Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.651
Filter
1.
J Infect ; 89(2): 106216, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964511

ABSTRACT

OBJECTIVES: We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS: We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS: Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION: FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.


Subject(s)
Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Humans , Male , Female , Middle Aged , Prospective Studies , Adult , Feces/microbiology , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/therapy , Enterobacteriaceae Infections/microbiology , beta-Lactamases/genetics , Carrier State/microbiology , Carrier State/therapy , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Biodiversity
2.
Antimicrob Agents Chemother ; : e0068724, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023262

ABSTRACT

Imipenemase (IMP) metallo-ß-lactamases (MBLs) hydrolyze almost all available ß-lactams including carbapenems and are not inhibited by any commercially available ß-lactamase inhibitor. Tebipenem (TP) pivoxil is the first orally available carbapenem and possesses a unique bicyclic azetidine thiazole moiety located at the R2 position. TP has potent in vitro activity against Enterobacterales producing extended-spectrum and/or AmpC ß-lactamases. Thus far, the activity of TP against IMP-producing strains is understudied. To address this knowledge gap, we explored the structure activity relationships of IMP MBLs by investigating whether IMP-6, IMP-10, IMP-25, and IMP-78 [MBLs with expanded hydrolytic activity against meropenem (MEM)] would demonstrate enhanced activity against TP. Most of the Escherichia coli DH10B strains expressing IMP-1 variants displayed a ≥twofold MIC difference between TP and MEM, while those expressing VIM or NDM variants demonstrated comparable MICs. Catalytic efficiency (kcat/KM) values for the TP hydrolysis by IMP-1, IMP-6, IMP-10, IMP-25, and IMP-78 were significantly lower than those obtained for MEM. Molecular dynamic simulations reveal that V67F and S262G substitutions (found in IMP-78) reposition active site loop 3, ASL-3, to better accommodate the bicyclic azetidine thiazole side chain, allowing microbiological/catalytic activity to approach that of comparison MBLs used in this study. These findings suggest that modifying the R2 side chain of carbapenems can significantly impact hydrolytic stability. Furthermore, changes in conformational dynamics due to single amino acid substitutions should be used to inform drug design of novel carbapenems.

4.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952349

ABSTRACT

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Male , Azabicyclo Compounds/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/therapeutic use , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
5.
Diagn Microbiol Infect Dis ; 110(1): 116358, 2024 May 17.
Article in English | MEDLINE | ID: mdl-39002448

ABSTRACT

The VITEK®2 AES ß-lactam phenotypes of 488 Enterobacterales from North and Latin America generated by the VITEK®2 were compared to the resistance genotypes provided by whole genome sequencing (WGS). The AES provided phenotypic reports for 447 (91.6 %) isolates, including isolates harbouring carbapenemases (195; 43.6 %), ESBLs (103; 23.0 %) and transferable AmpCs (tAmpC; 28; 6.3 %) genes, as well as wildtype isolates (WT; 121; 27.1 %). Overall, the AES report was accurate for 433/447 (96.9 %) isolates. The AES accurately reported carbapenemase, ESBL, and tAmpC phenotypes for 93.7 %, 93.7 %, and 98.4 % of isolates, respectively, and sensitivity/specificity rates were 96.4 %/91.7 %, 98.1 %/92.4 %, 82.1 %/99.5 %, and 100 %/98.8 %. 14 isolates carrying carbapenemase (7 total; 3 KPC, 2 MBL, 2 OXA-48-like), ESBL (2), and tAmpC-encoding genes (5) were not correctly identified by AES. The AES phenotypic report detected resistance mechanisms among Enterobacterales rapidly and could significantly aid future antimicrobial stewardship initiatives and patient care.

6.
Article in English | MEDLINE | ID: mdl-39004343

ABSTRACT

OBJECTIVE: The aim of this study is to characterize the molecular characteristics of NDM-producing Enterobacterales, which have been on the increase in recent years in Japan, where IMP-producing bacteria are dominant among carbapenemase-producing Enterobacterales. METHODS: We collected 21 strains of NDM-producing Enterobacterales detected between 2015 and 2022 at five hospitals in Tokyo and performed illumina whole genome sequencing. For the seven selected strains, nanopore long-read sequencing was also performed to characterize the plasmids harboring blaNDM. RESULTS: Fourteen strains were Escherichia coli and all carried blaNDM-5. Among these strains, eight and three were sequence type (ST) 410 and ST167, respectively, and both groups of strains were spread clonally in different hospitals. Two strains of Klebsiella pneumoniae ST147 carrying blaNDM-1 were detected in a hospital, and these strains had also spread clonally. The remainder included Enterobacter hormaechei, Klebsiella quasipneumoniae, Citrobacter amalonaticus, and Klebsiella michiganensis. Plasmid analysis revealed that an identical IncX3 plasmid harboring blaNDM-5 was shared among four strains of different bacterial species (E. coli, C. amalonaticus, K. michiganensis, and E. hormaechei) detected at the same hospital. In addition, a Klebsiella quasipneumoniae strain detected at a different hospital also carried an IncX3 plasmid with a similar genetic structure. CONCLUSIONS: Nosocomial spread of multiple multidrug-resistant global clones and transmission of IncX3 plasmids harboring blaNDM-5 among multiple species were detected as the major pathways of spread of NDM-producing Enterobacterales in Tokyo. Early detection of carriers and measures to prevent nosocomial spread are important to prevent further spread of NDM-producing organisms.

7.
Appl Environ Microbiol ; : e0116524, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012101

ABSTRACT

Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of ß-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 ß-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.

8.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961341

ABSTRACT

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , DNA Restriction-Modification Enzymes/genetics , China , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , Humans , Genome, Bacterial/genetics
9.
Antimicrob Resist Infect Control ; 13(1): 70, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961463

ABSTRACT

OBJECTIVES: Genomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment. METHODS: Genomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters. RESULTS: Overall, 15 different STs were found; the predominant ones included ST307 (35, 40.2%), ST512/1519 (15, 17.2%), ST20 (12, 13.8%), and ST101 (7, 8.1%). 33 (37.9%) KPC-Kp strains were noticed to be in five transmission clusters (median number of isolates in each cluster: 5 [3-10]), four of them characterized by intra-hospital transmission. All 87 strains harbored Tn4401a transposon, carrying blaKPC-3 (48, 55.2%), blaKPC-2 (38, 43.7%), and in one case (1.2%) blaKPC-33, the latter gene conferred resistance to ceftazidime/avibactam (CZA). Thirty strains (34.5%) harbored porin mutations; of them, 7 (8.1%) carried multiple Tn4401a copies. These strains were characterized by significantly higher CZA minimum inhibitory concentration compared with strains with no porin mutations or single Tn4401a copy, respectively, even if they did not overcome the resistance breakpoint of 8 ug/mL. Median 2 (IQR:1-2) virulence factors per strain were detected. The lowest number was observed in ST20 compared to the other STs (p<0.001). While ST307 was associated with infection events, a trend associated with colonization events could be observed for ST20. CONCLUSIONS: Integration of genomic, resistance score, and clinical data allowed us to define a relative diversification of KPC-Kp in Northern Italy between 2019 and 2021, characterized by few large transmission chains and rare inter-hospital transmission. Our results also provided initial evidence of correlation between KPC-Kp genomic signatures and higher MIC levels to some antimicrobial agents or colonization/infection status, once again underlining WGS's importance in bacterial surveillance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Hospitals, University , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Italy/epidemiology , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Cross Infection/microbiology , Cross Infection/epidemiology
10.
Infect Drug Resist ; 17: 2719-2732, 2024.
Article in English | MEDLINE | ID: mdl-38974316

ABSTRACT

Introduction: This study aimed to investigate the emergence and characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains that demonstrate resistance to multiple antibiotics, including aminoglycosides and tigecycline, in a Chinese hospital. Methods: A group of ten CRKP strains were collected from the nine patients in a Chinese hospital. Antimicrobial Susceptibility Testing (AST) and phenotypic inhibition assays precisely assess bacterial antibiotic resistance. Real-time quantitative PCR (RT-qPCR) was used to analyze the mRNA levels of efflux pump genes (acrA/acrB and oqxA/oqxB) and the regulatory gene (ramA). The core-genome tree and PFGE patterns were analyzed to assess the clonal and horizontal transfer expansion of the strains. Whole-genome sequencing was performed on a clinical isolate of K. pneumoniae named Kpn20 to identify key resistance genes and antimicrobial resistance islands (ARI). Results: The CRKP strains showed high resistance to carbapenems, aminoglycosides (CLSI, 2024), and tigecycline (EUCAST, 2024). The mRNA expression levels of efflux pump genes and regulatory genes were detected by RT-qPCR. All 10 isolates had significant differences compared to the control group of ATCC13883. The core-genome tree and PFGE patterns revealed five clusters, indicating clonal and horizontal transfer expansion. Three key resistance genes (blaoxa-232, blaCTX-M-15 , and rmtF) were observed in the K. pneumoniae clinical isolate Kpn20. Mobile antibiotic resistance islands were identified containing bla CTX-M-15 and rmtF, with multiple insertion sequences and transposons present. The coexistence of bla oxa-232 and rmtF in a high-risk K. pneumoniae strain was reported. Conjugation assay was utilized to investigate the transferability of bla oxa-232-encoding plasmids horizontally. Conclusion: The study highlights the emergence of ST15-KL112 high-risk CRKP strains with multidrug resistance, including to aminoglycosides and tigecycline. The presence of mobile ARI and clonal and horizontal transfer expansion of strains indicate the threat of transmission of these strains. Future research is needed to assess the prevalence of such isolates and develop effective control measures.

11.
Heliyon ; 10(12): e33368, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027427

ABSTRACT

Background: Carbapenemase-producing Enterobacterales (CPE) represents a significant threat to global health. This study aimed to characterize clinically and molecularly the CPE isolated from rectal swabs of patients in the intensive care units (ICUs) of a tertiary hospital in Cali, Colombia. Methods: This was a cross-sectional observational study. Rectal swabs from patients admitted to the ICUs were collected. Bacterial identification and carbapenemase production were determined using phenotypic and molecular methods. Demographic and clinical data were extracted from electronic medical records. Results: The study included 223 patients. Thirty-six patients (36/223, 16.14 %) were found to be colonized or infected by CPE. Factors such as prolonged stay in the ICU, previous exposure to carbapenem antibiotics, use of invasive procedures, and admission due to trauma were associated with CPE. Klebsiella pneumoniae (52.5 %) was the most prevalent microorganism, and the dominant carbapenemases identified were KPC (57.8 %) and NDM (37.8 %). Conclusion: Distinguishing carbapenemase subtypes can provide crucial insights for controlling dissemination in ICUs in Cali, Colombia.

12.
J Clin Microbiol ; 62(7): e0125523, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38904386

ABSTRACT

Prompt and precise identification of carbapenemase-producing organisms is crucial for guiding clinical antibiotic treatments and limiting transmission. Here, we propose modifying the Blue Carba test (BCT) and Carba NP-direct (CNPd) to identify molecular carbapenemase classes, including dual carbapenemase strains, by adding specific Class A and Class B inhibitors. We tested 171 carbapenemase-producing Gram-negative bacilli strains-21 in Class A (KPC, NMC, SME), 58 in Class B (IMP, VIM, NDM, SPM), and 92 with dual carbapenemase production (KPC+NDM, KPC+IMP, KPC+VIM), all previously positive with BCT or CNPd. We also included 13 carbapenemase non-producers. ß-lactamases were previously characterized by PCR. The improved BCT/CNPd methods detect imipenem hydrolysis from an imipenem-cilastatin solution, using pH indicators and Class A (avibactam) and/or Class B (EDTA) inhibitors. Results were interpreted visually based on color changes. CNPd achieved 99.4% sensitivity and 100% specificity in categorizing carbapenemases, while BCT had 91.8% sensitivity and 100% specificity. Performance varied by carbapenemase classes: both tests classified all Class A-producing strains. For Class B, the CNP test identified 57/58 strains (98.3%), whereas the BCT test, 45/58 strains (77.6%), with non-fermenters posing the greatest detection challenge. For Classes A plus B dual producers, both tests performed exceptionally well, with only one indeterminate strain for the BCT. The statistical comparison showed both methods had similar times to a positive result, with differences based on the carbapenemase class or bacterial group involved. This improved assay rapidly distinguishes major Class A or Class B carbapenemase producers among Gram-negative bacilli, including dual-class combinations, in less than 2 hours. IMPORTANCE: Rapid and accurate identification of carbapenemase-producing organisms is of vital importance in guiding appropriate clinical antibiotic treatments and curbing their transmission. The emergence of negative bacilli carrying multiple carbapenemase combinations during and after the severe acute respiratory syndrome coronavirus 2 pandemic has posed a challenge to the conventional biochemical tests typically used to determine the specific carbapenemase type in the isolated strains. Several initiatives have aimed to enhance colorimetric methods, enabling them to independently identify the presence of Class A or Class B carbapenemases. Notably, no previous efforts have been made to distinguish both classes simultaneously. Additionally, these modifications have struggled to differentiate between carriers of multiple carbapenemases, a common occurrence in many Latin American countries. In this study, we introduced specific Class A and Class B carbapenemase inhibitors into the Blue Carba test (BCT) and Carba NP-direct (CNP) colorimetric assays to identify the type of carbapenemase, even in cases of multiple carbapenemase producers within these classes. These updated assays demonstrated exceptional sensitivity and specificity (≥ 90%) all within a rapid turnaround time of under 2 hours, typically completed in just 45 minutes. These in-house enhancements to the BCT and CNP assays present a rapid, straightforward, and cost-effective approach to determining the primary carbapenemase classes. They could serve as a viable alternative to molecular biology or immuno-chromatography techniques, acting as an initial diagnostic step in the process.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gram-Negative Bacteria , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/analysis , beta-Lactamases/metabolism , Bacterial Proteins/metabolism , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/classification , Humans , Anti-Bacterial Agents/pharmacology , Sensitivity and Specificity , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/diagnosis , Imipenem/pharmacology
13.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38925640

ABSTRACT

Faecal contamination of surface waters has the potential to spread not only pathogenic organisms but also antimicrobial resistant organisms. During the bathing season of 2021, weekly water samples, from six selected coastal bathing locations (n = 93) and their freshwater tributaries (n = 93), in Northern Ireland (UK), were examined for concentrations of faecal indicator bacteria Escherichia coli and intestinal enterococci. Microbial source tracking involved detection of genetic markers from the genus Bacteroides using PCR assays for the general AllBac marker, the human HF8 marker and the ruminant BacR marker for the detection of human, and ruminant sources of faecal contamination. The presence of beta-lactamase genes blaOXA-48, blaKPC, and blaNDM-1 was determined using PCR assays for the investigation of antimicrobial resistance genes that are responsible for lack of efficacy in major broad-spectrum antibiotics. The beta-lactamase gene blaOXA-48 was found in freshwater tributary samples at all six locations. blaOXA-48 was detected in 83% of samples that tested positive for the human marker and 69% of samples that tested positive for the ruminant marker over all six locations. This study suggests a risk of human exposure to antimicrobial resistant bacteria where bathing waters receive at least episodically substantial transfers from such tributaries.


Subject(s)
Bacterial Proteins , Escherichia coli , Feces , Fresh Water , beta-Lactamases , beta-Lactamases/genetics , Northern Ireland , Fresh Water/microbiology , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Humans , Feces/microbiology , Water Microbiology , Enterococcus/genetics , Enterococcus/isolation & purification , Enterococcus/enzymology , Enterococcus/drug effects , Anti-Bacterial Agents/pharmacology , Animals
15.
Infect Drug Resist ; 17: 2541-2554, 2024.
Article in English | MEDLINE | ID: mdl-38933778

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective ß-lactam/ß-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods: The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results: Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 µg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion: Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.

16.
J Water Health ; 22(6): 1053-1063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935456

ABSTRACT

The carbapenem-resistant Enterobacterales (CRE) pose a pressing public health concern. Here, we investigated the frequency of CRE bacteria, carbapenemase-encoding genes, and the molecular epidemiology of carbapenemase-resistant Escherichia coli in wastewater resources and healthy carriers in Iran. Out of 617 Enterobacterales bacteria, 24% were carbapenem-resistant. The prevalence of CRE bacteria in livestock and poultry wastewater at 34% and hospital wastewater at 33% was significantly higher (P ≤ 0.05) than those in healthy carriers and municipal wastewater at 22 and 17%, respectively. The overall colonization rate of CRE in healthy individuals was 22%. Regarding individual Enterobacterales species, the following percentages of isolates were found to be CRE: E. coli (18%), Citrobacter spp. (24%), Klebsiella pneumoniae (28%), Proteus spp. (40%), Enterobacter spp. (25%), Yersinia spp. (17%), Hafnia spp. (31%), Providencia spp. (21%), and Serratia spp. (36%). The blaOXA-48 gene was detected in 97% of CRE isolates, while the blaNDM and blaVIM genes were detected in 24 and 3% of isolates, respectively. The B2 phylogroup was the most prominent group identified in carbapenem-resistant E. coli isolates, accounting for 80% of isolates. High prevalence of CRE with transmissible carbapenemase genes among healthy people and wastewater in Iran underscores the need for assertive measures to prevent further dissemination.


Subject(s)
Carbapenems , Wastewater , Wastewater/microbiology , Iran/epidemiology , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Humans , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Animals
17.
Diagn Microbiol Infect Dis ; 110(1): 116370, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38924837

ABSTRACT

Gram negative bacilli that are carbapenem resistant have emerged and are spreading worldwide. Infections caused by carbapenem resistant isolates posses a significant threat due to their high morbidity and mortality rates. Carbapenemases production by multi-drug resistant pathogens severely restricts treatment choices for illnesses caused by bacteria that are resistant to both carbapenems and majority of ß-lactam antibiotics. Various phenotypic and genotypic methods for identification can distinguish between different classes of carbapenemase and identify pathogens that are resistant to carbapenems. The establishment of a quick, accurate and reliable test for identifying the clinical strains that produce the carbapenemase enzyme is essential for optimum diagnosis of microbial pathogens and management of the global rise in the prevalence of carbapenemase producing bacterial strains. The aim of this review was to summarize the mechanisms of carbapenem resistance and to provide an overview of different carbapenemase detection methods for carbapenem resistant Gram negative bacilli.

18.
Int J Antimicrob Agents ; : 107256, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925228

ABSTRACT

Herein, we investigated decreased susceptibility (DS; MICs 0.25-4 mg/L) and resistance (R; MICs >4 mg/L) to aztreonam-avibactam (ATM-AVI). Contemporary non-replicate clinical isolates of carbapenemase-producing Escherichia coli (n=90) (CP-EC) and ESBL-producing E. coli (n=12) (EP-EC) was used. CP-EC belonged to 25 distinct sequence types (STs) and all EP-EC belonged to ST405. All strains were isolated through 2019-2022 at the Karolinska University Laboratory, Stockholm, Sweden. ATM-AVI MICs were determined with broth microdilution and the EUCAST epidemiological cutoff value of 0.125 mg/L was used to define the wildtype (WT). Whole genome sequences (Illumina) were analyzed for detecting of resistance determinants among WT vs non-WT isolates. Among 102 isolates, 40 (39%) and 62 (61%) were WT and non-WT respectively. Among non-WT isolates 20 were R and 42 were DS. Resistance was observed among 14/47 NDM-producers, 5/43 OXA-48 group producers, and 1/12 EP-EC. DS was observed among 29/47 NDM, 13/43 OXA-48 group, and 3/12 EP-EC. Resistant isolates predominantly belonged to ST405 followed by STs 410, 361, 167, 617, and 1284. Presence of PBP3 inserts (YRIK/YRIN) were observed in 20/20 and presence of CMY-42 in 5/20 resistant isolates. Several mutations in the ftsI (encoding PBP3) and regulatory genes of outer membrane proteins (OmpC and OmpF) and efflux pumps (AcrAB-TolC) were detected. A ≥2-fold reduction in MICs were observed among 20/20 vs 7/20 isolates tested in the presence of the membrane permeabilizer PMBN and efflux inhibitor PAßN, respectively. In conclusion, resistance to ATM-AVI is a result of interplay of various determinants, including target alterations, deactivating enzymes, and decreased permeability.

19.
Am J Infect Control ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925502

ABSTRACT

BACKGROUND: Carbapenem-resistant strains of Pseudomonas aeruginosa (CRPA) have become a major healthcare concern in many countries, against which anti-infective strategies are limited and which require adequate infection control interventions. Knowing the different modes of transmission of CRPA in intensive care units (ICUs) would be helpful to adapt the means of prevention. METHODS: The aim of this retrospective case-control study was conducted between 01/01/2017 and 02/28/2022 to identify the risk factors for the acquisition of CRPA in ICUs. RESULTS: During the study period, 147 patients were included (49 cases and 98 controls). Among the 49 patients, 31 (63%) acquired CRPA in clusters and 18 (37%) sporadically. An univariate analysis showed that five variables were associated with CRPA acquisition including (i) prior antibiotic prescriptions, (ii) admission to rooms 203 and 207, (iii) severity of illness at admission, and (iv) use of mechanical ventilation. Multivariate analysis identified three factors of CRPA acquisition including admission to room 203 (OR = 29.5 [3.52-247.09]), previous antibiotic therapy (OR = 3.44 [1.02 - 11.76]) and severity of condition at admission (OR = 1.02 [1 - 1.04]). CONCLUSION: Our study suggests the role of a contaminated environment in the acquisition of CRPA in the ICU, along with antibiotic use.

20.
Antibiotics (Basel) ; 13(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927201

ABSTRACT

BACKGROUND: Enterobacter cloacae, E. hormaechei and related subspecies remain the most clinically relevant among the Enterobacter cloacae complex (ECC). Carbapenemase-producing ECC strains are increasingly identified in hospital-acquired infections and usually belong to four main multilocus sequence types (MLST STs) named ST114, ST93, ST90 and ST78. Instead, ST182 has been sporadically reported among E. hormaechei strains, and recently, outbreaks of blaNDM-producing ST182 clonal strains have emerged. Herein, we aimed to investigate the presence of ST182 and explore its evolution and modes of blaNDM acquisition. METHODS: A phylogenetic analysis of 646 MLST STs identified among 4685 E. hormaechei whole-genome sequencing (WGS) assemblies deposited in public repositories was performed, as well as an in silico comparative and phylogenomic analyses for 55 WGS assemblies of ST182. blaNDM-harboring contigs were also compared to published plasmid sequences. RESULTS: ST182 E. hormaechei strains were recovered from patients on five continents during 2011-2021. They were divided into three major genomic clusters, comprising a separate clonal complex with six other STs. In 30 out of 55 ST182 WGS assemblies, blaNDM-harboring structures were identified that were similar to the plasmids predominant in Gram-negative bacteria, harboring resistance genes to multiple antibiotic classes and virulence genes. No associations between the genomic clusters and the country/continent of isolation or the presence and the plasmid types of the blaNDM-harboring contigs were observed. CONCLUSIONS: Our findings show that ST182 E. hormaechei strains have been identified in the past decade worldwide; 54.5% of them carried diverse blaNDM genetic structures, suggesting recent acquisition of the blaNDM alleles. Thus, blaNDM-harboring ST182 is an emerging multidrug-resistant and virulent lineage in ECC strains that requires close monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...