Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 954: 176642, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362567

ABSTRACT

The lateral transport of dissolved organic carbon (DOC) from land to rivers and oceans is a significant but overlooked component of the global carbon cycle. However, there are still large uncertainties in the magnitude and trend of global DOC export fluxes, as well as their response to environmental change. In this study, several simulations were conducted using a developed land surface model that considered riverine DOC transport and anthropogenic disturbance to investigate the terrestrial DOC loading and riverine DOC export, and to quantify the relative contributions of natural and anthropogenic factors over the past four decades (1981-2016). These factors include climate change, nitrogen deposition, land use change, atmospheric CO2 concentration, anthropogenic water regulation, and fertilizer and manure application. Results showed that the average global annual terrestrial DOC loading was about 432.30 ± 53.59 Tg C yr-1, and rivers exported about 209.73 ± 36.58 Tg C yr-1 to oceans over the past four decades. Simultaneously, a significant increase in terrestrial DOC loading and riverine DOC export fluxes (3.36 Tg C yr-2 and 2.99 Tg Cyr-2, p < 0.01) was found, which increased by 26.88 % and 47.02 %, respectively. According to our factorial analysis, the interannual variability in DOC fluxes in most regions was mainly attributed to climate change and contributed more than 60 % of the long-term increase. In addition, rising atmospheric CO2 and land use change amplified the increase in terrestrial DOC loading, with the area dominated by the two factors expanding from 7.94 % in the 1980s to 23.84 % in the 2010s, and riverine DOC export showed a similar pattern, which may be related to the increased soil DOC sources. Anthropogenic water regulation and nitrogen addition have led to a slight increase in DOC fluxes, which should not be ignored, otherwise carbon fluxes may be underestimated.

2.
Front Plant Sci ; 15: 1412416, 2024.
Article in English | MEDLINE | ID: mdl-39268001

ABSTRACT

Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.

3.
Plants (Basel) ; 12(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050194

ABSTRACT

The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.

4.
Water Res ; 223: 118923, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36001905

ABSTRACT

Broad molecular classification based on stoichiometric ratio relationships has been used extensively to characterize the chemical diversity of aquatic dissolved organic matter (DOM). However, variability in the molecular composition within this classification has remained elusive, thus limiting the interpretation of DOM dynamics, especially with respect to transport versus transformation patterns in response to hydrologic or landscape changes. Here, leveraging high-frequency spatiotemporal sampling during rainfall events at a Critical Zone Observatory project site in Clear Creek, Iowa, we apply a metabolomics-based analysis validated with fragmentation using tandem mass spectrometry to uncover patterns in the molecular features of the DOM composition that were not resolved by classification based on stoichiometric ratios in the chemical formulae. From upstream to downstream sites, beyond the increased aromaticity implied by changes in the stoichiometric ratios, we identified an increased abundance of flavonoids and other phenylpropanoids, two important subgroups of aromatic compounds. The stoichiometric analysis also proposed a localized decline in the abundance of lipid-like compounds, which we attributed specifically to medium-chain and short-chain fatty acids; other lipids such as long-chain fatty acids and sterol lipids remained unchanged. We further determined in-stream molecular transitions and specific compound degradation by capturing changes in the molecular masses of terpenoids, phenylpropanoids, fatty acids, and amino acids. In sum, the metabolomics analysis of the chemical formulae resolved molecular variability imprinted on the stoichiometric DOM composition to implicate key molecular subgroups underlying carbon transport and cycling dynamics in the stream.


Subject(s)
Carbon , Dissolved Organic Matter , Amino Acids , Carbon/analysis , Fatty Acids , Flavonoids , Lipids , Sterols , Terpenes
5.
Sci Total Environ ; 844: 156954, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35760172

ABSTRACT

The production, mobilization and fluvial transport of dissolved organic carbon (DOC) in temperate forests are important components of the carbon cycle that are influenced by ongoing changes in climate. Numerous studies have reported temporal trends in stream water DOC concentrations and have attributed changes in concentrations to climatic and hydrologic variables. Fewer studies have reported trends in concentration-discharge (C-Q) relations for DOC. The goal of this study was to detect and quantify changes in DOC concentration and slope of the C-Q relation from 1991 to 2018 in an intensively sampled forested research watershed in northern Vermont. Stream water DOC concentration and slope of the C-Q relation increased over time as did precipitation, stream discharge, and air temperature. The increases in DOC concentration and slope of the C-Q were substantially greater in the summer and fall (autumn) than in winter and spring. The largest increases in the magnitude of C-Q slopes occurred in the December, October and September. The increases in slope of the C-Q relation in summer and fall were larger for baseflow than for storm flow. The increases in DOC concentration and slope of the C-Q relation over time may be related to increasing temperature, longer growing seasons, and associated increases in production and microbial decomposition of soil organic matter that supplies DOC for mobilization to streams. The results suggest that in a changing climate, C-Q relations may not necessarily be stationary and therefore analyses that attempt to estimate future DOC concentrations and loads should consider potentially changing C-Q relations over time.


Subject(s)
Carbon , Dissolved Organic Matter , Carbon/analysis , Forests , Rivers , Vermont , Water/analysis
6.
Front Plant Sci ; 13: 787837, 2022.
Article in English | MEDLINE | ID: mdl-35251074

ABSTRACT

Maintaining phloem transport under water stress is expected to be crucial to whole-plant drought tolerance, but the traits that benefit phloem function under drought are poorly understood. Nearly half of surveyed angiosperm species, including important crops, use sucrose transporter proteins to actively load sugar into the phloem. Plants can alter transporter abundance in response to stress, providing a potential mechanism for active-loading species to closely regulate phloem loading rates to avoid drought-induced reductions or failures in phloem transport. We developed an integrated xylem-phloem-stomatal model to test this hypothesis by quantifying the joint impacts of transporter kinetics, phloem anatomy, and plant water status on sucrose export to sinks. We parameterized the model with phloem hydraulic resistances and sucrose transporter kinetic parameters compiled from the literature, and simulated loading regulation by allowing loading rates to decline exponentially with phloem pressure to prevent excessive sucrose concentrations from inducing viscosity limitations. In the absence of loading regulation, where loading rates were independent of phloem pressure, most resistance values produced unrealistic phloem pressures owing to viscosity effects, even under well-watered conditions. Conversely, pressure-regulated loading helped to control viscosity buildup and improved export to sinks for both lower and higher resistant phloem pathways, while maintaining realistic phloem pressures. Regulation also allowed for rapid loading and export in wet conditions while maintaining export and viable phloem pressures during drought. Therefore, we expect feedbacks between phloem pressure and loading to be critical to carbon transport in active-loading species, especially under drought, and for transporter kinetics to be strongly coordinated with phloem architecture and plant water status. This work provides an important and underexplored physiological framework to understand the ecophysiology of phloem transport under drought and to enhance the genetic engineering of crop plants.

7.
Environ Sci Technol ; 56(4): 2738-2746, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35072465

ABSTRACT

Sediment interfaces in alluvial aquifers have a disproportionately large influence on biogeochemical activity and, therefore, on groundwater quality. Previous work showed that exports from fine-grained, organic-rich zones sustain reducing conditions in downstream coarse-grained aquifers beyond the influence of reduced aqueous products alone. Here, we show that sustained anaerobic activity can be attributed to the export of organic carbon, including live microorganisms, from fine-grained zones. We used a dual-domain column system with ferrihydrite-coated sand and embedded reduced, fine-grained lenses from Slate River (Crested Butte, CO) and Wind River (Riverton, WY) floodplains. After 50 d of groundwater flow, 8.8 ± 0.7% and 14.8 ± 3.1% of the total organic carbon exported from the Slate and Wind River lenses, respectively, had accumulated in the sand downstream. Furthermore, higher concentrations of dissolved Fe(II) and lower concentrations of dissolved organic carbon in the sand compared to total aqueous transport from the lenses suggest that Fe(II) was produced in situ by microbial oxidation of organic carbon coupled to iron reduction. This was further supported by an elevated abundance of 16S rRNA and iron-reducing (gltA) gene copies. These findings suggest that organic carbon transport across interfaces contributes to downstream biogeochemical reactions in natural alluvial aquifers.


