Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.467
Filter
1.
Physiol Rep ; 12(13): e16110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981849

ABSTRACT

Pediatric obstructive sleep apnea poses a significant health risk, with potential long-term consequences on cardiovascular health. This study explores the dichotomous nature of neonatal cardiac response to chronic intermittent hypoxia (CIH) between males and females, aiming to fill a critical knowledge gap in the understanding of sex-specific cardiovascular consequences of sleep apnea in early life. Neonates were exposed to CIH until p28 and underwent comprehensive in vivo physiological assessments, including whole-body plethysmography, treadmill stress-tests, and echocardiography. Results indicated that male CIH rats weighed 13.7% less than age-matched control males (p = 0.0365), while females exhibited a mild yet significant increased respiratory drive during sleep (93.94 ± 0.84 vs. 95.31 ± 0.81;p = 0.02). Transcriptomic analysis of left ventricular tissue revealed a substantial sex-based difference in the cardiac response to CIH, with males demonstrating a more pronounced alteration in gene expression compared to females (5986 vs. 3174 genes). The dysregulated miRNAs in males target metabolic genes, potentially predisposing the heart to altered metabolism and substrate utilization. Furthermore, CIH in males was associated with thinner left ventricular walls and dysregulation of genes involved in the cardiac action potential, possibly predisposing males to CIH-related arrhythmia. These findings emphasize the importance of considering sex-specific responses in understanding the cardiovascular implications of pediatric sleep apnea.


Subject(s)
Animals, Newborn , Sex Characteristics , Transcriptome , Male , Female , Animals , Rats , Sleep Apnea Syndromes/genetics , Sleep Apnea Syndromes/metabolism , Sleep Apnea Syndromes/physiopathology , Rats, Sprague-Dawley , Hypoxia/metabolism , Hypoxia/genetics , Hypoxia/physiopathology , MicroRNAs/genetics , MicroRNAs/metabolism , Sex Factors , Heart/physiopathology
2.
Sci Rep ; 14(1): 15133, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956194

ABSTRACT

The goal of this study was to evaluate the intensity of autophagy and ubiquitin-dependent proteolysis processes occurring in myocardium of left ventricle (LV) in subsequent stages of pulmonary arterial hypertension (PAH) to determine mechanisms responsible for LV mass loss in a monocrotaline-induced PAH rat model. LV myocardium samples collected from 32 Wistar rats were analyzed in an early PAH group (n = 8), controls time-paired (n = 8), an end-stage PAH group (n = 8), and their controls (n = 8). Samples were subjected to histological analyses with immunofluorescence staining, autophagy assessment by western blotting, and evaluation of ubiquitin-dependent proteolysis in the LV by immunoprecipitation of ubiquitinated proteins. Echocardiographic, hemodynamic, and heart morphometric parameters were assessed regularly throughout the experiment. Considerable morphological and hemodynamic remodeling of the LV was observed over the course of PAH. The end-stage PAH was associated with significantly impaired LV systolic function and a decrease in LV mass. The LC3B-II expression in the LV was significantly higher in the end-stage PAH group compared to the early PAH group (p = 0.040). The measured LC3B-II/LC3B-I ratios in the end-stage PAH group were significantly elevated compared to the controls (p = 0.039). Immunofluorescence staining showed a significant increase in the abundance of LC3 puncta in the end-stage PAH group compared to the matched controls. There were no statistically significant differences in the levels of expression of all ubiquitinated proteins when comparing both PAH groups and matched controls. Autophagy may be considered as the mechanism behind the LV mass loss at the end stage of PAH.


