Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
PeerJ ; 11: e16431, 2023.
Article in English | MEDLINE | ID: mdl-38111657

ABSTRACT

The destructive and empirical methods commonly used to estimate carbon pools in forests managed timber are time-consuming, expensive and unfeasible at a large scale; satellite images allow evaluations at different scales, reducing time and costs. The objective of this study was to evaluate the tree biomass (TB) and carbon content (CC) through satellite images derived from Sentinel 2 in underutilized stands in southern Mexico. In 2022, 12 circular sites of 400 m2 with four silvicultural treatments (STs) were established in a targeted manner: 1st thinning (T1), free thinning (FT), regeneration cut (RC) and unmanaged area (UA). A tree inventory was carried out, and samples were obtained to determine their TB based on specific gravity and CC through the Walkey and Black method. The satellite image of the study area was downloaded from Sentinel 2 to fit a simple linear model as a function of the Normalized Difference Vegetation Index (10 m pixel-1) showing significance (p ≤ 0.01) and a adjusted R2 = 0.92. Subsequently, the TB and CC (t ha-1) were estimated for each ST and managed area. The total managed area (3,201 ha-1) had 126 t TB ha-1 and 57 t C ha-1. Of the areas with STs, the area with FT showed the highest accumulation of TB (140 t ha-1) and C (63 t ha-1) without showing differences (p > 0.05) with respect to those of the UA, which presented 129 t TB ha-1 and 58 t C ha-1. The satellite images from Sentinel 2 provide reliable estimates of the amounts of TB and CC in the managed stands. Therefore, it can be concluded that an adequate application of STs maintains a balance in the accumulation of tree C.


Subject(s)
Pinus , Quercus , Carbon , Mexico , Forests , Trees
2.
Plants (Basel) ; 10(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34685824

ABSTRACT

Carbon nanotubes play an important role in plant biotechnology due to their effects on the growth and differentiation of cells, tissues, organs, and whole plants. This study aimed to evaluate the effect of multi-walled carbon nanotubes (MWCNTs) during in vitro multiplication of sugarcane (Saccharum spp.) using a temporary immersion system. Morphological characterization of MWCNTs was carried out under a transmission electron microscope. Different concentrations (0, 50, 100, 200 mg L-1) of MWCNTs were added to Murashige and Skoog liquid culture medium in the multiplication stage. At 30 d of culture, number of shoots per explant, shoot length, number of leaves per shoot, total chlorophyll, dry matter percentage, carbon percentage, and macro- and micronutrient content were evaluated. Results showed an increase in the development of sugarcane shoots at concentrations of 100 and 200 mg L-1 MWCNT. Total chlorophyll content increased at concentrations of 50 and 100 mg L-1 MWCNT, whereas macro- and micronutrient content was variable at the different MWCNT concentrations. Results suggest a hormetic effect, characterized by stimulation at low concentrations. In conclusion, the use of low concentrations of MWCNTs had positive effects on development, total chlorophyll, carbon percentage, and macro- and micronutrient (N, Ca, S, Fe, Cu, Zn and Na) contents during in vitro multiplication of sugarcane and may have a potential use in other species of agricultural interest.

3.
Ecology ; 100(8): e02745, 2019 08.
Article in English | MEDLINE | ID: mdl-31032887

ABSTRACT

Although populations are phenotypically diverse, the majority of trait-based studies have focused on examining differences among species. The justification for this broadly applied approach is based on the assumption that differences among species are always greater than within species. This is likely true for local communities, but species are often broadly distributed across a wide range of environments and patterns of intraspecific variation might surpass differences among species. Therefore, an appropriate interpretation of the functional diversity requires an assessment of patterns of trait variation across different ecological scales. In this study, we examine and characterize patterns of leaf trait variation for species that are broadly distributed along an elevational gradient. We focus on seven leaf traits that represent a main axis of functional differentiation in plants reflecting the balance between photosynthetic efficiency, display, and stomatal conductance. We evaluated patterns of trait variance across ecological scales (elevation, species, populations, and individuals) and examined trait covariance at both within species and across species levels, along the elevation gradient. Our results show three key patterns: (1) intraspecific leaf trait variation for broadly distributed species is comparable to the interspecific trait variation, (2) the trait variance structure is highly variable across species, and (3) trait coordination between pairs of leaf traits is evident across species along the gradient, but not always within species. Combined, our results show that trait coordination and covariance are highly idiosyncratic across broadly distributed and co-occurring species, indicating that species may achieve similar functional roles even when exhibiting different phenotypes. This result challenges the traditional paradigm of functional ecology that assumes single trait values as optimal solutions for environments. In conclusion, patterns of trait variation both across and within species should be considered in future studies that assess trade-offs among traits over environmental gradients.