Subject(s)
Groundwater , Water Pollutants, Chemical , Carbon , Ferrous Compounds , Groundwater/chemistry , Iron , RNA, Ribosomal, 16S , Sand , Water Pollutants, Chemical/analysis
8.
AoB Plants ; 13(4): plab028, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34234934

ABSTRACT

Seasonal changes in climate are accompanied by shifts in carbon allocation and phenological changes in woody angiosperms, the timing of which can have broad implications for species distributions, interactions and ecosystem processes. During critical transitions from autumn to winter and winter to spring, physiological and anatomical changes within the phloem could impose a physical limit on the ability of woody angiosperms to transport carbon and signals. There is a paucity of the literature that addresses tree (floral or foliar) phenology, seasonal phloem anatomy and seasonal phloem physiology together, so our knowledge of how carbon transport could fluctuate seasonally, especially in temperate climates is limited. We review phloem phenology focussing on how sieve element anatomy and phloem sap flow could affect carbon availability throughout the year with a focus on winter. To investigate whether flow is possible in the winter, we construct a simple model of phloem sap flow and investigate how changes to the sap concentration, pressure gradient and sieve plate pores could influence flow during the winter. Our model suggests that phloem transport in some species could occur year-round, even in winter, but current methods for measuring all the parameters surrounding phloem sap flow make it difficult to test this hypothesis. We highlight outstanding questions that remain about phloem functionality in the winter and emphasize the need for new methods to address gaps in our knowledge about phloem function.

9.
J Adv Model Earth Syst ; 12(11): e2020MS002121, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33381276

ABSTRACT

Global water erosion strongly affects the terrestrial carbon balance. However, this process is currently ignored by most global land surface models (LSMs) that are used to project the responses of terrestrial carbon storage to climate and land use changes. One of the main obstacles to implement erosion processes in LSMs is the high spatial resolution needed to accurately represent the effect of topography on soil erosion and sediment delivery to rivers. In this study, we present an upscaling scheme for including erosion-induced lateral soil organic carbon (SOC) movements into the ORCHIDEE LSM. This upscaling scheme integrates information from high-resolution (3″) topographic and soil erodibility data into a LSM forcing file at 0.5° spatial resolution. Evaluation of our model for the Rhine catchment indicates that it reproduces well the observed spatial and temporal (both seasonal and interannual) variations in river runoff and the sediment delivery from uplands to the river network. Although the average annual lateral SOC flux from uplands to the Rhine River network only amounts to 0.5% of the annual net primary production and 0.01% of the total SOC stock in the whole catchment, SOC loss caused by soil erosion over a long period (e.g., thousands of years) has the potential to cause a 12% reduction in the simulated equilibrium SOC stocks. Overall, this study presents a promising approach for including the erosion-induced lateral carbon flux from the land to aquatic systems into LSMs and highlights the important role of erosion processes in the terrestrial carbon balance.

10.
Glob Chang Biol ; 26(10): 5899-5913, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32686242

ABSTRACT

The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet-dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣFaq ). Here, we determined the NLCB of a lowland catchment (~140 km2 ) in tropical Australia over 2 years by evaluating net terrestrial productivity (NEP), fire-related C emissions and ΣFaq (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334 Mg C km-2  year-1 ), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (-56 Mg C km-2  year-1 ) and ΣFaq (-28 Mg C km-2  year-1 ) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣFaq significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events-up to 39% of annual ΣFaq was exported in one event. We hypothesize that wetter and hotter conditions in the wet-dry tropics in the future will increase ΣFaq and fire emissions, potentially further reducing the current C sink in the region. More long-term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet-dry tropics where our result indicating a significant C sink may not hold.


Subject(s)
Carbon , Ecosystem , Australia , Carbon/analysis , Carbon Dioxide/analysis , Grassland
11.
J Exp Biol ; 223(Pt 13)2020 07 10.
Article in English | MEDLINE | ID: mdl-32487669