Subject(s)
Autophagy , Heart Ventricles , Proteolysis , Pulmonary Arterial Hypertension , Rats, Wistar , Ubiquitin , Animals , Ubiquitin/metabolism , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Rats , Male , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Echocardiography , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Ventricular Remodeling
3.
Neuropeptides ; 107: 102453, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959559

ABSTRACT

INTRODUCTION: This study explored how acute sleep deprivation (ASD) before myocardial ischemia influences oxytocin release from paraventricular (PVN) neurons and its correlation with sympathetic nervous system (SNS) activity post-acute sleep loss, impacting subsequent left ventricular (LV) remodeling following myocardial infarction (MI). METHODS: The study was conducted in two phases: induction of ASD, inducing MI, blood sampling, euthanizing animals and collecting their heart and brain for histological and gene expression evaluations. The animals in first and second phase were euthanized 24 h and 14 days after MI, respectively. RESULTS: Pre-MI ASD, accompanied by increased serum epinephrine levels within 24 h of MI, upregulated oxytocin and cFos expression in the PVN. Also, pre-MI ASD resulted in decreased serum PAB levels 14 days post-MI (P < 0.001). While notable echocardiographic changes were seen in MI versus sham groups, ASD demonstrated protective effects. This was evidenced by reduced infarct size, elevated TIMP1, MMP2, and MMP9 in the LV of SD + MI animals versus MI alone (P < 0.05). Additionally, histological analysis showed reduced LV fibrosis in pre-MI ASD subjects (P < 0.05). CONCLUSION: Our study supports the notion that activation of oxytocin neurons within the PVN subsequent to ASD interacts with autonomic centers in the central nervous system. This enhanced sympathetic outflow to the heart prior to MI triggers a preconditioning response, thereby mediating cardioprotection through decreased oxidative stress biomarkers and regulated extracellular matrix (ECM) turnover.

4.
Placenta ; 154: 129-136, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38971073

ABSTRACT

INTRODUCTION: Cardiac remodeling is defined as cellular interstitial changes that lead dysfunction of the heart after injury. Placental growth factor (PlGF), a member of the VEGF family, has been reported to regulate cardiac hypertrophy in hemodynamic state. We therefore analyze the function of PlGF during cardiac remodeling using cardiac cells and fibroblasts, under Angiotensin II (AngII) stimulation. METHODS: PlGF overexpressed mouse embryonic fibroblasts derived from C57BL/6 mice, were made by deficient retrovirus vector, designated as C57/PlGF. Only retrovirus vector introduced C57 cells (C57/EV) were used as control. After AngII stimulation, wound scratching assay and MTT proliferation assay with or without p38 MAPK inhibitor, SB205580 were performed in retrovirally-introduced C57 cells. Reactive oxygen species (ROS) production, NF-kB activation, IL-6 and TNF-α production were also measured. Then we assessed AngII-induced cell proliferation of mouse cardiac fibroblasts (CFs) and rat primary cardiomyocytes incubating with C57/PlGF conditioned-medium. RESULTS: The PlGF production in C57/PlGF were confirmed by ELISA (1093.48 ± 3.5 pg/ml, ±SE). AngII-induced cell migration, proliferation and H2O2 production were increased in C57/PlGF compared with C57/EV. SB205580 inhibited the AngII-induced cell proliferation in C57/PlGF. In C57/PlGF cells, NF-kB activation was higher, followed by up-regulation of IL-6 and TNF-α production. CFs and cardiomyocytes proliferation increased when stimulated with C57/PlGF conditioned-medium. DISCUSSION: The activation of fibroblast is stimulated by PlGF signaling via p38 MAPK/NF-kB pathway accompanied by elevation of ROS and inflammatory response. Furthermore, these signals stimulate the activation of CFs and cardiomyocytes, indicating that high circulating level of PlGF have a potential to regulate cardiac remodeling.

5.
Article in English | MEDLINE | ID: mdl-38981605

ABSTRACT

Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved LV function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI, and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.

6.
Int J Cardiol ; : 132316, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977222

ABSTRACT

BACKGROUND: The aim of this study was to develop an animal model to investigate whether prolonged intensive endurance exercise induces RV remodeling, taking into account the involvement of Wnt/ß-catenin signaling. METHODS: Four-week-old male Wistar rats (100 to 125 g) were assigned to four groups (n = 8/group): 1) sixteen weeks of intensive (36 m/min) exercise (INT), 2) twelve weeks of the intensive exercise followed by four weeks of moderate intensity (18 m/min) exercise (INT + MOD), 3) twelve weeks of the intensive exercise followed by four weeks of detraining (INT + DT), and 4) sedentary rats (SED). The exercise protocols were performed five days a week for one h/day. Echocardiography, real-time PCR, western blotting, and histological staining were performed at the end of week sixteen. RESULTS: INT rats developed concentric hypertrophy without diastolic dysfunction compared to SED (p = 0.006) and INT + DT (p = 0.035). Wnt1, ß-catenin and CyclinD1 proteins in the training groups were significantly higher than SED rats (p < 0.001). Interestingly, INT rats had higher protein levels than INT + DT and INT + MOD (p < 0.001), with higher gene expression compared to SED rats (p < 0.05). There was also a significant increase in collagen deposition in INT rats compared to SED (p = 0.046) and INT + DT (p = 0.034). Furthermore, INT + MOD and INT + DT rats did not show any adverse structural, functional, or histological changes. CONCLUSIONS: Long-term intensive endurance training seems to be associated with increased collagen deposition and wall thickness in the RV through Wnt/ß-catenin signaling (which is concentration dependent), without changes in diastolic function. CLINICAL PERSPECTIVE: Over the past decades, there has been an ongoing debate about whether the structural and functional adaptations of the cardiovascular system in trained endurance athletes are benign physiological responses to training or potentially pathological changes related to disease. While the adaptations of the left heart are well-documented, the remodeling of the right heart remains a subject of discussion. To gain insights into the ability of sustained high-intensity exercise to cause adverse right ventricular (RV) remodeling, we conducted an experimental study in which male rats were trained to run vigorously for 1 h daily over a 16-week period and compared them to a parallel group of sedentary control rats. Our findings revealed that intense long-term exercise induced morphological changes along with fibrosis affecting the RV. These fibrotic changes were a result of the 16-week vigorous exercise training regimen. If these results are confirmed in humans, they suggest that prolonged high-intensity endurance exercise training may lead to adverse cardiac remodeling. Our findings have important potential implications for the assessment of cardiac remodeling in individuals engaged in high-level exercise training.

7.
Int J Med Sci ; 21(9): 1718-1729, 2024.
Article in English | MEDLINE | ID: mdl-39006833

ABSTRACT

Isoproterenol (ISO) administration is a well-established model for inducing myocardial injury, replicating key features of human myocardial infarction (MI). The ensuing inflammatory response plays a pivotal role in the progression of adverse cardiac remodeling, characterized by myocardial dysfunction, fibrosis, and hypertrophy. The Mst1/Hippo signaling pathway, a critical regulator of cellular processes, has emerged as a potential therapeutic target in cardiovascular diseases. This study investigates the role of Mst1 in ISO-induced myocardial injury and explores its underlying mechanisms. Our findings demonstrate that Mst1 ablation in cardiomyocytes attenuates ISO-induced cardiac dysfunction, preserving cardiomyocyte viability and function. Mechanistically, Mst1 deletion inhibits cardiomyocyte apoptosis, oxidative stress, and calcium overload, key contributors to myocardial injury. Furthermore, Mst1 ablation mitigates endoplasmic reticulum (ER) stress and mitochondrial fission, both of which are implicated in ISO-mediated cardiac damage. Additionally, Mst1 plays a crucial role in modulating the inflammatory response following ISO treatment, as its deletion suppresses pro-inflammatory cytokine expression and neutrophil infiltration. To further investigate the molecular mechanisms underlying ISO-induced myocardial injury, we conducted a bioinformatics analysis using the GSE207581 dataset. GO and KEGG pathway enrichment analyses revealed significant enrichment of genes associated with DNA damage response, DNA repair, protein ubiquitination, chromatin organization, autophagy, cell cycle, mTOR signaling, FoxO signaling, ubiquitin-mediated proteolysis, and nucleocytoplasmic transport. These findings underscore the significance of Mst1 in ISO-induced myocardial injury and highlight its potential as a therapeutic target for mitigating adverse cardiac remodeling. Further investigation into the intricate mechanisms of Mst1 signaling may pave the way for novel therapeutic interventions for myocardial infarction and heart failure.


Subject(s)
Hippo Signaling Pathway , Isoproterenol , Myocardial Infarction , Myocytes, Cardiac , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Isoproterenol/adverse effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Humans , Myocardial Infarction/pathology , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Ventricular Remodeling/drug effects , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Disease Models, Animal , Proto-Oncogene Proteins , Hepatocyte Growth Factor
8.
J Cardiothorac Surg ; 19(1): 411, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956670

ABSTRACT

BACKGROUND: Tricuspid regurgitation (TR) is a common valvular heart disease worldwide, and current guidelines for TR treatment are relatively conservative, as well as with detrimental outcomes. Restoration of sinus rhythm was reported to improve the TR severity in those TR patients with atrial fibrillation (AF). However, relevant research was limited. The aim of this meta-analysis was to evaluate the clinical outcomes of restoration of sinus rhythm in TR patients with AF. METHODS: In this study, PubMed, Web of Science, and Scopus databases were searched for study enrollment until July 2023. This study was designed under the guidance of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. These studies containing the patient's baseline characteristics, surgical procedure, and at least one of the clinical outcomes were included. The primary endpoint was TR grade during follow-up after restoration of sinus rhythm. RESULTS: Out of 1074 records, 6 were enrolled. Restoration of sinus rhythm is associated with a reduction of TR severity (TR grade, odds ratio 0.11, 95% confidence interval (CI): 0.01 to 1.28, P = 0.08, I2 = 83%; TR area, mean difference (MD) -2.19 cm2, 95% CI: -4.17 to -0.21 cm2, P = 0.03, I2 = 96%). Additionally, remolding of right heart with a significant reduction of tricuspid valve annulus diameter (MD -0.36 cm, 95%CI: -0.47 to -0.26 cm, P < 0.00001, I2 = 29%) and right atrium volume index (MD -11.10 mL/m2, 95%CI: -16.81 to -5.39 mL/m2, P = 0.0001, I2 = 79%) was observed during follow-up. CONCLUSIONS: In conclusion, rhythm-control therapy could reduce TR severity in AF patients with TR and is associated with right heart remodeling.


Subject(s)
Atrial Fibrillation , Tricuspid Valve Insufficiency , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Humans , Tricuspid Valve Insufficiency/surgery , Tricuspid Valve Insufficiency/physiopathology , Heart Rate/physiology
9.
Cureus ; 16(5): e60504, 2024 May.
Article in English | MEDLINE | ID: mdl-38883085

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) represents the most prevalent cardiac arrhythmia globally, with a significant burden on mortality and morbidity. While rhythm control strategies, particularly electrical cardioversion (EC), have gained traction in recent years, the precise impact of sinus rhythm (SR) restoration on cardiac reverse remodeling remains a subject of debate. METHODS: In this study, 23 AF patients underwent elective EC. AF diagnosis was made via ECG by a cardiologist, and candidates for cardioversion were selected by an electrophysiologist. Transthoracic echocardiography (TTE) by utilizing two-dimensional, three-dimensional, and tissue Doppler imaging modalities was performed before cardioversion. Patients who maintained SR after six months underwent a second TTE evaluation. RESULTS: SR was restored successfully in all 23 patients and 15 patients (65.2%) maintained SR after six months. SR group had significantly lower baseline cardiac output (CO) and indexed left ventricular end-systolic volume (LVESVi), and better European Heart Rhythm Association (EHRA) scores after six months. Within the SR group, patients exhibited significant changes in mitral regurgitation, tricuspid regurgitation, EHRA score, LVESVi, stroke volume, left ventricle ejection fraction, left ventricle global longitudinal strain, indexed minimum left atrial volume, left atrial emptying fraction, and left and right atrial diameters. Reduced CO was associated with AF recurrence. Receiver operating curve analysis revealed that CO value can predict six-month AF recurrence with a cut-off point of 2.3. CONCLUSION: Our study underscores the beneficial effects of SR restoration on cardiac parameters in AF patients post EC. Notably, CO value emerged as a predictor of AF recurrence, emphasizing the importance of comprehensive assessments for predicting long-term outcomes.

10.
Physiol Rep ; 12(11): e16108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872461

ABSTRACT

ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-ß-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.


Subject(s)
Fibroblasts , Animals , Male , Mice , Fibroblasts/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain/metabolism , Myocardium/metabolism , Myocardium/cytology , Mitogen-Activated Protein Kinase 6/metabolism , Mitogen-Activated Protein Kinase 6/genetics , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Cells, Cultured , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Myocytes, Cardiac/metabolism
11.
J Mol Med (Berl) ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937302

ABSTRACT

The global incidence and prevalence of arrhythmias are continuously increasing. However, the precise mechanisms of underlying arrhythmogenesis and the optimal measures for effective treatment remain incompletely understood. The inducible form of heme oxygenase, known as heme oxygenase-1 (HO-1), is recognized as a potent antioxidant molecule capable of exerting anti-inflammatory and anti-apoptotic effects. Recent research indicates that HO-1 plays a role in preventing arrhythmias by mitigating cardiac remodeling, including electrical remodeling, ion remodeling, and structural remodeling. This review aimed to consolidate current knowledge regarding the involvement of HO-1 in arrhythmias and elucidate its underlying mechanisms of action.

12.
Adv Exp Med Biol ; 1441: 991-1019, 2024.
Article in English | MEDLINE | ID: mdl-38884766

ABSTRACT

Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.


Subject(s)
Cardiomyopathies , Disease Models, Animal , Myocytes, Cardiac , Signal Transduction , Animals , Humans , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction/genetics
13.
Biomedicines ; 12(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927368

ABSTRACT

Although there is a link between obstructive sleep apnea (OSA) and atrial fibrillation (AF) and numerous investigations have examined the mechanism of AF development in OSA patients, which includes cardiac remodeling, inflammation, and gap junction-related conduction disorder, there is limited information regarding the differences between the sexes. This study analyzes the impact of sex differences on the expression of cardiac remodeling, inflammatory cytokines, and gap junctions in patients with OSA and AF. A total of 154 individuals diagnosed with sleep-related breathing disorders (SRBDs) were enrolled in the study and underwent polysomnography and echocardiography. Significant OSA was defined as an apnea-hypopnea index (AHI) of ≥15 per hour. Exosomes were purified from the plasma of all SRBD patients and incubated in HL-1 cells to investigate their effects on inflammatory cytokines and GJA1 expression. The differences in cardiac remodeling and expression of these biomarkers in both sexes were analyzed. Of the 154 enrolled patients, 110 patients were male and 44 patients were female. The LA sizes and E/e' ratios of male OSA patients with concomitant AF were greater than those of control participants and those without AF (all p < 0.05). Meanwhile, female OSA patients with AF had a lower left ventricular ejection fraction than those OSA patients without AF and control subjects (p < 0.05). Regarding the expression of inflammatory cytokines and GJA1, the mRNA expression levels of GJA1 were lower and those of IL-1ß were higher in those male OSA patients with AF than in those male OSA patients without AF and control subjects (p < 0.05). By contrast, mRNA expression levels of HIF-1α were higher in those female OSA patients with and without AF than in control subjects (p < 0.05). In conclusion, our study revealed sex-specific differences in the risk factors and biomarkers associated with AF development in patients with OSA.