Subject(s)
Plant Leaves , Plants , Ecology , Phenotype , Puerto Rico
4.
Waste Manag ; 49: 3-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26792628

ABSTRACT

State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico-chemical waste composition data was performed to derive value ranges and data distributions for element concentrations (e.g. Cd content) and physical parameters (e.g. heating value). Based on 11,886 individual data entries, median values and percentiles for 47 parameters in 11 individual waste fractions are presented. Exceptional values and publications are identified and discussed. Detailed datasets are attached to this study, allowing further analysis and new applications of the data.


Subject(s)
Family Characteristics , Solid Waste/analysis , Asia , Europe , Food , Metals/analysis , Plastics , South America
5.
Sci. agric ; 73(4): 371-378, 2016. tab, graf
Article in English | VETINDEX | ID: biblio-1497575

ABSTRACT

Humic substances (HS) comprise the passive element in soil organic matter (SOM), and represent one of the soil carbon pools which may be altered by different cover crops and weed control methods. This study aimed to assess HS distribution and characteristics in an experimental coffee crop area subjected to cover crops and cultural, mechanical, and chemical weed control. The study was carried out at Londrina, in the state of Paraná, southern Brazil (23°2130 S; 51°1017 W). In 2008, seven weed control/cover crops were established in a randomized block design between two coffee rows as the main-plot factor per plot and soil sampling depths (0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm) as a split-plot. HS were extracted through alkaline and acid solutions and analyzed by chromic acid wet oxidation and UV-Vis spectroscopy. Chemical attributes presented variations in the topsoil between the field conditions analyzed. Cover crop cutting and coffee tree pruning residues left on the soil surface may have interfered in nutrient cycling and the humification process. Data showed that humic substances comprised about 50 % of SOM. Although different cover crops and weed control methods did not alter humic and fulvic acid carbon content, a possible incidence of condensed aromatic structures at depth increments in fulvic acids was observed, leading to an average decrease of 53 % in the E4/E6 ratio. Humin carbon content increased 25 % in the topsoil, particularly under crop weed-control methods, probably due to high incorporation of recalcitrant structures from coffee tree pruning residues and cover crops.


Subject(s)
Soil Analysis , Coffea , Plant Weeds , Soil , Humic Substances , Spectrum Analysis/veterinary , Soil Characteristics , Chemical Fractionation
6.
Sci. agric. ; 73(4): 371-378, 2016. tab, graf
Article in English | VETINDEX | ID: vti-16046

ABSTRACT

Humic substances (HS) comprise the passive element in soil organic matter (SOM), and represent one of the soil carbon pools which may be altered by different cover crops and weed control methods. This study aimed to assess HS distribution and characteristics in an experimental coffee crop area subjected to cover crops and cultural, mechanical, and chemical weed control. The study was carried out at Londrina, in the state of Paraná, southern Brazil (23°2130 S; 51°1017 W). In 2008, seven weed control/cover crops were established in a randomized block design between two coffee rows as the main-plot factor per plot and soil sampling depths (0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm) as a split-plot. HS were extracted through alkaline and acid solutions and analyzed by chromic acid wet oxidation and UV-Vis spectroscopy. Chemical attributes presented variations in the topsoil between the field conditions analyzed. Cover crop cutting and coffee tree pruning residues left on the soil surface may have interfered in nutrient cycling and the humification process. Data showed that humic substances comprised about 50 % of SOM. Although different cover crops and weed control methods did not alter humic and fulvic acid carbon content, a possible incidence of condensed aromatic structures at depth increments in fulvic acids was observed, leading to an average decrease of 53 % in the E4/E6 ratio. Humin carbon content increased 25 % in the topsoil, particularly under crop weed-control methods, probably due to high incorporation of recalcitrant structures from coffee tree pruning residues and cover crops.(AU)


Subject(s)
Soil , Coffea , Soil Analysis , Soil , Humic Substances , Plant Weeds , Soil Characteristics , Spectrum Analysis/veterinary , Chemical Fractionation
SELECTION OF CITATIONS
SEARCH DETAIL