Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
EBioMedicine ; 103: 105125, 2024 May.
Article in English | MEDLINE | ID: mdl-38640834

ABSTRACT

We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.


Subject(s)
Genetic Therapy , Humans , Genetic Therapy/methods , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Heart Diseases/therapy , Heart Diseases/genetics , Cell- and Tissue-Based Therapy/methods , Gene Editing , Cardiology/methods , Stem Cell Transplantation/methods
2.
Heliyon ; 9(7): e18243, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539315

ABSTRACT

Cardiomyocytes can be readily derived from human induced pluripotent stem cell (hiPSC) lines, yet its efficacy varies across different batches of the same and different hiPSC lines. To unravel the inconsistencies of in vitro cardiac differentiation, we utilized single cell transcriptomics on hiPSCs undergoing cardiac differentiation and identified cardiac and extra-cardiac lineages throughout differentiation. We further identified APLNR as a surface marker for in vitro cardiac progenitors and immunomagnetically isolated them. Differentiation of isolated in vitro APLNR+ cardiac progenitors derived from multiple hiPSC lines resulted in predominantly cardiomyocytes accompanied with cardiac mesenchyme. Transcriptomic analysis of differentiating in vitro APLNR+ cardiac progenitors revealed transient expression of cardiac progenitor markers before further commitment into cardiomyocyte and cardiac mesenchyme. Analysis of in vivo human and mouse embryo single cell transcriptomic datasets have identified APLNR expression in early cardiac progenitors of multiple lineages. This platform enables generation of in vitro cardiac progenitors from multiple hiPSC lines without genetic manipulation, which has potential applications in studying cardiac development, disease modelling and cardiac regeneration.

4.
J Cell Physiol ; 237(3): 1804-1817, 2022 03.
Article in English | MEDLINE | ID: mdl-34812500

ABSTRACT

Cardiomyopathy is an irreparable loss and novel strategies are needed to induce resident cardiac progenitor cell (CPC) proliferation in situ to enhance the possibility of cardiac regeneration. Here, we sought to identify the potential roles of glycogen synthase kinase-3ß (GSK-3ß), a critical regulator of cell proliferation and differentiation, in CPC proliferation post-myocardial infarction (MI). Cardiomyocyte-specific conditional GSK-3ß knockout (cKO) and littermate control mice were employed and challenged with MI. Though cardiac left ventricular chamber dimension and contractile functions were comparable at 2 weeks post-MI, cKO mice displayed significantly preserved LV chamber and contractile function versus control mice at 4 weeks post-MI. Consistent with protective phenotypes, an increased percentage of c-kit-positive cells (KPCs) were observed in the cKO hearts at 4 and 6 weeks post-MI which was accompanied by increased levels of cardiomyocyte proliferation. Further analysis revealed that the observed increased number of KPCs in the ischemic cKO hearts was mainly from a cardiac lineage, as the majority of identified KPCs were negative for the hematopoietic lineage marker, CD45. Mechanistically, cardiomyocyte-GSK-3ß profoundly suppresses the expression and secretion of growth factors, including basic-fibroblast growth factor, angiopoietin-2, erythropoietin, stem cell factor, platelet-derived growth factor-BB, granulocyte colony-stimulating factor, and vascular endothelial growth factor, post-hypoxia. In conclusion, our findings strongly suggest that loss of cardiomyocyte-GSK-3ß promotes cardiomyocyte and resident CPC proliferation post-MI. The induction of cardiomyocyte and CPC proliferation in the ischemic cKO hearts is potentially regulated by autocrine and paracrine signaling governed by dysregulated growth factors post-MI. A strategy to inhibit cardiomyocyte-GSK-3ß could be helpful for the promotion of in situ cardiac regeneration post-ischemic injury.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Myocardial Infarction , Myocytes, Cardiac , Animals , Cell Proliferation/genetics , Glycogen Synthase Kinase 3 beta/genetics , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Vascular Endothelial Growth Factor A/metabolism , Ventricular Remodeling/genetics
5.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947977

ABSTRACT

Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.


Subject(s)
Adult Stem Cells/cytology , Organ Culture Techniques/methods , Organoids/cytology , Cell Differentiation , Heart/physiology , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Regeneration , Spheroids, Cellular/cytology
6.
World J Stem Cells ; 13(9): 1231-1247, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34630860

ABSTRACT

Cardiovascular diseases represent the world's leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.

7.
Indian J Pathol Microbiol ; 64(3): 469-471, 2021.
Article in English | MEDLINE | ID: mdl-34341255

ABSTRACT

BACKGROUND: Cardiac myxomas (CMs) are the most common primary tumors of the heart, said to be derived from pluripotent cardiac stem cells. They are most often attached to the left side of the inter-atrial septum (IAS) and a feature noted at the site of attachment is a conglomeration of thick-walled vessels that has been noted to precede the development of myxomas. AIMS: The present study was conducted to compare histology of the normal inter-atrial septa to the septal flap excised with the myxomas and to evaluate the significance of this 'vascular tangle' in the histogenesis of these tumors. MATERIALS AND METHODS: In a 10-year retrospective analysis of all surgically excised CMs, tumors with attached septal sleeves were selected. This histology was compared to the serial sections of 25 normal age-matched septa obtained from normal hearts at autopsy. RESULTS: Of the 56 myxomas seen in 10 years, 38 tumors (all left atrial in location) were received with a flap of the IAS. All of these cases, irrespective of the sizes of the tumor, showed the presence of conglomeration of thick-walled blood vessels, many of which showed abrupt myxoid change in their walls. Another noteworthy feature in many vessels in all flaps was migration of the myxoid tissue through the vascular walls and the endocardium to mushroom out into the atrial lumen. Such vascular channels were not seen in any of the normal IAS. CONCLUSIONS: Based on these findings, we propose a two-step hypothesis: an initial step that stimulates the pluripotent cells toward vasculogenesis with endothelial and smooth muscle differentiation, and a subsequent step leads to production of abundant mucopolysaccharides that splay apart the smooth muscle cells, which would explain rings, cords or nests of myxoma cells around endothelial lined spaces.


Subject(s)
Atrial Septum/pathology , Heart Neoplasms/pathology , Myxoma/etiology , Myxoma/pathology , Adult , Aged , Female , Heart Atria , Heart Neoplasms/classification , Humans , Male , Middle Aged , Myxoma/surgery , Retrospective Studies , Tertiary Care Centers/statistics & numerical data , Young Adult
8.
J Control Release ; 336: 499-509, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34224774

ABSTRACT

Strategies for stem cell-based cardiac regeneration and repair are key issues for the ischemic heart disease (IHD) patients with chronic complications related to ischemic necrosis. Cardiac stem cells (CSCs) have demonstrated high therapeutic efficacy for IHD treatment owing to their specific cardiac-lineage commitment. The therapeutic potential of CSCs could be further enhanced by designing a cellular spheroid formulation. The spheroid culture condition of CSCs was optimized to ensure regulated size and minimal core necrosis in the spheroids. The CSC spheroids revealed mRNA profiles of the factors related to cardiac regeneration, angiogenesis, anti-inflammatory, and cardiomyocyte differentiation with a higher expression level than the CSCs. Intramyocardially delivered CSC spheroids in the rat IHD model resulted in a significant increase in retention rate by 1.82-fold (day 3) and 1.98-fold (day 14) compared to CSCs. Endothelial cell differentiation and neovascularization of the engrafted CSC spheroids were noted in the infarcted myocardium. CSC spheroids significantly promoted cardiac regeneration: i.e., decreased infarction and fibrotic area (11.22% and 4.18%) and increased left ventricle thickness (0.62 mm) compared to the untreated group. Cardiac performance was also improved by 2.04-fold and 1.44-fold increase in the ejection fraction and fractional shortening, respectively. Intramyocardial administration of CSC spheroids might serve as an advanced therapeutic modality with enhanced cell engraftment and regenerative abilities for cardiac repair after myocardial infarction.


Subject(s)
Myocardial Infarction , Animals , Cell Differentiation , Disease Models, Animal , Humans , Myocardial Infarction/therapy , Myocardium , Myocytes, Cardiac , Rats , Regeneration , Spheroids, Cellular , Stem Cells
9.
Biomedicines ; 9(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073912

ABSTRACT

A 3-dimensional, robust, and sustained myocardial restoration by means of tissue engineering remains an experimental approach. Prolific protocols have been developed and tested in small and large animals, but, as clinical cardiac surgeons, we have not arrived at the privilege of utilizing any of them in our clinical practice. The question arises as to why this is. The heart is a unique organ, anatomically and functionally. It is not an easy target to replicate with current techniques, or even to support in its viability and function. Currently, available therapies fail to reverse the loss of functional cardiac tissue, the fundamental pathology remains unaddressed, and heart transplantation is an ultima ratio treatment option. Owing to the equivocal results of cell-based therapies, several strategies have been pursued to overcome the limitations of the current treatment options. Preclinical data, as well as first-in-human studies, conducted to-date have provided important insights into the understanding of injection-based approaches for myocardial restoration. In light of the available data, injectable biomaterials suitable for transcatheter delivery appear to have the highest translational potential. This article presents a current state-of-the-literature review in the field of hydrogel-based myocardial restoration therapy.

10.
EBioMedicine ; 63: 103193, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33421944

ABSTRACT

The BMI1 protein, a member of the PRC1 family, is a well recognised transcriptional suppressor and has the capability of maintaining the self-renewal and proliferation of tissue-specific stem cells. Numerous studies have established that BMI1 is highly expressed in a variety of malignant cancers and serves as a key regulator in the tumorigenesis process. However, our understanding of BMI1 in terminally differentiated organs, such as the heart, is relatively nascent. Importantly, emerging data support that, beyond the tumor, BMI1 is also expressed in the heart tissue and indeed exerts profound effects in various cardiac pathological conditions. This review gives a summary of the novel functions of BMI1 in the heart, including BMI1-positive cardiac stem cells and BMI1-mediated signaling pathways, which are involved in the response to various cardiac pathological stimuli. Besides, we summarize the recent progress of BMI1 in some novel and rapidly developing cardiovascular therapies. Furtherly, we highlight the properties of BMI1, a therapeutic target proved effective in cancer treatment, as a promising target to alleviate cardiovascular diseases.


Subject(s)
Myocardium/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Animals , