Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 691
Filter
1.
Article in English | MEDLINE | ID: mdl-38879117

ABSTRACT

INTRODUCTION: Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome (MS) and the SGLT-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia (CMI). METHODS: Twenty-one Yorkshire swine were fed a high-fat diet starting at six weeks of age to induce MS. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce CMI. After two weeks, swine received either control (CON, n=11) or CAN 300 mg PO daily (n=10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS: There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared to CON (all p<0.05). The CAN group had a significant increase in capillary density (p=0.02). Interestingly, there was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including p-eNOS, eNOS, VEGFR1, HSP70, and ERK (all p<0.05), plausibly resulting in capillary angiogenesis. CONCLUSIONS: CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of CMI in the setting of MS. This work further elucidates the mechanism of SGLT-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.

2.
J Diabetes Metab Disord ; 23(1): 497-508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932911

ABSTRACT

Studies consistently showed that sodium-glucose cotransporter inhibitors (SGLTi) have cardiovascular and renal benefits, independent of their glucose lowering effects. Recent studies showed that SGLTi might influence gut microbiota. We performed a narrative review of publications focusing on use of SGLTi and changes in gut microbiota. Most studies showed that use of SGLTi re-shapes gut microbiota. These studies are heterogeneous regarding in study designs, doses and types of drugs used (SGLT1i vs. SGLT2i, or SGLT1/2i in combination) and the methods used to determine gut microbiota. However, existing data showed that SGLTi might alter food fermentation and gut permeability, which might translate into clinical outcomes. Thus the objective of this review is to summarize and discuss the updated data regarding SGLTi and changes in gut microbiota for the first time and suggest further study points that needs to be discovered.

3.
Diabetes Obes Metab ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895796

ABSTRACT

AIM: To explore the effect of canagliflozin on kidney and cardiovascular events and safety outcomes in individuals with type 2 diabetes and chronic kidney disease across geographic regions and racial groups. MATERIALS AND METHODS: A stratified Cox proportional hazards model was used to assess efficacy and safety outcomes by geographic region and racial group. The primary composite outcome was a composite of end-stage kidney disease (ESKD), doubling of the serum creatinine (SCr) level, or death from kidney or cardiovascular causes. Secondary outcomes included: (i) cardiovascular death or heart failure (HF) hospitalization; (ii) cardiovascular death, myocardial infarction (MI) or stroke; (iii) HF hospitalization; (iv) doubling of the SCr level, ESKD or kidney death; (v) cardiovascular death; (vi) all-cause death; and (vii) cardiovascular death, MI, stroke, or hospitalization for HF or for unstable angina. RESULTS: The 4401 patients were divided into six geographic region subgroups: North America (n = 1182, 27%), Central and South America (n = 941, 21%), Eastern Europe (n = 947, 21%), Western Europe (n = 421, 10%), Asia (n = 749, 17%) and Other (n = 161, 4%). The analyses included four racial groups: White (n = 2931, 67%), Black or African American (n = 224, 5%), Asian (n = 877, 20%) and Other (n = 369, 8%). Canagliflozin reduced the relative risk of the primary composite outcome in the overall trial by 30% (hazard ratio 0.70, 95% confidence interval 0.59-0.82; P = 0.00001). Across geographic regions and racial groups, canagliflozin consistently reduced the primary composite endpoint without evidence of heterogeneity (interaction P values of 0.39 and 0.91, respectively) or significant safety outcome differences. CONCLUSIONS: Canagliflozin reduces the risk of kidney and cardiovascular events similarly across geographic regions and racial groups.