14.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927607

ABSTRACT

Cardiac remodeling and ventricular pacing represent intertwined phenomena with profound implications for cardiovascular health and therapeutic interventions. This review explores the intricate relationship between cardiac remodeling and ventricular pacing, spanning from the molecular underpinnings to biomechanical alterations. Beginning with an examination of genetic predispositions and cellular signaling pathways, we delve into the mechanisms driving myocardial structural changes and electrical remodeling in response to pacing stimuli. Insights into the dynamic interplay between pacing strategies and adaptive or maladaptive remodeling processes are synthesized, shedding light on the clinical implications for patients with various cardiovascular pathologies. By bridging the gap between basic science discoveries and clinical translation, this review aims to provide a comprehensive understanding of cardiac remodeling in the context of ventricular pacing, paving the way for future advancements in cardiovascular care.


Subject(s)
Ventricular Remodeling , Humans , Ventricular Remodeling/genetics , Animals , Heart Ventricles/physiopathology , Cardiac Pacing, Artificial/methods
15.
Int J Cardiol ; 410: 132239, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852858

ABSTRACT

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are anti-hyperglycemic drugs and have been proven to have cardiovascular protective effects for patients with heart failure regardless of their diabetes status. However, the benefit of SGLT2i following myocardial infarction (MI) remains incompletely established. This review aimed to investigate the impact of SGLT2i on NT-proBNP levels and structural changes post-MI. METHOD: Medline, ClinicalTrial.gov, Scopus, and Directory of open-access journals were searched to retrieve the relevant articles. Eligible studies were randomized clinical trials that assessed NT-proBNP and cardiac structural changes in patients who received SGLT2i compared to placebo following MI. Two reviewers independently screened articles, extracted data, and assessed study quality. RESULT: Four studies were included in this review, including patients with and without diabetes. While two studies showed no marked decrease from the baseline in NT-proBNP levels between the SGLT2i group and the control group, two studies reported a substantial reduction. The meta-analysis included three of these studies, with a total of 238 participants. The meta-analysis did not find a statistically significant drop in NT-proBNP levels post-MI in the SGLT2 inhibitors group compared to placebo (pooled SMD = 0.16, 95% CI 0.57-0.26, P 0.45). Furthermore, different echocardiographic parameters were reported in the included trials, yet no meta-analysis could be conducted to assess the influence of SGLT2i on cardiac remodeling post-MI. CONCLUSION: SGLT2i did not result in a statistically significant reduction of NT-proBNP level subsequent to myocardial infarction. A knowledge gap exists regarding the impact of these agents on cardiac remodeling post-MI. Future high-quality clinical trials are needed to provide more robust evidence.


Subject(s)
Myocardial Infarction , Natriuretic Peptide, Brain , Peptide Fragments , Sodium-Glucose Transporter 2 Inhibitors , Humans , Natriuretic Peptide, Brain/blood , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Peptide Fragments/blood , Myocardial Infarction/drug therapy , Myocardial Infarction/blood , Randomized Controlled Trials as Topic/methods , Biomarkers/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Treatment Outcome
16.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880546

ABSTRACT

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Subject(s)
Hydrogen Sulfide , Myocytes, Cardiac , Sulfides , Ventricular Remodeling , Animals , Myocytes, Cardiac/metabolism , Sulfides/metabolism , Sulfides/pharmacology , Hydrogen Sulfide/metabolism , Cells, Cultured , Adenosine Triphosphate/metabolism , Rats , Atrophy , Cardiomegaly/metabolism , Cardiomegaly/pathology , Heart Failure/metabolism , Heart Failure/pathology , Animals, Newborn , Rats, Sprague-Dawley
17.
Redox Biol ; 74: 103223, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851078

ABSTRACT

Ongoing inflammation in the heart is positively correlated with adverse remodeling, characterized by elevated levels of cytokines that stimulate activation of cardiac fibroblasts. It was found that CaMKIIδ response to Ang II or TAC triggers the accumulation of ROS in cardiomyocytes, which subsequently stimulates NF-κB/NLRP3 and leads to an increase in IL-6, IL-1ß, and IL-18. This is an important causative factor in the occurrence of adverse remodeling in heart failure. Sweroside is a biologically active natural iridoids extracted from Lonicerae Japonicae Flos. It shows potent anti-inflammatory and antioxidant activity in various cardiovascular diseases. In this study, we found that sweroside inhibited ROS-mediated NF-κB/NLRP3 in Ang II-treated cardiomyocytes by directly binding to CaMKIIδ. Knockdown of CaMKⅡδ abrogated the effect of sweroside regulation on NF-κB/NLRP3 in cardiomyocytes. AAV-CaMKⅡδ induced high expression of CaMKⅡδ in the myocardium of TAC/Ang II-mice, and the inhibitory effect of sweroside on TAC/Ang Ⅱ-induced elevation of NF-κB/NLRP3 was impeded. Sweroside showed significant inhibitory effects on CaMKIIδ/NF-κB/NLRP3 in cardiomyocytes from TAC/Ang Ⅱ-induced mice. This would be able to mitigate the adverse events of myocardial remodeling and contractile dysfunction at 8 weeks after the onset of the inflammatory response. Taken together, our findings have revealed the direct protein targets and molecular mechanisms by which sweroside improves heart failure, thereby supporting the further development of sweroside as a therapeutic agent for heart failure.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Heart Failure , Myocytes, Cardiac , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , NF-kappa B/metabolism , Heart Failure/metabolism , Heart Failure/drug therapy , Heart Failure/etiology , Reactive Oxygen Species/metabolism , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Signal Transduction/drug effects , Male , Disease Models, Animal
18.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892398

ABSTRACT

Myocardial infarction activates an intense fibro-inflammatory reaction that is essential for cardiac remodeling and heart failure (HF). Bioactive peptide galanin plays a critical role in regulating cardiovascular homeostasis; however, its specific functional relevance in post-infarction fibro-inflammatory reprogramming remains obscure. Here, we show that galanin coordinates the fibro-inflammatory trajectory and mitochondrial integrity in post-infarction reperfusion injury. Aberrant deposition of collagen was associated with a marked increase in CD68-positive macrophage infiltration in cardiac tissue in mice subjected to myocardial ischemia/reperfusion (I/R) for 14 days compared to sham controls. Furthermore, we found that the myocardial expression level of a specific marker of M2 macrophages, CD206, was significantly down-regulated in I/R-challenged mice. In contrast, galanin treatment started during the reperfusion phase blunted the fibro-inflammatory responses and promoted the expression of CD206 in I/R-remodeled hearts. In addition, we found that the anti-apoptotic and anti-hypertrophic effects of galanin were associated with the preservation of mitochondrial integrity and promotion of mitochondrial biogenesis. These findings depict galanin as a key arbitrator of fibro-inflammatory responses to cardiac I/R injury and offer a promising therapeutic trajectory for the treatment of post-infarct cardiovascular complications.


Subject(s)
Galanin , Macrophages , Myocardial Reperfusion Injury , Animals , Galanin/metabolism , Galanin/pharmacology , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Macrophages/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mitochondria/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface/metabolism , Inflammation/metabolism , Inflammation/pathology , Mannose Receptor , Lectins, C-Type/metabolism , Myocardium/metabolism , Myocardium/pathology , Mannose-Binding Lectins/metabolism , Disease Models, Animal , Apoptosis
19.
Front Pharmacol ; 15: 1402782, 2024.
Article in English | MEDLINE | ID: mdl-38835659

ABSTRACT

Background: Left bundle branch (LBB) pacing could achieve cardiac resynchronization therapy (CRT) in patients who cannot be resynchronized via the placement of the left ventricle (LV) lead into the coronary sinus. LBB pacing could improve cardiovascular outcomes in heart failure (HF) patients with LBB block who are affected by type 2 diabetes mellitus (T2DM). Study hypothesis: LBB pacing could increase the number of CRT responders and lead to the best clinical outcomes in HF patients with T2DM, inducing cardiac remodeling and improving left ventricle ejection fraction (LVEF) via microRNA (miR) modulation. Methods: In a multicenter observational study, we enrolled 334 HF patients with LBB block and an indication to receive LBB pacing for CRT. In these patients, we evaluated the CRT responder rate, clinical outcomes, and miR expression at 1 year of follow-up. Results: At 1 year of follow-up, we had 223 responders (66.8%), 132 hospitalizations for HF (39.5%), 24 cardiac deaths (7.2%), and 37 all-cause deaths (11.1%), with a higher rate of HF hospitalizations (77 (69.4%) vs 55 (24.7%), p < 0.05), and cardiac deaths (13 (11.7% vs 11 (4.9%), p < 0.05) in non-responders vs responders. At the end of follow-up, we found the lowest expression of miR-26, miR-29, miR-30, miR-92, and miR-145 in LBB-pacing non-responders vs responders (p < 0.05), and a direct correlation between miR-30 (0.340, [0.833-1.915]; p 0.001), the 6-minute-walking test (6MWT; 0.168, [0.008-0.060]; p 0.011), angiotensin-receptor-neprilysin inhibitors (ARNI; 0.157, [0.183-4.877]; p 0.035), sodium-glucose-transporter-2 inhibitors (0.245, [2.242-7.283]; p 0.001), and LVEF improvements. C reactive protein (CRP) inversely correlated with LVEF improvement (-0.220, [-(0.066-0.263)]; p 0.001). ARNI (1.373, CI 95% [1.007-1.872], p 0.045), miR-30 (2.713, CI 95% [1.543-4.769], p 0.001), and 6MWT (1.288, CI 95% [1.084-1.998], p 0.001) were predictors of LBB pacing responders at 1 year of follow-up. Conclusion: LBB-pacing responders evidenced miR modulation, which was linked to significant improvement of the cardiac pump. Specifically, miR-30 was linked to cardiac pump improvement and predicted responders at 1 year of follow-up in patients with T2DM.

20.
Bioinformation ; 20(4): 305-313, 2024.
Article in English | MEDLINE | ID: mdl-38854759

ABSTRACT

Cardiovascular disease (CVD) is one of the main causes of death in Saudi Arabia. Cardiac remodeling plays a critical role in the pathophysiology of heart failure. Major focus of our study was to identify crucial genes involved in the pathological remodeling of the heart caused by pressure overload. We utilized various in-silico tools to analyze and interpret microarray data obtained from the Gene Expression Omnibus (GEO) database (GSE120739), including GEO2R analysis, Metascape analysis, WebGestalt analysis, and IPA (Ingenuity pathway analysis). Our findings indicate that certain genes, including Cartilage Oligomeric Matrix Protein (COMP), collagen type VIII alpha 1 chain (COL8A1) and Lysyl Oxidase (LOX) under the influence caused by knockdown of KDM3A, were down regulated by the extracellular matrix pathway. Moreover, genes, such as Acyl-CoA Thioesterase 1 (ACOT1) were up regulated by the fatty acid metabolism pathway. Overexpression of lysine-specific demethylase 3A (KDM3A) leads to the up regulation of fibrosis-related genes COMP, COL8A1, and LOX and the down regulation of ACOT1, result in enhanced fibrosis and heart failure. Our results suggest that COMP, COL8A1, LOX, and ACOT1 warrant further investigation in the development of cardiac fibrosis and as potential biomarkers for causing heart failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...