complete regression in 40 % of the in vivo subjects, surpassing the efficacy of standard CPT and FMSN-CPT treatments. This study highlights the potential of combining chemotherapeutic and immunotherapeutic agents in an NDDS for targeted, efficient skin cancer treatment.


Subject(s)
Camptothecin , Chitosan , Nanoparticles , Oligodeoxyribonucleotides , Silicon Dioxide , Skin Neoplasms , Animals , Silicon Dioxide/chemistry , Silicon Dioxide/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/chemistry , Skin Neoplasms/drug therapy , Nanoparticles/chemistry , Camptothecin/administration & dosage , Camptothecin/chemistry , Camptothecin/pharmacology , Cell Line, Tumor , Mice , Chitosan/chemistry , Chitosan/administration & dosage , Female , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Porosity , Mice, Inbred C57BL , Drug Carriers/chemistry , Carcinoma, Squamous Cell/drug therapy , Melanoma, Experimental/drug therapy , Cell Survival/drug effects
11.
Int J Pharm ; 659: 124292, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823466

ABSTRACT

Camptothecin, a natural alkaloid, was first isolated from the bark and stem of the Camptotheca acuminate tree in China. It, along with its analogs, has demonstrated potent anti-cancer activity in preclinical studies, particularly against solid tumors such as lung, breast, ovarian, and colon cancer. Despite its promising anti-cancer activity, the application of camptothecin is limited due to its poor solubility, toxicity, and limited biodistribution. Nanotechnology-based drug delivery systems have been used to overcome limited bioavailability and ensure greater biodistribution after administration. Additionally, various drug delivery systems, particularly polymeric micelles, have been investigated to enhance the solubility, stability, and efficacy of camptothecin. Polymeric micelles offer a promising approach for the delivery of camptothecin. Polymeric micelles possess a core-shell structure, with a typical hydrophobic core, which exhibits a high capacity to incorporate hydrophobic drugs. The structure of polymeric micelles can be engineered to have a high drug loading capacity, thereby enabling them to carry a large amount of hydrophobic drug within their core. The shell portion of polymeric micelles is composed of hydrophilic polymers Furthermore, the hydrophilic segment of polymeric micelles plays an important role in protecting against the reticuloendothelial system (RES). This review provides a discussion on recent research and developments in the delivery of camptothecin using polymeric micelles for the treatment of cancers.


Subject(s)
Antineoplastic Agents, Phytogenic , Camptothecin , Drug Delivery Systems , Micelles , Polymers , Camptothecin/administration & dosage , Camptothecin/chemistry , Camptothecin/analogs & derivatives , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Humans , Polymers/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Drug Delivery Systems/methods , Neoplasms/drug therapy , Drug Carriers/chemistry , Solubility , Tissue Distribution , Hydrophobic and Hydrophilic Interactions
12.
Appl Microbiol Biotechnol ; 108(1): 382, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896329

ABSTRACT

Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.


Subject(s)
Biotechnology , Camptotheca , Camptothecin , Endophytes , Camptothecin/biosynthesis , Biotechnology/methods , Endophytes/metabolism , Endophytes/genetics , Camptotheca/metabolism , Antineoplastic Agents, Phytogenic/biosynthesis , Humans
13.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823923

ABSTRACT

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Subject(s)
Camptothecin , Cellulose , Hydrogels , Molecular Imprinting , Solid Phase Extraction , Camptothecin/chemistry , Camptothecin/isolation & purification , Cellulose/chemistry , Adsorption , Molecular Imprinting/methods , Hydrogels/chemistry , Solid Phase Extraction/methods , Camptotheca/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Fruit/chemistry
14.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792039

ABSTRACT

Camptothecin and its analogues show important antitumor activity and have been used in clinical studies. However, hydrolysis of lactone in the E ring seriously attenuates the antitumor activity. To change this situation, aromathecin alkaloids are investigated in order to replace camptothecins. Potential antitumor activity has obtained more and more attention from organic and pharmaceutical chemists. As a member of the aromathecin alkaloids, rosettacin has been synthesized via different methods. This review summarizes recent advances in the synthesis of rosettacin.

15.
3 Biotech ; 14(6): 153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38742228

ABSTRACT

Genus Ophiorrhiza has recently emerged as one of the promising sources of Camptothecin (CPT), an antitumour monoterpene indole alkaloid. It possesses CPT in its every part and has a relatively short life span. To determine whether differentiation plays any role in the synthesis and/or accumulation of CPT, the concentration of CPT was analyzed across various tissues of Ophiorrhiza rugosa var. decumbens obtained through both direct as well as indirect modes of regeneration. The results revealed that the plants obtained from both types of regeneration showed similar levels of CPT. It was also observed that with differentiation, the accumulation of CPT increases, as the callus, being an undifferentiated mass of cells, had only traces of CPT. In contrast, the completely differentiated in-vitro plant obtained from it showed a significantly higher percentage of CPT in shoots (0.22% dry weight) and roots (0.247% dw). The CPT when analyzed after hardening, varied among different organs of the plant. It was also observed that the inflorescence accumulated the highest concentration of CPT (0.348% dw) once the flowering began, accompanied by a decrease in remaining organs. This decrease may result from CPT being mobilized to the inflorescence as a chemical defense mechanism. These findings allowed us to determine the ideal plant harvesting age for CPT extraction. The findings could be used to decide the right stage of plant harvest, which is just before the onset of blooming. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03999-4.

16.
Sci Prog ; 107(2): 368504241253675, 2024.
Article in English | MEDLINE | ID: mdl-38807531

ABSTRACT

Camptothecin (CPT) is an important alkaloid used for anticancer treatment. It is mainly produced by two endangered and overharvested Camptotheca acuminata and Nothapodytes nimmoniana plants. Endophytic fungi are promising alternative sources for CPT production. In the present study, fungi residing within explants of Ixora chinensis were isolated and their CPT-producing capability of their endophytes was verified via thin-layer chromatography, high-performance liquid chromatography, liquid chromatography/high resolution mass spectrometry, and nuclear magnetic resonance analyses and compared with standards. In addition, MTT and sulforhodamine B assays were selected to test the anticancer effect. The endophytic fungi collection of 62 isolates were assigned to 11 genera, with four common genera (Diaporthe, Phyllosticta, Colletotrichum, and Phomopsis) and seven less common genera (Penicillium, Botryosphaeria, Fusarium, Pestalotiopsis, Aspergillus, and Didymella). Moreover, the anticancer activity of extracts was assessed against human lung carcinoma (A549). Among eight potential extracts, only Penicillium sp. I3R2 was found to be a source of CPT, while the remaining seven extracts have not been discovered potential secondary compounds. Thus, other prominent endophytic fungi might be potential candidates of phytochemicals with anticancer properties.


Subject(s)
Antineoplastic Agents , Camptothecin , Endophytes , Fungi , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/biosynthesis , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/chemistry , Fungi/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , A549 Cells , Cell Line, Tumor
17.
Bioorg Chem ; 148: 107436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735265

ABSTRACT

BACKGROUND: Camptothecin (CPT), a pentacyclic alkaloid with antitumor properties, is derived from the Camptotheca acuminata. Topotecan and irinotecan (CPT derivatives) were first approved by the Food and Drug Administration for cancer treatment over 25 years ago and remain key anticancer drugs today. However, their use is often limited by clinical toxicity. Despite extensive development efforts, many of these derivatives have not succeeded clinically, particularly in their effectiveness against pancreatic cancer which remains modest. AIM OF THE STUDY: This study aimed to evaluate the therapeutic activity of FLQY2, a CPT derivative synthesized in our laboratory, against pancreatic cancer, comparing its efficacy and mechanism of action with those of established clinical drugs. METHODS: The cytotoxic effects of FLQY2 on cancer cells were assessed using an MTT assay. Patient-derived organoid (PDO) models were employed to compare the sensitivity of FLQY2 to existing clinical drugs across various cancers. The impact of FLQY2 on apoptosis and cell cycle arrest in Mia Paca-2 pancreatic cancer cells was examined through flow cytometry. Transcriptomic and proteomic analyses were conducted to explore the underlying mechanisms of FLQY2's antitumor activity. Western blotting was used to determine the levels of proteins regulated by FLQY2. Additionally, the antitumor efficacy of FLQY2 in vivo was evaluated in a pancreatic cancer xenograft model. RESULTS: FLQY2 demonstrated (1) potent cytotoxicity; (2) superior tumor-suppressive activity in PDO models compared to current clinical drugs such as gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infinitinib, and lenvatinib; (3) significantly greater tumor inhibition than paclitaxel liposomes in a pancreatic cancer xenograft model; (4) robust antitumor effects, closely associated with the inhibition of the TOP I and PDK1/AKT/mTOR signaling pathways. In vitro studies revealed that FLQY2 inhibited cell proliferation, colony formation, induced apoptosis, and caused cell cycle arrest at nanomolar concentrations. Furthermore, the combination of FLQY2 and gemcitabine exhibited significant inhibitory and synergistic effects. CONCLUSION: The study confirmed the involvement of topoisomerase I and the PDK1/AKT/mTOR pathways in mediating the antitumor activity of FLQY2 in treating Mia Paca-2 pancreatic cancer. Therefore, FLQY2 has potential as a novel therapeutic option for patients with pancreatic cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Camptothecin , Cell Proliferation , Drug Screening Assays, Antitumor , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Camptothecin/pharmacology , Camptothecin/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Animals , Mice , Apoptosis/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Mice, Nude , Tumor Cells, Cultured , Cell Line, Tumor
18.
DNA Repair (Amst) ; 139: 103688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678695

ABSTRACT

Single-strand breaks (SSBs) are the most frequent type of lesion, and replication across such lesions leads to double-strand breaks (DSBs). DSBs that arise during replication are repaired by homologous recombination (HR) and are suppressed by fork reversal. Poly[ADP-ribose] polymerase I (PARP1) and the proofreading exonuclease activity of replicative polymerase ε (Polε) are required for fork reversal when leading strand replication encounters SSBs. However, the mechanism underlying fork reversal at the SSB during lagging-strand replication remains elusive. We here demonstrate that the Pold4 subunit of replicative polymerase δ (Polδ) plays a role in promoting fork reversal during lagging strand replication on a broken template. POLD4-/- cells exhibited heightened sensitivity to camptothecin (CPT) but not to other DNA-damaging agents compared to wild-type cells. This selective CPT sensitivity in POLD4-/- cells suggests that Pold4 suppresses DSBs during replication, as CPT induces significant SSBs during replication, which subsequently lead to DSBs. To explore the functional interactions among Pold4, Polε exonuclease, and PARP1 in DSB suppression, we generated PARP1-/-, POLD4-/-, Polε exonuclease-deficient POLE1exo-/-, PARP1-/-/POLD4-/-, and POLD4-/-/POLE1exo-/- cells. These epistasis analyses showed that Pold4 is involved in the PARP1-Polε exonuclease-mediated fork reversal following CPT treatment. These results suggest that Pold4 aids in fork reversal when lagging strand replication stalls on a broken template. In conclusion, the Pold4 subunit of Polδ has roles in the PARP1-Polε exonuclease-mediated fork reversal, contributing to the suppression of DSBs.


Subject(s)
Camptothecin , DNA Breaks, Double-Stranded , DNA Polymerase III , DNA Replication , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Camptothecin/pharmacology , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Breaks, Single-Stranded , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
19.
ACS Appl Mater Interfaces ; 16(19): 24172-24190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688027

ABSTRACT

Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.


Subject(s)
Copper , Hydrogen Peroxide , Ruthenium , Tumor Microenvironment , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Tumor Microenvironment/drug effects , Copper/chemistry , Copper/pharmacology , Animals , Mice , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peroxides/chemistry , Peroxides/pharmacology , Cell Line, Tumor , Photochemotherapy , Drug Carriers/chemistry , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Neoplasms/pathology
20.
Mol Pharm ; 21(5): 2327-2339, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38576375

ABSTRACT

In the present study, we investigated the role of lipid composition of camptothecin (CPT)-loaded liposomes (CPT-Lips) to adjust their residence time, drug distribution, and therefore the toxicities and antitumor activity. The CPT was loaded into liposomes using a click drug loading method, which utilized liposomes preloaded with GSH and then exposed to CPT-maleimide. The method produced CPT-Lips with a high encapsulation efficiency (>95%) and sustained drug release. It is shown that the residence times of CPT-Lips in the body were highly dependent on lipid compositions with an order of non-PEGylated liposomes of unsaturated lipids < non-PEGylated liposomes of saturated lipids < PEGylated liposomes of saturated lipids. Interestingly, the fast clearance of CPT-Lips resulted in significantly decreased toxicities but did not cause a significant decrease in their in vivo antitumor activity. These results suggested that the lipid composition could effectively adjust the residence time of CPT-Lips in the body and further optimize their therapeutic index, which would guide the development of a liposomal formulation of CPT.


Subject(s)
Camptothecin , Lipids , Liposomes , Camptothecin/chemistry , Camptothecin/administration & dosage , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Liposomes/chemistry , Animals , Mice , Lipids/chemistry , Humans , Drug Liberation , Drug Delivery Systems/methods , Polyethylene Glycols/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Female , Click Chemistry/methods , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL