Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.551
Filter
1.
Glycobiology ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088584

ABSTRACT

The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C. albicans cell wall mannans and its influence on the fungicidal activity of the lectin. We evaluated the interaction of Helja with the cell wall mannans extracted from the isogenic parental strain (WT) and a glycosylation-defective C. albicans with altered cell wall phosphomannosylation (mnn4∆ null mutants) and investigated its antifungal effect. Helja exhibited stronger antifungal activity on the mutant strain, showing greater inhibition of fungal growth, loss of cell viability, morphological alteration, and formation of clusters with agglutinated cells. This differential biological activity of Helja was correlated with the biophysical parameters determined by solid phase assays and isothermal titration calorimetry, which demonstrated that the lectin established stronger interactions with the cell wall of the mnn4∆ null mutant than with the WT strain. In conclusion, our results provide new evidence on the nature of the Helja molecular interactions with cell wall components, i.e. phosphomannan, and its impact on the antifungal activity. This study highlights the relevance of plant lectins in the design of effective antifungal therapies.

2.
ACS Infect Dis ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093050

ABSTRACT

Fungal infections account for more than 140 million cases of severe and life-threatening conditions each year, causing approximately 1.7 million deaths annually. Candida albicans and related species are the most common human fungal pathogens, causing both superficial (mucosal and cutaneous) and life-threatening invasive infections (candidemia) with a 40-75% mortality rate. Among many virulence factors of Candida albicans, morphological transition from yeast to hyphae, secretion of hydrolytic enzymes, and formation of biofilms are considered to be crucial for pathogenicity. However, the arsenals for the treatment against these pathogens are restricted to only a few classes of approved drugs, the efficacy of which is being compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. In this study, we have described the development of a molecule, exhibiting excellent antifungal activity (MIC 8 µg/mL), by tailoring acidic sophorolipids with aryl alcohols via enzyme catalysis. This novel derivative, ASLdC3, is a surface-active compound that lowers the surface tension of the air-water interface up to 2-fold before reaching the critical micelle concentration of 25 µg/mL. ASLdC3 exhibits excellent antibiofilm properties against Candida albicans and other nonalbicans Candida species. The molecule primarily exhibits its antifungal activity by perturbing mitochondrial function through the alteration of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS). The ROS damages fungal cell membrane function and cell wall integrity, eventually leading to cell death. ASLdC3 was found to be nontoxic in in vitro assay and nonhemolytic. Besides, it does not cause toxicity in the C. elegans model. Our study provides a valuable foundation for the potential of acidic sophorolipid as a nontoxic, biodegradable precursor for the design and synthesis of novel molecules for use as antimicrobial drugs as well as for other clinical applications.

3.
mBio ; : e0116524, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109867

ABSTRACT

T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is an inhibitory receptor expressed by T and natural killer cells. Here, we used TIGIT knockout (KO) mice to demonstrate that mouse TIGIT directly interacts with Candida albicans. Reduced fungal growth and colonization were observed when TIGIT-KO splenocytes were co-cultured with C. albicans compared to the wild type (WT). In a systemic candidiasis model, TIGIT-KO mice exhibited improved survival and reduced body weight loss compared to WT mice. Organ-specific fungal burden assessment revealed significantly lower fungal loads in the kidneys, spleen, and lungs of TIGIT-KO mice. Finally, we show that the agglutinin-like sequence proteins ALS6, ALS7, and ALS9 of C. albicans are ligands for TIGIT and that the absence of these proteins abolishes the TIGIT effect in vivo. Our results identify the significance of TIGIT in modulating host defense against C. albicans and highlight the potential therapeutic implications for C. albicans infections. IMPORTANCE: Our results identify the significance of T cell immunoreceptor with immunoglobulin and ITIM domain in modulating host defense against Candida albicans and highlight the potential therapeutic implications for C. albicans infections.

4.
Inflammation ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963571

ABSTRACT

Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, fungal burden, oxidative stress, and apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1ß, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and fungal burden in a colitis model with C. albicans infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited fungal growth, oxidative stress, and apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1ß, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.

5.
J Pharmacopuncture ; 27(2): 91-100, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948309

ABSTRACT

Objectives: Candida albicans is an opportunistic pathogen that occurs as harmless commensals in the intestine, urogenital tract, and skin. It has been influenced by a variety of host conditions and has now evolved as a resistant strain. The aim of this study was thus detect the fluconazole resistant C. albicans from the root caries specimens and to computationally evaluate the interactions of an opaque-phase ABC transporter protein with the Psidium guajava bio-active compounds. Methods: 20 carious scrapings were collected from patients with root caries and processed for the isolation of C. albicans and was screened for fluconazole resistance. Genomic DNA was extracted and molecular characterization of Cdrp1 and Cdrp2 was done by PCR amplification. P. guajava methanolic extract was checked for the antifungal efficacy against the resistant strain of C. albicans. Further in-silico docking involves retrieval of ABC transporter protein and ligand optimization, molinspiration assessment on drug likeness, docking simulations and visualizations. Results: 65% of the samples showed the presence of C.albicans and 2 strains were fluconazole resistant. Crude methanolic extract of P. guajava was found to be promising against the fluconazole resistant strains of C. albicans. In-silico docking analysis showed that Myricetin was a promising candidate with a high docking score and other drug ligand interaction scores. Conclusion: The current study emphasizes that bioactive compounds from Psidium guajava to be a promising candidate for treating candidiasis in fluconazole resistant strains of C. albicans However, further in-vivo studies have to be implemented for the experimental validation of the same in improving the oral health and hygiene.

6.
mBio ; : e0073224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953353

ABSTRACT

Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.

7.
Int Microbiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955904

ABSTRACT

The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.

8.
Am J Reprod Immunol ; 92(1): e13893, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958245

ABSTRACT

PROBLEM: Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown. METHOD OF STUDY: Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1ß and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence. RESULTS: In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells. CONCLUSION: C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Epithelial Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Vagina , Female , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Candidiasis, Vulvovaginal/immunology , Candidiasis, Vulvovaginal/microbiology , Candidiasis, Vulvovaginal/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Candida albicans/immunology , Vagina/microbiology , Vagina/immunology , Vagina/pathology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Indenes , Furans/pharmacology , Caspase 1/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Phosphate-Binding Proteins/metabolism , Cells, Cultured , Sulfonamides
9.
J Microbiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958871

ABSTRACT

Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of ß-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.

10.
J Nippon Med Sch ; 91(3): 285-295, 2024.
Article in English | MEDLINE | ID: mdl-38972741

ABSTRACT

BACKGROUND: The standard treatment for Kawasaki disease is immunoglobulin therapy, but the high frequency of coronary sequelae in immunoglobulin-refractory cases indicates a need for further improvement in treatment. METHODS: Kawasaki disease-like vasculitis was induced in 5-week-old DBA/2 mice by intraperitoneal administration of 0.5 mg Candida albicans water-soluble fraction (CAWS) daily for 5 days followed by daily administration of candesartan, an angiotensin receptor blocker. The vasculitis suppression effect was confirmed histologically and serologically in mice sacrificed at 28 days after the start of candesartan. RESULTS: The area of inflammatory cell infiltration at the aortic root was 2.4±1.4% in the Control group, 18.1±1.9% in the CAWS group, and 7.1±2.3%, 5.8±1.4%, 7.6±2.4%, and 7.9±5.0% in the CAWS+candesartan 0.125-mg/kg, 0.25-mg/kg, 0.5-mg/kg, and 1.0-mg/kg groups, respectively (p=0.0200, p=0.0122, p=0.0122, and p=0.0200 vs. CAWS, respectively). The low-dose candesartan group also showed significantly reduced inflammatory cell infiltration. A similar trend was confirmed by immunostaining of macrophages and TGFß receptors. Measurement of the inflammatory cytokines IL-1ß, IL-6, and TNF-α confirmed the anti-vasculitis effect of candesartan. CONCLUSIONS: Candesartan inhibited vasculitis even at clinical doses used in children, making it a strong future candidate as an additional treatment for immunoglobulin-refractory Kawasaki disease.


Subject(s)
Benzimidazoles , Biphenyl Compounds , Candida albicans , Disease Models, Animal , Mucocutaneous Lymph Node Syndrome , Tetrazoles , Animals , Benzimidazoles/pharmacology , Benzimidazoles/administration & dosage , Mucocutaneous Lymph Node Syndrome/drug therapy , Tetrazoles/pharmacology , Tetrazoles/administration & dosage , Candida albicans/drug effects , Biphenyl Compounds/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Mice, Inbred DBA , Solubility , Water , Vasculitis/drug therapy , Male , Mice , Cytokines/metabolism , Interleukin-6/metabolism
11.
Indian J Med Microbiol ; 50: 100663, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38964501

ABSTRACT

PURPOSE: Candida albicans is the second most common cause of candidemia in Malaysia. The Clinical and Laboratory Standards Institute (CLSI) broth microdilution method is the gold standard for determining its minimum inhibitory concentration (MIC); however, it is laborious and time-consuming. This study was conducted to evaluate the usefulness of alternative methods, namely Sensititre YeastOne (SYO), VITEK 2 system, and E-test for determining the MIC of clinical C. albicans isolates. MATERIALS AND METHODS: The susceptibilities of 95 C. albicans isolates were compared between SYO, VITEK 2 system, and E-test with CLSI broth microdilution method. The categorical agreement (CA), essential agreement (EA), very major errors (VME), major errors (ME) and minor errors (MiE) were calculated. RESULTS: Our finding showed the CA varied for SYO from 96.8% to 100%, while the EA ranged from 91.6% to 100%. The SYO method showed 1.1% of VME and ME, and up to 3.2% of MiE. Next, the CA and EA ranges for the VITEK 2 system were 97.8%-100% and 23.2%-100%, respectively. In the VITEK 2 technique, 1.1% of VME were found. For the E-test, the CA varied from 83.2% to 100% while the EA ranged from 64.2% to 98.9%. The E-test method showed 1.1% of VME and up to 16.8% of MiE. CONCLUSIONS: In conclusion, SYO and VITEK 2 (except flucytosine) could be potential alternatives to the CLSI broth microdilution method in determining the MIC of C. albicans.

12.
Microb Cell ; 11: 265-277, 2024.
Article in English | MEDLINE | ID: mdl-39081907

ABSTRACT

The ability of Candida albicans to switch its morphology from yeast to filaments, known as polymorphism, may bias the methods used in microbial quantification. Here, we compared the quantification methods [cell/mL, colony forming units (CFU)/mL, and the number of nuclei estimated by viability polymerase chain reaction (vPCR)] of three strains of C. albicans (one reference strain and two clinical isolates) grown as yeast, filaments, and biofilms. Metabolic activity (XTT assay) was also used for biofilms. Comparisons between the methods were evaluated by agreement analyses [Intraclass and Concordance Correlation Coefficients (ICC and CCC, respectively) and Bland-Altman Plot] and Pearson Correlation (α = 0.05). Principal Component Analysis (PCA) was employed to visualize the similarities and differences between the methods. Results demonstrated a lack of agreement between all methods irrespective of fungal morphology/growth, even when a strong correlation was observed. Bland-Altman plot also demonstrated proportional bias between all methods for all morphologies/growth, except between CFU/mL X vPCR for yeasts and biofilms. For all morphologies, the correlation between the methods were strong, but without linear relationship between them, except for yeast where vPCR showed weak correlation with cells/mL and CFU/mL. XTT moderately correlated with CFU/mL and vPCR and weakly correlated with cells/mL. For all morphologies/growth, PCA showed that CFU/mL was similar to cells/mL and vPCR was distinct from them, but for biofilms vPCR became more similar to CFU/mL and cells/mL while XTT was the most distinct method. As conclusions, our investigation demonstrated that CFU/mL underestimated cells/mL, while vPCR overestimated both cells/mL and CFU/mL, and that the methods had poor agreement and lack of linear relationship, irrespective of C. albicans morphology/growth.1.

13.
Cell Host Microbe ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39084229

ABSTRACT

Candida albicans stably colonizes humans but is the leading cause of hospital-acquired fungemia. Traditionally, masking immunogenic moieties has been viewed as a tactic for immune evasion. Here, we demonstrate that C. albicans blocks type I interferon (IFN-I) signaling via translocating an effector protein Cmi1 into host cells. Mechanistically, Cmi1 binds and inhibits TANK-binding kinase 1 (TBK1) to abrogate IFN-regulatory factor 3 (IRF3) phosphorylation, thereby suppressing the IFN-I cascade. Murine infection with a cmi1 mutant displays an exaggerated IFN-I response in both kidneys and bone-marrow-derived macrophages, leading to rapid fungal clearance and host survival. Remarkably, the lack of CMI1 compromises gut commensalism and increases IFN-I response in mouse colonic cells. These phenotypes of cmi1 are rescued by the depletion of IFN-I receptor. This work establishes the importance of TBK1 inhibition in fungal pathogenesis and reveals that a human commensal-pathogenic fungus significantly impacts host immunity during gut colonization and infection via delivering effector proteins into host cells.

14.
Oral Dis ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39073178

ABSTRACT

OBJECTIVE: To evaluate the efficacy of recombinant psoriasin as a novel treatment for oral candidiasis by eliminating Candida albicans growth on polymethyl methacrylate denture base. MATERIALS AND METHODS: Recombinant psoriasin protein was expressed and purified from E. coli, and Candida growth was monitored in vitro with varying concentrations of psoriasin. Subsequently, denture-base polymethyl methacrylate was immersed in psoriasin's solution or voriconazole, and fungal growth on the acrylic base and in the medium was examined by scanning electron microscopy and optical density, respectively. Cellular viability of HeLa and human gingival fibroblast cells treated with psoriasin was measured by methylene blue assay. RESULTS: The findings reveal an effective antifungal activity of psoriasin, completely inhibiting Candida albicans growth in RPMI at a protein concentration above 400 nM. Immersing the polymethyl methacrylate with 50 µM psoriasin completely eradicates fungal growth. Psoriasin has low cytotoxicity in HeLa cells at a concentration higher than 12 µM and no toxic effect on human gingival fibroblasts. CONCLUSIONS: This study marks psoriasin as an effective alternative to conventional antifungal treatments for denture stomatitis and a safe alternative to chemical antifungals in dental medicine and beyond.

15.
Genetics ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073444

ABSTRACT

Pentatricopeptide (PPR) proteins bind RNA and are present in mitochondria and chloroplasts of Eukaryota. In fungi they are responsible for controlling mitochondrial genome expression, mainly on the posttranscriptional level. Candida albicans is a human opportunistic pathogen with a facultative anaerobic metabolism which, unlike the model yeast S. cerevisiae, possesses mitochondrially encoded respiratory Complex I (CI) subunits and does not tolerate loss of mtDNA. We characterized the function of 4 PPR proteins of C. albicans that lack orthologs in S. cerevisiae, and found that they are required for the expression of mitochondrially-encoded CI subunits. We demonstrated that these proteins localize to mitochondria and are essential to maintain the respiratory capacity of cells. Deletion of genes encoding these PPR proteins results in changes in steady state levels of mitochondrial RNAs and proteins. We demonstrated that C. albicans cells lacking CaPpr4, CaPpr11, and CaPpr13 proteins show no CI assembly, whereas the lack of CaPpr7p results in a decreased CI activity. CaPpr13p is required to maintain the bicistronic NAD4L-NAD5 mRNA, whereas the other three PPR proteins are likely involved in translation-related assembly of mitochondrially encoded CI subunits. In addition, we show that CaAep3p which is an ortholog of ScAep3p, performs the evolutionary conserved function of controlling expression of the ATP8-ATP6 mRNA. We also show that C. albicans cells lacking PPR proteins express a higher level of the inducible alternative oxidase (AOX2) which likely rescues respiratory defects and compensates for oxidative stress.

16.
Article in English | MEDLINE | ID: mdl-39059553

ABSTRACT

OBJECTIVE: This study evaluated the role of Upc2 in the development of azole resistance in Candida albicans isolates from Lebanese hospitalized patients and determined a correlation between resistance and virulence. METHODS: The UPC2 gene which codes for an ergosterol biosynthesis regulator was sequenced and analyzed in two azole resistant and one azole susceptible C. albicans isolates. An amino acid substitution screening was carried out on Upc2 with a focus on its ligand binding domain (LBD) known to interact with ergosterol. Then, Upc2 protein secondary structure prediction and homology modeling were conducted, followed by total plasma membrane ergosterol and cell wall chitin quantifications. For virulence, mouse models of systemic infection were generated and an agar adhesion and invasion test was performed. RESULTS: Azole resistant isolates harbored novel amino acid substitutions in the LBD of Upc2 and changes in protein secondary structures were observed. In addition, these isolates exhibited a significant increase in plasma membrane ergosterol content. Resistance and virulence were inversely correlated while increased cell wall chitin concentration does not seem to be linked to resistance since even though we observed an increase in chitin concentration, it was not statistically significant. CONCLUSION: The azole resistant C. albicans isolates harbored novel amino acid substitutions in the LBD of Upc2 which is speculated to induce an increase in plasma membrane ergosterol content, preventing the binding of azoles to their target, resulting in resistance.

17.
Infect Dis Rep ; 16(4): 572-586, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39051243

ABSTRACT

The secreted aspartic peptidases (Saps) of Candida albicans play crucial roles in various steps of fungal-host interactions. Using a flow cytometry approach, this study investigated the expression of Saps1-3 antigens after (i) incubation with soluble proteins, (ii) interaction with mammalian cells, and (iii) infection in immunosuppressed BALB/c mice. Supplementation strategies involving increasing concentrations of bovine serum albumin (BSA) added to yeast carbon base (YCB) medium as the sole nitrogenous source revealed a positive and significant correlation between BSA concentration and both the growth rate and the percentage of fluorescent cells (%FC) labeled with anti-Saps1-3 antibodies. Supplementing the YCB medium with various soluble proteins significantly modulated the expression of Saps1-3 antigens in C. albicans. Specifically, immunoglobulin G, gelatin, and total bovine/human sera significantly reduced the %FC, while laminin, human serum albumin, fibrinogen, hemoglobin, and mucin considerably increased the %FC compared to BSA. Furthermore, co-cultivating C. albicans yeasts with either live epithelial or macrophage cells induced the expression of Saps1-3 antigens in 78% (mean fluorescence intensity [MFI] = 152.1) and 82.7% (MFI = 178.2) of the yeast cells, respectively, compared to BSA, which resulted in 29.3% fluorescent cells (MFI = 50.9). Lastly, the yeasts recovered from the kidneys of infected immunosuppressed mice demonstrated a 4.8-fold increase in the production of Saps1-3 antigens (MFI = 246.6) compared to BSA, with 95.5% of yeasts labeled with anti-Saps1-3 antibodies. Altogether, these results demonstrated the positive modulation of Saps' expression in C. albicans by various key host proteinaceous components, as well as by in vitro and in vivo host challenges.

18.
Microorganisms ; 12(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39065125

ABSTRACT

The oral cavity remains an underappreciated site for SARS-CoV-2 infection despite the myriad of oral conditions in COVID-19 patients. Recently, SARS-CoV-2 was shown to replicate in the salivary gland cells causing tissue inflammation. Given the established association between inflammation and microbiome disruption, we comparatively profiled oral microbial differences at a metagenomic level in a cohort of hospitalized COVID-19 patients and matched healthy controls. Specifically, we aimed to evaluate colonization by the opportunistic fungal pathogen Candida albicans, the etiologic agent of oral candidiasis. Comprehensive shotgun metagenomic analysis indicated that, overall, COVID-19 patients exhibited significantly reduced bacterial and viral diversity/richness; we identified 12 differentially abundant bacterial species to be negatively associated with COVID-19, and the functional pathways of certain bacteria to be highly associated with COVID-19 status. Strikingly, C. albicans was recovered from approximately half of the COVID-19 subjects but not from any of the healthy controls. The prevalence of Candida is likely linked to immune hypo-dysregulation caused by COVID-19 favoring Candida proliferation, warranting investigations into the interplay between Candida and SARS-CoV2 and potential therapeutic approaches directed toward oral candidiasis. Collectively, our findings prompt a reassessment of oral opportunistic infection risks during COVID-19 disease and their potential long-term impacts on oral health.

19.
mBio ; : e0169824, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058031

ABSTRACT

A recent study in mBio reports the construction and preliminary screening of a library containing mutants of 99 of the 119 predicted protein kinases in Candida albicans (the majority of the remaining 20 are probably essential) (J. Kramara, M.-J. Kim, T. L. Ollinger, L. C. Ristow, et al., mBio e01249-24, 2024, https://doi.org/10.1128/mbio.01249-24). Using a quantitative competition assay in 10 conditions that represent nutritional, osmotic, cell wall, and pH stresses that are considered to model various aspects of the host environment allowed them to phenotypically cluster kinases, which highlight both the integration and specialization of signaling pathways, suggesting novel functions for many kinases. In addition, they tackle two complex and partially overlapping differentiation events, hyphal morphogenesis and biofilm formation. They find that a remarkable 88% of the viable kinase mutants in C. albicans affect hyphal growth, illustrating how integrated morphogenesis is in the overall biology of this organism, and begin to dissect the regulatory relationships that control this key virulence trait.

20.
Antibiotics (Basel) ; 13(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39061260

ABSTRACT

Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 µg/mL) and (0.125-2 µg/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 µm in caspofungin-resistant isolate and 0.125 µm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 µm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 µm). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...