Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Infect Drug Resist ; 17: 3617-3621, 2024.
Article in English | MEDLINE | ID: mdl-39184014

ABSTRACT

Purpose: Infection with carbapenem-resistant Acinetobacter baumannii (CRAB) is a tough nut to crack. Carrimycin is a novel recombinant macrolide antibiotic, and has good anti-infection effects in vivo. At present, it is rarely reported for treatment of CRAB infection. We present a case where a patient with COVID-19 complicated by CRAB infection was successfully treated with a combination therapy including carrimycin, offering clinical insights and experience. Patients and Methods: The patient infected with CRAB was cured by carrimycin combined with tigecycline and amikacin ultimately. We analyzed and summarized the therapeutic regimen and disease feature to provide reference for clinical treatment. Results: The patient was admitted to emergency observation wards with fever and was diagnosed with COVID-19 pneumonia. During the treatment, his condition worsened. He had a fever, cough, and expectoration. After 3 days of empirical treatment with meropenem, tested positive for A. baumannii infection by the next-generation sequencing, and CRAB was detected in blood and sputum culture. Then, he was administered with tigecycline and amikacin immediately for 5 days, however the therapeutic effect was not significant. The patient still remained in a high inflammatory response. Ultimately, the treatment regimen was changed to carrimycin combined with tigecycline and amikacin for 7 days, and then carrimycin combined with tigecycline for 10 days, the patient's clinical condition gradually improved. The patient received carrimycin monotherapy for 7 days, then discharged. Conclusion: Carrimycin may be a bright alternative for CRAB infection as one of the drugs in combination therapy, especially in a patient with hyperinflammatory response.

2.
Emerg Microbes Infect ; : 2396877, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193648

ABSTRACT

The emergence and spread of Acinetobacter baumannii pose a severe threat to public health, highlighting the urgent need for the next generation of therapeutics due to its increasing resistance to existing antibiotics. BfmR, a response regulator modulating virulence and antimicrobial resistance, shows a promising potential as a novel antimicrobial target. Developing BfmR inhibitors may propel a new therapeutic direction for intractable infection of resistant strains. In this study, we conducted a structure-based hierarchical virtual screening pipeline combining molecular docking, molecular dynamics simulation and MM/GBSA calculation to sift Specs chemical library and finally discover three novel potential BfmR inhibitors. The three hits can reduce the MIC of meropenem for the carbapenem-resistant Acinetobacter baumannii (CRAB) strain ZJ06. Similar to the BfmR knockout strain, Cmp-98 was demonstrated to downregulate the expression of K locus genes, indicating it as a BfmR inhibitor. Bacteria underwent harmful morphological changes after treatment with these inhibitors. Molecular dynamics simulations found that all the hits tend to dynamically bind to different positions of the phosphorylation site of BfmR. Wherein we identified a potential inhibitory binding cleft, beside a possible activated binding cleft at the edge of the phosphorylation site. Restraining the ligand binding poses may help exerting inhibitory effects. This study reports a group of new-scaffold BfmR inhibitors, offering new insights for novel antibiotic therapeutics against CRAB.

3.
Cells ; 13(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39195205

ABSTRACT

We investigated the activity of cefiderocol/ß-lactamase inhibitor combinations against clinical strains with different susceptibility profiles to cefiderocol to explore the potentiality of antibiotic combinations as a strategy to contain the major public health problem of multidrug-resistant (MDR) pathogens. Specifically, we evaluated the synergistic activity of cefiderocol with avibactam, sulbactam, or tazobactam on three of the most "Critical Priority" group of MDR bacteria (carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii). Clinical isolates were genomically characterized by Illumina iSeq 100. The synergy test was conducted with time-kill curve assays. Specifically, cefiderocol/avibactam, /sulbactam, or /tazobactam combinations were analyzed. Synergism was assigned if bacterial grow reduction reached 2 log10 CFU/mL. We reported the high antimicrobial activity of the cefiderocol/sulbactam combination against carbapenem-resistant Enterobacterales, P. aeruginosa, and A. baumannii; of the cefiderocol/avibactam combination against carbapenem-resistant Enterobacterales; and of the cefiderocol/tazobactam combination against carbapenem-resistant Enterobacterales and P. aeruginosa. Our results demonstrate that all ß-lactamase inhibitors (BLIs) tested are able to enhance cefiderocol antimicrobial activity, also against cefiderocol-resistant isolates. The cefiderocol/sulbactam combination emerges as the most promising combination, proving to highly enhance cefiderocol activity in all the analyzed carbapenem-resistant Gram-negative isolates, whereas the Cefiderocol/tazobactam combination resulted in being active only against carbapenem-resistant Enterobacterales and P. aeruginosa, and cefiderocol/avibactam was only active against carbapenem-resistant Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Cefiderocol , Cephalosporins , Drug Synergism , Gram-Negative Bacteria , Microbial Sensitivity Tests , Sulbactam , Tazobactam , Azabicyclo Compounds/pharmacology , Tazobactam/pharmacology , Sulbactam/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Carbapenems/pharmacology , Humans , Acinetobacter baumannii/drug effects , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Combinations
4.
Microbiol Spectr ; : e0050124, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101706

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant threat to hospitalized patients as effective therapeutic options are scarce. Based on the genomic characteristics of the CRAB strain AB2877 harboring chromosome-borne blaOXA-23, which was isolated from the bronchoalveolar lavage fluid (BALF) of a patient in a respiratory intensive care unit (RICU), we systematically analyzed antibiotic resistance genes (ARGs) and the genetic context associated with ARGs carried by CRAB strains harboring chromosome-borne blaOXA-23 worldwide. Besides blaOXA-23, other ARGs were detected on the chromosome of the CRAB strain AB2877 belonging to ST208/1806 (Oxford MLST scheme). Several key genetic contexts associated with the ARGs were identified on the chromosome of the CRAB strain AB2877, including (1) the MDR region associated with blaOXA-23, tet(B)-tetR(B), aph(3'')-Ib, and aph(6)-Id (2); the resistance island AbGRI3 harboring armA and mph(E)-msr(E) (3); the Tn3-like composite transposon containing blaTEM-1D and aph(3')-Ia; and (4) the structure "ISAba1-blaADC-25." The first two genetic contexts were most common in ST195/1816, followed by ST208/1806. The last two genetic contexts were found most frequently in ST208/1806, followed by ST195/1816.IMPORTANCEThe blaOXA-23 gene can be carried by plasmid or chromosome, facilitating horizontal genetic transfer and increasing carbapenem resistance in healthcare settings. In this study, we focused on the genomic characteristics of CRAB strains harboring the chromosome-borne blaOXA-23 gene, and the important genetic contexts associated with blaOXA-23 and other ARGs were identified, and their prevalent clones worldwide were determined. Notably, although the predominant clonal CRAB lineages worldwide containing the MDR region associated with blaOXA-23, tet(B)-tetR(B), aph(3'')-Ib, and aph (6)-Id was ST195/1816, followed by ST208/1806, the CRAB strain AB2877 in our study belonged to ST208/1806. Our findings contribute to the knowledge regarding the dissemination of CRAB strains and the control of nosocomial infection.

5.
Comput Struct Biotechnol J ; 23: 2595-2605, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39006922

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B, and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common transcriptomic responses which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89 % common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed that the effects were driven by colistin, which included disturbances in fatty acid synthesis and catabolism, and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72 % of DEGs shared with monotherapy, leading to substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall, and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients.

6.
Infect Chemother ; 56(2): 171-187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38960737

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii complex (CRAB) poses a significant global health challenge owing to its resistance to multiple antibiotics and limited treatment options. Polymyxin-based therapies have been widely used to treat CRAB infections; however, they are associated with high mortality rates and common adverse events such as nephrotoxicity. Recent developments include numerous observational studies and randomized clinical trials investigating antibiotic combinations, repurposing existing antibiotics, and the development of novel agents. Consequently, recommendations for treating CRAB are undergoing significant changes. The importance of colistin is decreasing, and the role of sulbactam, which exhibits direct antibacterial activity against A. baumannii complex, is being reassessed. High-dose ampicillin-sulbactam-based combination therapies, as well as combinations of sulbactam and durlobactam, which prevent the hydrolysis of sulbactam and binds to penicillin-binding protein 2, have shown promising results. This review introduces recent advancements in CRAB infection treatment based on clinical trial data, highlighting the need for optimized treatment protocols and comprehensive clinical trials to combat the evolving threat of CRAB effectively.

7.
Antibiotics (Basel) ; 13(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39061292

ABSTRACT

The spread of multidrug-resistant Acinetobacter baumannii in hospitals and nursing homes poses serious healthcare challenges. Therefore, we aimed to isolate and characterize lytic bacteriophages targeting carbapenem-resistant Acinetobacter baumannii (CRAB). Of the 21 isolated A. baumannii phages, 11 exhibited potent lytic activities against clinical isolates of CRAB. Based on host spectrum and RAPD-PCR results, 11 phages were categorized into four groups. Three phages (vB_AbaP_W8, vB_AbaSi_W9, and vB_AbaSt_W16) were further characterized owing to their antibacterial efficacy, morphology, and whole-genome sequence and were found to lyse 37.93%, 89.66%, and 37.93%, respectively, of the 29 tested CRAB isolates. The lytic spectrum of phages varied depending on the multilocus sequence type (MLST) of the CRAB isolates. The three phages contained linear double-stranded DNA genomes, with sizes of 41,326-166,741 bp and GC contents of 34.4-35.6%. Genome-wide phylogenetic analysis and single gene-based tree construction revealed no correlation among the three phages. Moreover, no genes were associated with lysogeny, antibiotic resistance, or bacterial toxins. Therefore, the three novel phages represent potential candidates for phage therapy against CRAB infections.

8.
Antibiotics (Basel) ; 13(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39061362

ABSTRACT

Acinetobacter baumannii is a challenging multidrug-resistant pathogen in healthcare. Phage vB_AbaSi_W9 (GenBank: PP146379.1), identified in our previous study, shows lytic activity against 26 (89.66%) of 29 carbapenem-resistant Acinetobacter baumannii (CRAB) strains with various sequence types (STs). It is a promising candidate for CRAB treatment; however, its lytic efficiency is insufficient for complete bacterial lysis. Therefore, this study aimed to investigate the clinical utility of the phage vB_AbaSi_W9 by identifying antimicrobial agents that show synergistic effects when combined with it. The A. baumannii ATCC17978 strain was used as the host for the phage vB_AbaSi_W9. Adsorption and one-step growth assays of the phage vB_AbaSi_W9 were performed at MOIs of 0.001 and 0.01, respectively. Four clinical strains of CRAB belonging to different sequence types, KBN10P04948 (ST191), LIS2013230 (ST208), KBN10P05982 (ST369), and KBN10P05231 (ST451), were used to investigate phage-antibiotic synergy. Five antibiotics were tested at the following concentration: meropenem (0.25-512 µg/mL); colistin, tigecycline, and rifampicin (0.25-256 µg/mL); and ampicillin/sulbactam (0.25/0.125-512/256 µg/mL). The in vitro synergistic effect of the phage and rifampicin was verified through an in vivo mouse infection model. Phage vB_AbaSi_W9 demonstrated 90% adsorption to host cells in 1 min, a 20 min latent period, and a burst size of 114 PFU/cell. Experiments combining phage vB_AbaSi_W9 with antibiotics demonstrated a pronounced synergistic effect against clinical strains when used with tigecycline and rifampicin. In a mouse model infected with CRAB KBN10P04948 (ST191), the group treated with rifampicin (100 µg/mL) and phage vB_AbaSi_W9 (MOI 1) achieved a 100% survival rate-a significant improvement over the phage-only treatment (8.3% survival rate) or antibiotic-only treatment (25% survival rate) groups. The bacteriophage vB_AbaSi_W9 demonstrated excellent synergy against CRAB strains when combined with tigecycline and rifampicin, suggesting potential candidates for phage-antibiotic combination therapy in treating CRAB infections.

9.
Open Forum Infect Dis ; 11(6): ofae301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872846

ABSTRACT

Background: We examined temporal trends in carbapenem-resistant Acinetobacter baumannii (CRAB) infections in a hospital with hyperendemic CRAB and assessed the efficacy of varied infection control strategies in different ward types. Methods: We retrospectively analyzed all CRAB clinical samples from 2006 to 2019 and categorized infections as hospital-onset (HO) or community-onset. We used interrupted time series analysis to assess the impact of interventions on the incidence of all HO-CRAB infections and bloodstream infections (BSIs) at the hospital and ward group levels. Results: Over 14 years, 4009 CRAB infections were identified (89.7% HO), with 813 CRAB BSI (93.2% HO). The incidence per 100 000 patient-days of CRAB infections peaked in 2008 at 79.1, and that of CRAB BSI peaked in 2010 at 16.2. These rates decreased by two-thirds by 2019. In the general intensive care unit (ICU), hand hygiene and environmental cleaning interventions were followed by a significant reduction in the level of HO-CRAB infections, with an additional decrease in the slope after the introduction of active surveillance and 2% chlorhexidine bathing. In the surgical ICU and surgical department, a reduction in slope or level of CRAB infection was observed after moving ventilated patients to single rooms. In medical wards, a multimodal intervention was followed by a reduction in the slope of HO-CRAB infections and BSIs. In wards where CRAB infections were uncommon, the incidence of HO-CRAB infections decreased throughout the study period. Conclusions: Ward-specific variables determine the success of interventions in reducing CRAB infections; therefore, interventions should be tailored to each setting.

10.
mSphere ; 9(6): e0027624, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38832781

ABSTRACT

This study aimed to characterize carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from Jiangxi patients using whole-genome sequencing (WGS). We subjected 100 clinical CRAB strains isolated from the three local largest teaching hospitals to WGS and antimicrobial susceptibility testing. Molecular epidemiology was investigated using multilocus sequence typing, core genome multilocus typing, core genome single-nucleotide polymorphism phylogeny, and pulsed-field gel electrophoresis. The most prevalent acquired carbapenemase was blaOXA-23, predominant in all isolates (100%). Isolates belonging to the dominating international clone IC2 accounted for 92% of all isolates. International IC11 (ST164Pas/ST1418Ox) clone was found in an additional 8% (eight isolates), with seven isolates (87.5%) carrying an acquired additional blaNDM-1 carbapenemase. The oxa23-associated Tn2009, either alone or in a tandem repeat structure containing four copies of blaOXA-23, was discovered in 62% (57 isolates) of IC2. The oxa23-associated Tn2006 was identified in 38% (35 isolates) of IC2 and all IC11 isolates. A putative conjugative RP-T1 (formerly RepAci6) plasmid with blaOXA-23 in Tn2006 within AbaR4, designated pSRM1.1, was found in IC2 A. baumannii strain SRM1. The blaNDM-1 gene found in seven IC11 isolates was located on a novel Tn6924-like transposon, a first-time report in IC11. These findings underscore the significant importance of real-time surveillance to prevent the further spread of CRAB. IMPORTANCE: Carbapenem-resistant Acinetobacter baumannii (CRAB) is notorious for causing difficult-to-treat infections. To elucidate the molecular and clinical epidemiology of CRAB in Jiangxi, clinical CRAB isolates were collected and underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included the predominance of OXA-23-producing IC2 A. baumannii, marked by the emergence of OXA-23 and NDM-1-producing IC11 strains.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Whole Genome Sequencing , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , beta-Lactamases/genetics , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Bacterial Proteins/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Genome, Bacterial , Phylogeny , Male , Female , Middle Aged , Aged , Adult , Electrophoresis, Gel, Pulsed-Field , Plasmids/genetics , Polymorphism, Single Nucleotide , Genomics
11.
Antimicrob Resist Infect Control ; 13(1): 62, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867312

ABSTRACT

OBJECTIVE: This study aimed to develop and apply a nomogram with good accuracy to predict the risk of CRAB infections in neuro-critically ill patients. In addition, the difficulties and expectations of application such a tool in clinical practice was investigated. METHODS: A mixed methods sequential explanatory study design was utilized. We first conducted a retrospective study to identify the risk factors for the development of CRAB infections in neuro-critically ill patients; and further develop and validate a nomogram predictive model. Then, based on the developed predictive tool, medical staff in the neuro-ICU were received an in-depth interview to investigate their opinions and barriers in using the prediction tool during clinical practice. The model development and validation is carried out by R. The transcripts of the interviews were analyzed by Maxqda. RESULTS: In our cohort, the occurrence of CRAB infections was 8.63% (47/544). Multivariate regression analysis showed that the length of neuro-ICU stay, male, diabetes, low red blood cell (RBC) count, high levels of procalcitonin (PCT), and number of antibiotics ≥ 2 were independent risk factors for CRAB infections in neuro-ICU patients. Our nomogram model demonstrated a good calibration and discrimination in both training and validation sets, with AUC values of 0.816 and 0.875. Additionally, the model demonstrated good clinical utility. The significant barriers identified in the interview include "skepticism about the accuracy of the model", "delay in early prediction by the indicator of length of neuro-ICU stay", and "lack of a proper protocol for clinical application". CONCLUSIONS: We established and validated a nomogram incorporating six easily accessed indicators during clinical practice (the length of neuro-ICU stay, male, diabetes, RBC, PCT level, and the number of antibiotics used) to predict the risk of CRAB infections in neuro-ICU patients. Medical staff are generally interested in using the tool to predict the risk of CRAB, however delivering clinical prediction tools in routine clinical practice remains challenging.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Carbapenems , Intensive Care Units , Nomograms , Humans , Acinetobacter baumannii/drug effects , Male , Female , Retrospective Studies , Middle Aged , Carbapenems/pharmacology , Carbapenems/therapeutic use , Acinetobacter Infections/epidemiology , Risk Factors , Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Adult , Critical Illness
12.
Infection ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856809

ABSTRACT

PURPOSE: The worldwide emergence and clonal spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern. In the present study, we determined the mechanisms of antimicrobial resistance, virulence gene repertoire and genomic relatedness of CRAB isolates circulating in Serbian hospitals. METHODS: CRAB isolates were analyzed using whole-genome sequencing (WGS) for the presence of antimicrobial resistance-encoding genes, virulence factors-encoding genes, mobile genetic elements and genomic relatedness. Antimicrobial susceptibility testing was done by disk diffusion and broth microdilution methods. RESULTS: Eleven isolates exhibited an MDR resistance phenotype, while four of them were XDR. MIC90 for meropenem and imipenem were > 64 µg/mL and 32 µg/mL, respectively. While all CRABs harbored blaOXA-66 variant of blaOXA-51 gene, those assigned to STPas2, STPas636 and STPas492 had blaADC-73,blaADC-74 and blaADC-30 variants, respectively. The following acquired carbapenemases-encoding genes were found: blaOXA-72 (n = 12), blaOXA-23 (n = 3), and blaNDM-1(n = 5), and were mapped to defined mobile genetic elements. MLST analysis assigned the analyzed CRAB isolates to three Pasteur sequence types (STs): STPas2, STPas492, and STPas636. The Majority of strains belonged to International Clone II (ICII) and carried tested virulence-related genes liable for adherence, biofilm formation, iron uptake, heme biosynthesis, zinc utilization, serum resistance, stress adaptation, intracellular survival and toxin activity. CONCLUSION: WGS elucidated the resistance and virulence profiles of CRABs isolated from clinical samples in Serbian hospitals and genomic relatedness of CRAB isolates from Serbia and globally distributed CRABs.

13.
Int J Infect Dis ; 146: 107128, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852767

ABSTRACT

OBJECTIVES: This study analyzed the risk and impact of developing pneumogenic bacteremia in patients with CRAB nosocomial pneumonia in ICU. METHODS: This is multicenter retrospective study. Clinical outcomes were compared between bacteremia and non-bacteremia group, and the risk factors for mortality and developing pneumogenic CRAB bacteremia were analyzed. RESULTS: After patient recruitment, 164 cases were in the bacteremia group, and 519 cases were in the non-bacteremia group. The bacteremia group had 22.4 percentage of increase in-hospital mortality than the non-bacteremia group (68.3% vs 45.9%, P < 0.001). Multivariate analysis showed bacteremia was an independent risk factor for in-hospital mortality (aHR = 2.399, P < 0.001). A long time-interval between ICU admission and pneumonia onset was an independent risk factor for developing bacteremia (aOR = 1.040, P = < 0.001). Spearman's rank correlation analysis indicated a high correlation between the days from ICU admission to pneumonia onset and the days of ventilator use before pneumonia onset (correlation coefficient (ρ) = 0.777). CONCLUSIONS: In patients with CRAB nosocomial pneumonia, bacteremia increased the in-hospital mortality, and a longer interval from ICU admission to pneumonia onset was an independent risk factor for developing bacteremia, which was highly associated with the use of mechanical ventilation.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteremia , Carbapenems , Hospital Mortality , Intensive Care Units , Humans , Retrospective Studies , Male , Bacteremia/microbiology , Bacteremia/epidemiology , Bacteremia/mortality , Female , Acinetobacter baumannii/drug effects , Risk Factors , Acinetobacter Infections/mortality , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Middle Aged , Aged , Carbapenems/therapeutic use , Carbapenems/pharmacology , Anti-Bacterial Agents/therapeutic use , Healthcare-Associated Pneumonia/microbiology , Healthcare-Associated Pneumonia/epidemiology , Healthcare-Associated Pneumonia/mortality , Cross Infection/microbiology , Cross Infection/epidemiology
15.
Cureus ; 16(4): e58660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38774172

ABSTRACT

Background Carbapenem-resistant Acinetobacter baumannii (CRAB) are difficult to eradicate from the environment and are virtually immune to all antibiotics. Consequently, CRAB may culminate in severe outbreaks and fatal infections among people attending hospitals and nursing homes. Salvadora persica has been used as an herbal remedy and chewing sticks for dental cleansing. Evaluating S. persica's efficacy against CRAB may provide an alternative approach to treating CRAB infections in healthcare environments, considering its traditional application in dental hygiene. Employing S. persica as an herbal remedy could be a part of a more sustainable approach to control CRAB infections. Aim To investigate the phytochemical composition of S. persica and evaluate its antimicrobial properties. Materials and methods The roots were extracted by Soxhlet apparatus using n-hexane, chloroform, and methanol. Each extract was analyzed using gas chromatography-mass spectrometry (GCMS) and characterized using WN908.L and National Institute of Standards and Technology (NIST) libraries. The antimicrobial activity of each extract against CRAB was evaluated using a broth microdilution assay to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results The GCMS analysis of different solvent extracts of S. persica roots showed the presence of various phytochemical compounds such as steroids, phenolic compounds, fatty acids, alcohols, terpenoids, and vitamin E. Both chloroform and hexane extracts showed the most effective antimicrobial activity with a MIC value of 3.13 mg/mL and an MBC value of 12.50 mg/mL, respectively. Benzoic acid was the major phytochemical compound identified from S. persica extract. N-hexane, chloroform, and methanol extracts exhibited maximum antimicrobial activity due to the presence of active compounds in them. Conclusion Chloroform and hexane extracts showed the most potent antibacterial activities against CRAB.

16.
J Hosp Infect ; 149: 26-35, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705476

ABSTRACT

BACKGROUND: The environmental surveillance of air grilles in clinical areas has not been systematically analysed. METHODS: Samples were collected from frequently touched items (N = 529), air supply (N = 295) and exhaust (N = 184) grilles in six medical and 11 surgical wards for the cultures of multi-drug-resistant organisms (MDROs): meticillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenemase-producing Enterobacterales (CPE), and isolates were selected for whole-genome sequencing (WGS). The contamination rates were correlated with the colonization pressures of the respective MDROs. RESULTS: From 3rd October to 21st November 2023, 9.8% (99/1008) of the samples tested positive, with MRSA (24.2%, 24/99), CRAB (59.6%, 59/99) and CPE (2.0%, 2/99), being the only detected MDROs. The contamination rate in air exhaust grilles (26.6%, 49/184) was significantly higher than in air supply grilles (5.8%, 17/295; P<0.001). The contamination rate of air exhaust grilles with any MDRO in acute medical wards (73.7%, 14/19) was significantly higher than in surgical wards (12.5%, 4/32; P<0.001). However, there was no difference in the contamination rate of air exhaust grilles between those located inside and outside the cohort cubicles for MDROs (27.1%, 13/48 vs 28.8%, 30/104; P=0.823). Nevertheless, the weekly CRAB colonization pressure showed a significant correlation with the overall environmental contamination rate (r = 0.878; 95% confidence interval (CI): 0.136-0.986; P=0.004), as well as with the contamination rate in air supply grilles (r = 0.960; 95% CI: 0.375-0.999; P<0.001) and air exhaust grilles (r = 0.850; 95% CI: 0.401-0.980; P=0.008). WGS demonstrated clonal relatedness of isolates collected from patients and air exhaust grilles. CONCLUSIONS: Air grilles may serve as MDRO reservoirs. Cohort nursing in open cubicles may not completely prevent MDRO transmission through air dispersal, prompting the consideration of future hospital design.


Subject(s)
Acinetobacter baumannii , Air Microbiology , Drug Resistance, Multiple, Bacterial , Methicillin-Resistant Staphylococcus aureus , Humans , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Whole Genome Sequencing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenems/pharmacology
17.
Front Public Health ; 12: 1385118, 2024.
Article in English | MEDLINE | ID: mdl-38784576

ABSTRACT

Background: This study aimed to explore the risk factors for failed treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia (CRAB-VAP) with tigecycline and to establish a predictive model to predict the incidence of failed treatment and the prognosis of CRAB-VAP. Methods: A total of 189 CRAB-VAP patients were included in the safety analysis set from two Grade 3 A national-level hospitals between 1 January 2022 and 31 December 2022. The risk factors for failed treatment with CRAB-VAP were identified using univariate analysis, multivariate logistic analysis, and an independent nomogram to show the results. Results: Of the 189 patients, 106 (56.1%) patients were in the successful treatment group, and 83 (43.9%) patients were in the failed treatment group. The multivariate logistic model analysis showed that age (OR = 1.04, 95% CI: 1.02, 1.07, p = 0.001), yes. of hypoproteinemia (OR = 2.43, 95% CI: 1.20, 4.90, p = 0.013), the daily dose of 200 mg (OR = 2.31, 95% CI: 1.07, 5.00, p = 0.034), yes. of medication within 14 days prior to surgical intervention (OR = 2.98, 95% CI: 1.19, 7.44, p = 0.019), and no. of microbial clearance (OR = 0.31, 95% CI: 0.14, 0.70, p = 0.005) were risk factors for the failure of tigecycline treatment. Receiver operating characteristic (ROC) analysis showed that the AUC area of the prediction model was 0.745 (0.675-0.815), and the decision curve analysis (DCA) showed that the model was effective in clinical practice. Conclusion: Age, hypoproteinemia, daily dose, medication within 14 days prior to surgical intervention, and microbial clearance are all significant risk factors for failed treatment with CRAB-VAP, with the nomogram model indicating that high age was the most important factor. Because the failure rate of CRAB-VAP treatment with tigecycline was high, this prediction model can help doctors correct or avoid risk factors during clinical treatment.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Carbapenems , Pneumonia, Ventilator-Associated , Tigecycline , Treatment Failure , Humans , Acinetobacter baumannii/drug effects , Risk Factors , Male , Female , Middle Aged , Carbapenems/therapeutic use , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Anti-Bacterial Agents/therapeutic use , Aged , Logistic Models , Acinetobacter Infections/drug therapy , Tigecycline/therapeutic use , Adult , Retrospective Studies , China , Drug Resistance, Bacterial
18.
Antimicrob Agents Chemother ; : e0044824, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742904

ABSTRACT

Phage-antibiotic combination treatment is a novel noteworthy drug delivery method in anti-infection. In the current study, we have isolated a new phage, pB23, against carbapenem-resistant Acinetobacter baumannii 2023. Synergistic antibacterial effect between phage pB23 and meropenem combination could be more stable, using moderate doses of phage (multiplicity of infection ranging from 0.1 to 1,000) based on results of in vitro antibacterial activity. Phage pB23 and meropenem combination could effectively clear mature biofilms and prevent biofilm formation of carbapenem-resistant Acinetobacter baumannii in vitro. Phage pB23 and meropenem combination also has good synergistic antibacterial effects against carbapenem-resistant Acinetobacter baumannii in different growth phases under static culture conditions. The pig skin explant model shows that phage pB23 and meropenem combination has a synergistic effect to remove bacteria from wounds ex vivo. Phage pB23 and meropenem combination also exhibited a synergistic antibacterial effect in vivo using a zebrafish infection mode. The potential promotion of phage proliferation by meropenem and the sensitivity recovery of phage-resistant bacteria to meropenem might elucidate the mechanism of the synergistic antimicrobial activity. In summary, our study illustrates that phage pB23 and meropenem combination could produce synergistic antibacterial effects against carbapenem-resistant Acinetobacter baumannii under static growth conditions. This study also demonstrates that phage-antibiotic combination will become an effective strategy to enhance antibacterial activity of individual drug and provide a new idea of the drug development for the treatment of infections due to carbapenem-resistant Acinetobacter baumannii and other multidrug-resistant bacteria.

19.
Int J Antimicrob Agents ; 64(1): 107190, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697579

ABSTRACT

BACKGROUND: Severe infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) have been reported increasingly over the past few years. Many in-vivo and in-vitro studies have suggested a possible role of intravenous fosfomycin for the treatment of CRAB infections. METHODS: This multi-centre, retrospective study included patients treated with intravenous fosfomycin for severe infections caused by CRAB admitted consecutively to four hospitals in Italy from December 2017 to December 2022. The primary goal of the study was to evaluate the risk factors associated with 30-day mortality in the study population. A propensity score matched analysis was added to the model. RESULTS: One hundred and two patients with severe infections caused by CRAB treated with an intravenous fosfomycin-containing regimen were enrolled in this study. Ventilator-associated pneumonia (VAP) was diagnosed in 59% of patients, primary bacteraemia in 22% of patients, and central-venous-catheter-related infection in 16% of patients. All patients were treated with a regimen containing intravenous fosfomycin, mainly in combination with cefiderocol (n=54), colistin (n=48) or ampicillin/sulbactam (n=18). Forty-eight (47%) patients died within 30 days. Fifty-eight (57%) patients experienced clinical therapeutic failure. Cox regression analysis showed that diabetes, primary bacteraemia and a colistin-containing regimen were independently associated with 30-day mortality, whereas adequate source control of infection, early 24-h active in-vitro therapy, and a cefiderocol-containing regimen were associated with survival. A colistin-based regimen, A. baumannii colonization and primary bacteraemia were independently associated with clinical failure. Conversely, adequate source control of infection, a cefiderocol-containing regimen, and early 24-h active in-vitro therapy were associated with clinical success. CONCLUSIONS: Different antibiotic regimens containing fosfomycin in combination can be used for treatment of severe infections caused by CRAB.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Administration, Intravenous , Anti-Bacterial Agents , Carbapenems , Fosfomycin , Pneumonia, Ventilator-Associated , Sulbactam , Humans , Fosfomycin/therapeutic use , Fosfomycin/administration & dosage , Acinetobacter baumannii/drug effects , Acinetobacter Infections/drug therapy , Acinetobacter Infections/mortality , Acinetobacter Infections/microbiology , Retrospective Studies , Male , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Aged , Middle Aged , Carbapenems/therapeutic use , Sulbactam/therapeutic use , Sulbactam/administration & dosage , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/mortality , Colistin/therapeutic use , Colistin/administration & dosage , Italy , Ampicillin/therapeutic use , Ampicillin/administration & dosage , Cefiderocol , Aged, 80 and over , Drug Therapy, Combination , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/mortality , Drug Resistance, Multiple, Bacterial
20.
Front Microbiol ; 15: 1351722, 2024.
Article in English | MEDLINE | ID: mdl-38572236

ABSTRACT

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) and its emerging evolutionary branch toward hypervirulence have been neglected in pregnancy. Methods: From September 2020 to August 2021, an active surveillance culture program encompassed 138 randomly selected pregnant women, with five subjected to sample collection at two different time points. The clinical characterization was explored through statistical analysis. Whole-genome sequencing, a Galleria mellonella infection model, and a global database were used to investigate the genetic characterization, pathogenicity, evolutionary history, and phylogenetic relationships of the isolates. Results: Of the 41 CRAB isolates obtained, they were divided into four ClustersRS and an orphan pattern. ClusterRS 1 (n = 31), with eight complex types in pregnancy, was also the dominant ClusterRS globally, followed by ClusterRS 13 (n = 5), identified as hypervirulent KL49 CRAB, exhibiting phylogeographical specificity to Guangdong. A maternal carriage CRAB rate of 26.09% (36/138) was revealed, with half of the isolates representing novel complex types, prominently including CT3071, as the first KL7 isolates identified in Shenzhen. Both KL49 and KL7 isolates were most commonly found in the same participant, suggesting potential intraspecific competition as a possible reason for CRAB infection without carriers during pregnancy. The independent risk factors for carriers were revealed for the first time, including advanced maternal age, gestational diabetes mellitus, and Group B Streptococcus infection. Conclusion: The significant carriage rate and enhanced virulence of CRAB during pregnancy emphasize the imperative for routine surveillance to forestall dissemination within this high-risk group, especially in Guangdong for ClusterRS 13 isolates.

SELECTION OF CITATIONS
SEARCH DETAIL
...