4.
J Clin Pharmacol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831713

ABSTRACT

Diabetic nephropathy (DN), a severe complication of type 2 diabetes mellitus (T2DM), is marked by heightened endoplasmic reticulum stress (ERS) and oxidative stress (OS) due to protein misfolding and free radical generation. We investigated the sodium-glucose co-transporter-2 inhibitor (SGLT2i), canagliflozin (Cana), in alleviating ERS and OS in DN patients and THP-1 cells under hyperglycemic condition. A total of 120 subjects were divided into four groups, with 30 subjects in each group: healthy controls, T2DM individuals, DN patients receiving standard treatment, and those treated with Cana. The control group had no history of diabetes, cardiovascular or renal diseases, or other comorbidities. Cana was administered at doses of either 100 or 300 mg per day based on the estimated glomerular filtration rate (eGFR) value of DN individuals, with a mean follow-up of 6 months. Additionally, THP-1 monocytes were exposed to HGM (33.3 mM glucose with a cytokine cocktail of TNF-α and IFN-γ at 50 ng/mL each) to evaluate the relative levels of ERS, OS markers, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor regulating cellular redox, which is downregulated in diabetes. Our results revealed that ERS markers GRP78 and PERK, as well as OS markers TXNIP and p22phox, were elevated in both DN patients and HGM-treated THP-1 monocytes and were reduced by Cana intervention. Furthermore, Cana regulated the phosphorylation of Nrf2, Akt, and EIF2α in HGM-treated monocytes. In conclusion, our findings highlight the role of Cana in activating Nrf2, thereby attenuating ERS and OS to mitigate DN progression.

5.
Geroscience ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801647

ABSTRACT

The hypothalamus undergoes significant changes with aging and plays crucial roles in age-related metabolic alterations. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are anti-diabetic agents that promote glucose excretion, and metabolic homeostasis. Recent studies have shown that a SGLT2i, Canagliflozin (Cana), can extend the median survival of genetically heterogeneous UM-HET3 male mice and improve central metabolic control via increases in hypothalamic insulin responsiveness in aged males, as well as reduced age-associated hypothalamic inflammation. We studied the long- and short-term effects of Cana on hypothalamic metabolic control in UM-HET3 mice. Starting the treatment from 7 months of age, we show that 4 weeks of Cana treatment significantly reduced body weight and fat mass in male but not female mice that was associated with enhanced glucose tolerance and insulin sensitivity observed by 12 months. Indirect calorimetry showed that Cana treatment increased energy expenditure in male, but not female mice, at 12 months of age. Long-term Cana treatment increased metabolic rates in both sexes, and markedly increasing formation of both orexigenic and anorexigenic projections to the paraventricular nucleus of the hypothalamus (PVH) mostly in females by 25 months. Hypothalamic RNA-sequencing analysis revealed increased sex-specific genes and signaling pathways related to insulin signaling, glycogen catabolic pathway, neuropeptide signaling, and mitochondrial function upregulated by Cana, with males showing a more pronounced and sustained effect on metabolic pathways at both age groups. Overall, our data provide critical evidence for sex-specific mechanisms that are affected by Cana during aging suggesting key targets of hypothalamic Cana-induced neuroprotection for metabolic control.

7.
Geroscience ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753230

ABSTRACT

Genetically heterogeneous UM-HET3 mice born in 2020 were used to test possible lifespan effects of alpha-ketoglutarate (AKG), 2,4-dinitrophenol (DNP), hydralazine (HYD), nebivolol (NEBI), 16α-hydroxyestriol (OH_Est), and sodium thiosulfate (THIO), and to evaluate the effects of canagliflozin (Cana) when started at 16 months of age. OH_Est produced a 15% increase (p = 0.0001) in median lifespan in males but led to a significant (7%) decline in female lifespan. Cana, started at 16 months, also led to a significant increase (14%, p = 0.004) in males and a significant decline (6%, p = 0.03) in females. Cana given to mice at 6 months led, as in our previous study, to an increase in male lifespan without any change in female lifespan, suggesting that this agent may lead to female-specific late-life harm. We found that blood levels of Cana were approximately 20-fold higher in aged females than in young males, suggesting a possible mechanism for the sex-specific disparities in its effects. NEBI was also found to produce a female-specific decline (4%, p = 0.03) in lifespan. None of the other tested drugs provided a lifespan benefit in either sex. These data bring to 7 the list of ITP-tested drugs that induce at least a 10% lifespan increase in one or both sexes, add a fourth drug with demonstrated mid-life benefits on lifespan, and provide a testable hypothesis that might explain the sexual dimorphism in lifespan effects of the SGLT2 inhibitor Cana.

8.
Diabetes Obes Metab ; 26(8): 3137-3146, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699792

ABSTRACT

AIM: To examine the effects of the thiazolidinedione (TZD) pioglitazone on reducing ketone bodies in non-obese patients with T2DM treated with the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin. METHODS: Crossover trials with two periods, each treatment period lasting 4 weeks, with a 4-week washout period, were conducted. Participants were randomly assigned in a 1:1 ratio to receive pioglitazone combined with canagliflozin (PIOG + CANA group) versus canagliflozin monotherapy (CANA group). The primary outcome was change (Δ) in ß-hydroxybutyric acid (ß-HBA) before and after the CANA or PIOG + CANA treatments. The secondary outcomes were Δchanges in serum acetoacetate and acetone, the rate of conversion into urinary ketones, and Δchanges in factors related to SGLT2 inhibitor-induced ketone body production including non-esterified fatty acids (NEFAs), glucagon, glucagon to insulin ratio, and noradrenaline (NA). Analyses were performed in accordance with the intention-to-treat principle. RESULTS: Twenty-five patients with a mean age of 49 ± 7.97 years and a body mass index of 25.35 ± 2.22 kg/m2 were included. One patient discontinued the study during the washout period. Analyses revealed a significant increase in the levels of serum ketone bodies and an elevation in the rate of conversion into urinary ketones after both interventions. However, differernces in levels of ketone bodies (except for acetoacetate) in the PIOG + CANA group were significantly smaller than in the CANA group (219.84 ± 80.21 µmol/L vs. 317.69 ± 83.07 µmol/L, p < 0.001 in ß-HBA; 8.98 ± 4.17 µmol/L vs. 12.29 ± 5.27 µmol/L, p = 0.018 in acetone). NEFA, glucagon, glucagon to insulin ratio, and NA were also significantly increased after both CANA and PIOG + CANA treatments; while only NEFAs demonstrated a significant difference between the two groups. Correlation analyses revealed a significant association between the difference in Δchanges in serum NEFA levels with the differences in Δchanges in ketones of ß-HBA and acetoacetate. CONCLUSION: Supplementation of pioglitazone could alleviate canagliflozin-induced ketone bodies. This benefit may be closely associated with decreased substrate NEFAs rather than other factors including glucagon, fasting insulin and NA.


Subject(s)
Canagliflozin , Cross-Over Studies , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Hypoglycemic Agents , Ketone Bodies , Pioglitazone , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Middle Aged , Ketone Bodies/blood , Female , Pioglitazone/therapeutic use , Canagliflozin/therapeutic use , Hypoglycemic Agents/therapeutic use , 3-Hydroxybutyric Acid/blood , Acetoacetates/blood , Insulin/blood , Adult , Glucagon/blood , Thiazolidinediones/therapeutic use , Fatty Acids, Nonesterified/blood , Blood Glucose/drug effects , Blood Glucose/metabolism
9.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719955

ABSTRACT

Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.

10.
Expert Rev Clin Pharmacol ; 17(5-6): 515-524, 2024.
Article in English | MEDLINE | ID: mdl-38733378

ABSTRACT

INTRODUCTION: Sodium glucose cotransporter-2 inhibitors (SGLT2is) are an emerging class of drugs with wide indications. Controversial evidence exists regarding the risk of urinary tract infection (UTI) and genital infections (GI) with SGLT2is paving way for undertaking this network meta-analysis and meta-regression study. METHODS: Data from randomized trials evaluating SGLT2is reporting the number of patients with UTI and GI were included. Odds ratios (OR) with 95% confidence intervals (95% CI) were the effect estimates. Meta-regression analysis identified risk factors. Number needed to harm (NNH) was estimated. RESULTS: Two hundred and sixty-four articles were included [UTI (213 studies; 150,140 participants) and GI (188 studies; 121,275 participants)]. An increased risk of UTI (OR: 1.11; 95% CI: 1.06, 1.16) and GI (OR: 3.5, 95% CI: 3.1, 3.9) was observed. Men showed a lower risk of UTI (OR: 0.2; 95% CI: 0.2, 0.3) and GI (OR: 0.4; 95% CI: 0.4, 0.5). Meta-regression analyses revealed BMI ≥ 30 kg/m2 and duration of SGLT2i treatment for ≥6 months as risk factors. NNH was 16 for UTI and 25 for GI. CONCLUSION: SGLT2is increase the risk of UTI and GI that needs to be incorporated in the treatment guidelines with precautions in high-risk patients. PROSPECTIVE PROTOCOL REGISTRATION: https://osf.io/5fwyk.


Subject(s)
Randomized Controlled Trials as Topic , Reproductive Tract Infections , Sodium-Glucose Transporter 2 Inhibitors , Urinary Tract Infections , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Humans , Urinary Tract Infections/drug therapy , Risk Factors , Male , Reproductive Tract Infections/chemically induced , Reproductive Tract Infections/epidemiology , Female , Network Meta-Analysis , Sex Factors , Regression Analysis , Diabetes Mellitus, Type 2/drug therapy
11.
World J Diabetes ; 15(3): 463-474, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591092

ABSTRACT

BACKGROUND: Sodium glucose cotransporter-2 inhibitors (SGLT-2i) are a class of drugs with modest antidiabetic efficacy, weight loss effect, and cardiovascular benefits as proven by multiple randomised controlled trials (RCTs). However, real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse. AIM: To study the comparative efficacy and safety of SGLT-2i using real-world clinical data. METHODS: We evaluated the comparative efficacy data of 3 SGLT-2i drugs (dapagliflozin, canagliflozin, and empagliflozin) used for treating patients with type 2 diabetes mellitus. Data on the reduction of glycated hemoglobin (HbA1c), body weight, blood pressure (BP), urine albumin creatinine ratio (ACR), and adverse effects were recorded retrospectively. RESULTS: Data from 467 patients with a median age of 64 (14.8) years, 294 (62.96%) males and 375 (80.5%) Caucasians were analysed. Median diabetes duration was 16.0 (9.0) years, and the duration of SGLT-2i use was 3.6 (2.1) years. SGLT-2i molecules used were dapagliflozin 10 mg (n = 227; 48.6%), canagliflozin 300 mg (n = 160; 34.3%), and empagliflozin 25 mg (n = 80; 17.1). Baseline median (interquartile range) HbA1c in mmol/mol were: dapagliflozin - 78.0 (25.3), canagliflozin - 80.0 (25.5), and empagliflozin - 75.0 (23.5) respectively. The respective median HbA1c reduction at 12 months and the latest review (just prior to the study) were: 66.5 (22.8) & 69.0 (24.0), 67.0 (16.3) & 66.0 (28.0), and 67.0 (22.5) & 66.5 (25.8) respectively (P < 0.001 for all comparisons from baseline). Significant improvements in body weight (in kilograms) from baseline to study end were noticed with dapagliflozin - 101 (29.5) to 92.2 (25.6), and canagliflozin 100 (28.3) to 95.3 (27.5) only. Significant reductions in median systolic and diastolic BP, from 144 (21) mmHg to 139 (23) mmHg; (P = 0.015), and from 82 (16) mmHg to 78 (19) mmHg; (P < 0.001) respectively were also observed. A significant reduction of microalbuminuria was observed with canagliflozin only [ACR 14.6 (42.6) at baseline to 8.9 (23.7) at the study end; P = 0.043]. Adverse effects of SGLT-2i were as follows: genital thrush and urinary infection - 20 (8.8%) & 17 (7.5%) with dapagliflozin; 9 (5.6%) & 5 (3.13%) with canagliflozin; and 4 (5%) & 4 (5%) with empagliflozin. Diabetic ketoacidosis was observed in 4 (1.8%) with dapagliflozin and 1 (0.63%) with canagliflozin. CONCLUSION: Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c, body weight, and better than those reported in RCTs, with low side effect profiles. A review of large-scale real-world data is needed to inform better clinical practice decision making.

12.
Biomed Pharmacother ; 174: 116505, 2024 May.
Article in English | MEDLINE | ID: mdl-38574614

ABSTRACT

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Subject(s)
Canagliflozin , Cell Proliferation , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Canagliflozin/pharmacology , Cell Proliferation/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Remodeling/drug effects
14.
Biomedicines ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38540200

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are known to be cardioprotective independent of glucose control, but the mechanisms of these benefits are unclear. We previously demonstrated improved cardiac function and decreased fibrosis in a swine model of chronic myocardial ischemia. The goal of this study is to use high-sensitivity proteomic analyses to characterize specific molecular pathways affected by SGLT-2 inhibitor canagliflozin (CAN) therapy in a swine model of chronic myocardial ischemia. METHODS: Chronic myocardial ischemia was induced in sixteen Yorkshire swine via the placement of an ameroid constrictor to the left circumflex coronary artery. After two weeks of recovery, swine received either 300 mg of CAN daily (n = 8) or a control (n = 8). After five weeks of therapy, the group of swine were euthanized, and left ventricular tissue was harvested and sent for proteomic analysis. RESULTS: Total proteomic analysis identified a total of 3256 proteins between the CAN and control groups. Three hundred and five proteins were statistically different. This included 55 proteins that were downregulated (p < 0.05, fold change <0.5) and 250 that were upregulated (p < 0.05, fold change >2) with CAN treatment. Pathway analysis demonstrated the upregulation of several proteins involved in metabolism and redox activity in the CAN-treated group. The CAN group also exhibited a downregulation of proteins involved in motor activity and cytoskeletal structure. CONCLUSIONS: In our swine model of chronic myocardial ischemia, CAN therapy alters several proteins involved in critical molecular pathways, including redox regulation and metabolism. These findings provide additional mechanistic insights into the cardioprotective effects of canagliflozin.

15.
Genes Genomics ; 46(5): 541-555, 2024 05.
Article in English | MEDLINE | ID: mdl-38483772

ABSTRACT

BACKGROUND: Sodium glucose cotransporter 2 inhibitor (SGLT2i) represent a new type of hypoglycemic medicine that can cause massive loss of glucose from the urine, which have several benefits of reducing body weight and improving the prognosis of cardiovascular and kidney diseases. Although they are oral medicated hypoglycemic agents, their effects on the gut microbiome and function have been unclear. OBJECTIVE: In order to describe the effects of canagliflozin on intestinal flora and metabolites, diabetic mice were randomized to receive canagliflozin or isoconcentration carboxymethylcellulose sodium by gavage for 8 weeks. Feces were collected for 16 S rRNA gene and LC-MS/MS analysis and enriched metabolic pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG). Liver, muscle, intestinal, fat were collected for qRT-PCR according to KEGG enriched metabolic pathways. RESULTS: Our results showed that canagliflozin significantly increased GLP-1 level and impacted on the composition of gut microbiota and metabolites. It mainly increased Muribaculum, Ruminococcaceae_UCG_014, Lachnospiraceae-UCG-001, decreased ursodeoxycholic acids (UDCA) and hyodeoxycholic acids (HDCA), and increased fatty acids metabolites in feces. CONCLUSION: In conclusion, we analyzed the changes of intestinal microbial composition and metabolites in diabetic mice after canagliflozin intervention and found that canagliflozin influenced intestinal fatty acid and bile acid (BA) metabolism. This study will provide reference for subsequent SGLT2i and intestinal related research.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Chromatography, Liquid , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Tandem Mass Spectrometry
16.
Biochem Pharmacol ; 223: 116140, 2024 May.
Article in English | MEDLINE | ID: mdl-38513740

ABSTRACT

Cancer cells consume more glucose and usually overexpress glucose transporters which have become potential targets for the development of anticancer drugs. It has been demonstrated that selective SGLT2 inhibitors, such as canagliflozin and dapagliflozin, display anticancer activity. Here we demonstrated that canagliflozin and dapagliflozin synergistically enhanced the growth inhibitory effect of paclitaxel in cancer cells including ovarian cancer and oral squamous cell carcinoma cells. Canagliflozin also inhibited glucose uptake via GLUTs. The combination of paclitaxel and WZB117, a GLUT inhibitor, exhibited a strong synergy, supporting the notion that inhibition of GLUTs by canagliflozin may also account for the synergy between canagliflozin and paclitaxel. Mechanistic studies in ES-2 ovarian cancer cells revealed that canagliflozin potentiated paclitaxel-induced apoptosis and DNA damaging effect. Paclitaxel in the nanomolar range elevated abnormal mitotic cells as well as aneuploid cells, and canagliflozin further enhanced this effect. Furthermore, canagliflozin downregulated cyclin B1 and phospho-BUBR1 upon spindle assembly checkpoint (SAC) activation by paclitaxel, and may consequently impair SAC. Thus, paclitaxel disturbed microtubule dynamics and canagliflozin compromised SAC activity, together they may induce premature mitotic exit, accumulation of aneuploid cells with DNA damage, and ultimately apoptosis.


Subject(s)
Benzhydryl Compounds , Carcinoma, Squamous Cell , Glucosides , Mouth Neoplasms , Ovarian Neoplasms , Female , Humans , Paclitaxel/pharmacology , Canagliflozin/pharmacology , Mitosis , Apoptosis , Ovarian Neoplasms/genetics , Glucose/pharmacology , Aneuploidy
17.
Cureus ; 16(2): e55068, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38550506

ABSTRACT

Sodium-glucose co-transporter-2 (SGLT2) inhibitors, integral in type 2 diabetes mellitus (T2DM) management, are not without risks, with reported adverse effects including euglycemic diabetic ketoacidosis (EDKA). We present a case of a 75-year-old female with T2DM on canagliflozin, who developed altered mental status (AMS), nausea, vomiting, and hypotension. The laboratory results revealed ketoacidosis, elevated troponins, and Takotsubo cardiomyopathy (TC), prompting the cessation of canagliflozin. This paradoxical EDKA case underscores the necessity for cautious prescribing. Additionally, our discussion delves into the risk factors, mechanisms, and epidemiology of EDKA associated with SGLT2 inhibitors (SGLT2i), emphasizing the importance of individualized medicine and shared decision-making in their use, despite their proven cardiovascular benefits.

18.
J Clin Med ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38541972

ABSTRACT

Background: Sodium glucose cotransporter-2 inhibitors (SGLT2is) represent an emerging class of drugs with diverse indications. Despite their therapeutic potential, concerns regarding safety, particularly diabetic ketoacidosis (DKA), remain contentious, with uncertainty regarding differences among various SGLT2is. This study aimed to conduct a network meta-analysis and meta-regression to evaluate the risk of SGLT2i-induced DKA and associated factors. Methods: We systematically searched electronic databases for randomized clinical trials assessing SGLT2is across indications, reporting incidences of DKA. Mixed treatment comparison pooled estimates (MTCPEs) were calculated, and odds ratios (OR) with 95% confidence intervals (95% CI) served as effect estimates. We analyzed differences across dose categories (low, medium, and high) and conducted a meta-regression analysis to identify risk factors. The strength of evidence for key comparisons was determined. Results: Our analysis included 73 articles encompassing 85,997 participants assessing the risk of DKA. SGLT2is were associated with a heightened risk of DKA compared to placebo/control interventions (OR: 1.83; 95% CI: 1.35, 2.46), a finding confirmed by bootstrap analysis. Among SGLT2is, dapagliflozin (OR: 1.9; 95% CI: 1.17, 3.08), sotagliflozin (OR: 1.93; 95% CI: 1.14, 3.25), canagliflozin (OR: 1.11; 95% CI: 1.11, 12.45), and ertugliflozin (OR: 3.92; 95% CI: 1.04, 14.77) exhibited increased DKA risk. No significant differences were observed among specific SGLT2is. Sub-group analyses revealed a high risk of DKA with low (OR: 1.98; 95% CI: 1.3, 2.95) and high doses (OR: 2.4; 95% CI: 1.7, 3.3), type 1 diabetes (OR: 3.6; 95% CI: 1.6, 8.1), type 2 diabetes (OR: 1.6; 95% CI: 1.3, 2.4), as well as a diabetes duration exceeding 10 years (OR: 3.4; 95% CI: 1.1, 10.8). The evidence of certainty for most comparisons was moderate. Conclusions: SGLT2 inhibitors (SGLT2is) have been found to elevate the risk of DKA. The key factors that significantly predict the likelihood of DKA include the presence of diabetes (whether T1D or T2D) and the duration of diabetes. Based on these findings, standard treatment guidelines should advise taking specific precautions against DKA in patients identified as high-risk.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124000, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38350412

ABSTRACT

Canagliflozin (CFZ) tablets was a commercially new class of anti-diabetic drug, CFZ had various anhydrate crystal forms and two hydrate crystal forms (Canagliflozin hemihydrate (Hemi-CFZ) and Canagliflozin monohydrate (Mono-CFZ) crystal form). The active pharmaceutical ingredients (APIs) of commercially available CFZ tablets were Hemi-CFZ, was easily convert to CFZ or Mono-CFZ under the influence of temperature, pressure, humidity and other factors in tablets processing, storage, and transportation, thus affected bioavailability and efficacy of tablets. Therefore, quantitative analysis of low-content CFZ and Mono-CFZ in tablets was essential to control tablets' quality. The main objective of this study was to explore the feasibility and in-depth explain its quantitative analysis mechanism of NIR for quantitative analysis of low-content CFZ/Mono-CFZ in CFZ tablets. PLSR models for low-content CFZ/Mono-CFZ were established by NIR solid-state analysis technique in different resolutions with different wavenumber regions combined with various pretreatments methods (such as Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV), Savitzky-Golay First Derivative (SG1st), Savitzky-Golay Second Derivative (SG2nd) and Wavelet Transform (WT)), and the PLSR models were verified. The feasibility of NIR spectroscopy for quantitative analysis of low-content CFZ and Mono-CFZ in CFZ tablets was discussed and analyzed from multiple perspectives, which included the distribution of effective information on the spectrum, the influence of resolution on PLSR models performance, the variance contribution/cumulative variance contribution of PLSR model principal components (PCs), the relation of PCI loadings, scores of the spectra and CFZ/Mono-CFZ content, and the mechanism of quantitative analysis was in-depth explained simultaneously. Eventually the most suitable PLSR models in 0.0000-10.0000 % w/w % obtained. That can provide theoretical support for quantitative analysis of low-content impurity crystal during the production, storage and transportation of CFZ tablets, thus provide reference methods for quality control of CFZ tablets and a reliable reference method for quantitative analysis of impurity crystal forms and quality control of similar drugs.


Subject(s)
Canagliflozin , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Tablets , Least-Squares Analysis
20.
Pharmacol Res ; 202: 107112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403256

ABSTRACT

Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.


Subject(s)
Neuroinflammatory Diseases , Quality of Life , Humans , Autophagy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...