ABSTRACT

Carbonic anhydrases (CA; EC 4.2.1.1) play a vital role in dissolved inorganic carbon (DIC) transport to photosynthetic microalgae residing in symbiotic cnidarians. The temperate sea anemone Anthopleura elegantissima can occur in three symbiotic states: hosting Breviolum muscatinei (brown), hosting Elliptochloris marina (green) or without algal symbionts (aposymbiotic). This provides a basis for A. elegantissima to be a model for detailed studies of the role of CA in DIC transport. This study investigated the effects of symbiosis, body size and light on CA activity and expression, and suggests that A. elegantissima has a heterotrophy-dominated trophic strategy. We identified putative A. elegantissima CA genes and performed phylogenetic analyses to infer subcellular localization in anemones. We performed experiments on field-collected anemones to compare: (1) CA activity and expression from anemones in different symbiotic states, (2) CA activity in brown anemones as a function of size, and (3) CA activity in anemones of different symbiotic states that were exposed to different light intensities. CA activity in brown anemones was highest, whereas activity in green and aposymbiotic anemones was low. Several CAs had expression patterns that mirrored activity, while another had expression that was inversely correlated with activity, suggesting that symbionts may induce different DIC transport pathways. Finally, CA activity was inversely correlated with anemone size. Our results suggest that the observed CA activity and expression patterns are affected not only by symbiosis, but also by other factors in the host physiology, including trophic strategy as it relates to body size and cellular pH homeostasis.


Subject(s)
Carbonic Anhydrases , Dinoflagellida , Sea Anemones , Animals , Carbonic Anhydrases/genetics , Phylogeny , Sea Anemones/genetics , Symbiosis
12.
mSystems ; 5(2)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32345736

ABSTRACT

Iron is an essential micronutrient for all microbial growth in the marine environment, and in heterotrophic bacteria, iron is tightly linked to carbon metabolism due to its central role as a cofactor in enzymes of the respiratory chain. Here, we present the iron- and carbon-regulated transcriptomes of a representative marine copiotroph, Alteromonas macleodii ATCC 27126, and characterize its cellular transport mechanisms. ATCC 27126 has distinct metabolic responses to iron and carbon limitation and, accordingly, uses distinct sets of TonB-dependent transporters for the acquisition of iron and carbon. These distinct sets of TonB-dependent transporters were of a similar number, indicating that the diversity of carbon and iron substrates available to ATCC 27126 is of a similar scale. For the first time in a marine bacterium, we have also identified six characteristic inner membrane permeases for the transport of siderophores via an ATPase-independent mechanism. An examination of the distribution of specific TonB-dependent transporters in 31 genomes across the genus Alteromonas points to niche specialization in transport capacity, particularly for iron. We conclude that the substrate-specific bioavailability of both iron and carbon in the marine environment will likely be a key control on the processing of organic matter through the microbial loop.IMPORTANCE As the major facilitators of the turnover of organic matter in the marine environment, the ability of heterotrophic bacteria to acquire specific compounds within the diverse range of dissolved organic matter will affect the regeneration of essential nutrients such as iron and carbon. TonB-dependent transporters are a prevalent cellular tool in Gram-negative bacteria that allow a relatively high-molecular-weight fraction of organic matter to be directly accessed. However, these transporters are not well characterized in marine bacteria, limiting our understanding of the flow of specific substrates through the marine microbial loop. Here, we characterize the TonB-dependent transporters responsible for iron and carbon acquisition in a representative marine copiotroph and examine their distribution across the genus Alteromonas We provide evidence that substrate-specific bioavailability is niche specific, particularly for iron complexes, indicating that transport capacity may serve as a significant control on microbial community dynamics and the resultant cycling of organic matter.

13.
Sci Total Environ ; 718: 137281, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32092512

ABSTRACT

Dissolved organic carbon (DOC) in surface waters directly influences the speciation, transport, and fate of heavy metals, as well as the partitioning of organic contaminants. However, the lack of process-based watershed-scale models for simulating carbon cycling and transport has limited the effective watershed management to control organic carbon fluxes to source waters and throughout the river systems. Here, a process-based in-stream organic carbon (OC) module was developed, coupled with the physically process-based Soil and Water Assessment Tool (SWAT), and linked with its existing soil carbon module to simulate dynamics of both particulate organic carbon (POC) and DOC. The advanced model simulates a large spectrum of OC processes from landscapes to stream networks throughout the watersheds. In-stream organic carbon processes related to POC and DOC as state variables are modeled in the water column, and the transformations between different carbon species and interactions between OC with algae are considered. The module's ability to simulate total organic carbon (TOC) loads was assessed, and the monthly and seasonal variations were captured over 14 years. Simulations for TOC loads suggested that spring snowmelt and summer rainfall runoff events are the main driving forces behind TOC export in the watershed. The parameter sensitivity analysis and dynamic reaction rate simulated in the streams suggested that TOC dynamics in the study area are controlled by both landscape and in-stream processes. The spatiotemporal analysis of the simulated TOC load showed that 55.8% of total terrestrial OC exports into the streams are removed due to in-stream POC settling and DOC mineralization, confirming the necessity of integrating terrestrial and aquatic OC processes for process understanding and for modelling and management of water quality at the watershed scale. The developed OC module is a potentially effective tool for simulating the OC cycle at the watershed scale and can be applied further to water treatment plans and watershed management.

14.
Am J Bot ; 106(1): 113-122, 2019 01.
Article in English | MEDLINE | ID: mdl-30629737

ABSTRACT

PREMISE OF THE STUDY: New growth in the spring requires resource mobilization in the vascular system at a time when xylem and phloem function are often reduced in seasonally cold climates. As a result, the timing of leaf out and/or flowering could depend on when the vascular system resumes normal function in the spring. This study investigated whether flowering time is influenced by vascular phenology in plants that flower precociously before they have leaves. METHODS: Flower, leaf, and vascular phenology were monitored in pairs of precocious and non-precocious congeners. Differences in resource allocation were quantified by measuring bud dry mass and water content throughout the year, floral hydration was modelled, and a girdling treatment completed on branches in the field. KEY RESULTS: Precocious flowering species invested more in floral buds the year before flowering than did their non-precocious congeners, thus mobilizing less water in the spring, which allowed flowering before new vessel maturation. CONCLUSIONS: A shift in the timing of resource allocation in precocious flowering plants allowed them to flower before the production of mature vessels and minimized the significance of seasonal changes in vascular function to their flowering phenology. The low investment required to complete floral development in the spring when the plant vascular system is often compromised could explain why flowers can emerge before leaf out.


Subject(s)
Flowers/physiology , Seasons , Trees/physiology , Xylem/physiology , Fruit/physiology , Plant Leaves/physiology , Trees/anatomy & histology , Water/physiology
15.
Plant Cell Environ ; 42(1): 270-284, 2019 01.
Article in English | MEDLINE | ID: mdl-29859016

ABSTRACT

Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.


Subject(s)
Carbon/metabolism , Host Microbial Interactions , Medicago truncatula/metabolism , Mycorrhizae/metabolism , Symbiosis , Host Microbial Interactions/physiology , Medicago truncatula/microbiology , Medicago truncatula/physiology , Membrane Transport Proteins/metabolism , Mycorrhizae/physiology , Nitrogen/metabolism , Nitrogenase/metabolism , Phosphorus/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Transcriptome
16.
J Environ Manage ; 223: 57-73, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29894942

ABSTRACT

CO2 emissions from urban traffic are a major concern in an era of increasing ecological disequilibrium. Adding to the problem net CO2 emissions in urban settings are worsened due to the decline of bio-productive areas in many cities. This decline exacerbates the lack of capacity to sequestrate CO2 at the micro and meso-scales resulting in increased temperatures and decreased air quality within city boundaries. Various transportation and environmental strategies have been implemented to address traffic related CO2 emissions, however current literature identifies difficulties in pinpointing these critical areas of maximal net emissions in urban transport networks. This study attempts to close this gap in the literature by creating a new lay-person friendly index that combines CO2 emissions from vehicles and the bio-capacity of specific traffic zones to identify these areas at the meso-scale within four ranges of values with the lowest index values representing the highest net CO2 levels. The study used traffic volume, fuel types, and vehicular travel distance to estimate CO2 emissions at major links in Dhaka, Bangladesh's capital city's transportation network. Additionally, using remote-sensing tools, adjacent bio-productive areas were identified and their bio-capacity for CO2 sequestration estimated. The bio-productive areas were correlated with each traffic zone under study resulting in an Emission Bio-Capacity index (EBI) value estimate for each traffic node. Among the ten studied nodes in Dhaka City, nine had very low EBI values, correlating to very high CO2 emissions and low bio-capacity. As a result, the study considered these areas unsustainable as traffic nodes going forward. Key reasons for unsustainability included increasing use of motorized traffic, absence of optimized signal systems, inadequate public transit options, disincentives for fuel free transport (FFT), and a decline in bio-productive areas.


Subject(s)
Carbon Dioxide/analysis , Transportation , Vehicle Emissions , Air Pollutants , Air Pollution , Bangladesh , Cities , Environmental Monitoring
17.
Plant Cell Environ ; 40(2): 203-215, 2017 02.
Article in English | MEDLINE | ID: mdl-27861995

ABSTRACT

Stomata represent one resistor in a series of resistances for carbon and water exchange between the leaf and the atmosphere; the remaining resistors occurring within the leaf, commonly represented as mesophyll conductance to CO2 , gm , and leaf hydraulic conductance, kLeaf . Recent studies have proposed that gm and kLeaf may be coordinated across species because of shared pathways. We assessed the correlation between gm and kLeaf within cotton, under growth CO2 partial pressure and irradiance treatments and also with short-term variation in irradiance and humidity. gm was estimated using two isotopic techniques that allowed partitioning of total gm (Δ13 C-gm ) into cell wall plus plasma membrane conductance (Δ18 O-gm ) and chloroplast membrane conductance (gcm ). A weak correlation was found between Δ13 C-gm and kLeaf only when measured under growth conditions. However, Δ18 O-gm was related to kLeaf under both short-term environmental variation and growth conditions. Partitioning gm showed that gcm was not affected by short-term changes in irradiance or correlated with kLeaf , but was strongly reduced at high growth CO2 partial pressure. Thus, simultaneous measurements of gm , kLeaf and gcm suggest independent regulation of carbon and water transport across the chloroplast membrane with limited coordinated regulation across the cell wall and plasma membrane.


Subject(s)
Mesophyll Cells/physiology , Plant Leaves/physiology , Water/physiology , Carbon Dioxide/pharmacology , Carbon Isotopes , Diffusion , Gossypium/anatomy & histology , Gossypium/drug effects , Gossypium/growth & development , Light , Mesophyll Cells/drug effects , Monte Carlo Method , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Species Specificity
18.
Tree Physiol ; 35(10): 1075-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26377876

ABSTRACT

Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C transport in the phloem.


Subject(s)
Carbon/metabolism , Phloem/metabolism , Pinus sylvestris/metabolism , Plant Stems/metabolism , Biological Transport , Plant Roots/metabolism , Pressure , Trees/metabolism
19.
Plant Cell Environ ; 38(8): 1543-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25546629

ABSTRACT

Despite the success of breeding programmes focused on increasing fruit size, relatively little is known about the anatomical and physiological changes required to increase reproductive allocation. To address this gap in knowledge, we compared fruit/ovary anatomy, vascular structure and phloem transport of two varieties of giant pumpkins, and their smaller fruited progenitor under controlled environmental conditions. We also modelled carbon transport into the fruit of competitively grown plants using data collected in the field. There was no evidence that changes in leaf area or photosynthetic capacity impacted fruit size. Instead, giant varieties differed in their ovary morphology and contained more phloem on a cross-sectional area basis in their petioles and pedicels than the ancestral variety. These results suggest that sink activity is important in determining fruit size and that giant pumpkins have an enhanced capacity to transport carbon. The strong connection observed between carbon fixation, phloem structure and fruit growth in field-grown plants indicates that breeding for large fruit has led to changes throughout the carbon transport system that could have important implications for how we think about phloem transport velocity and carbon allocation.


Subject(s)
Cucurbita/growth & development , Phloem/physiology , Selective Breeding , Biological Transport , Carbon/metabolism , Cucurbita/physiology , Flowers/cytology , Flowers/growth & development , Fruit/physiology , Models, Biological , Organ Size , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Xylem/physiology
20.
Photosynth Res ; 126(1): 99-109, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25399051

ABSTRACT

Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.


Subject(s)
Carbon/metabolism , Computational Biology/methods , Cyanobacteria/physiology , Genetic Engineering/methods , Biological Transport , Carbon Cycle , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Light , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL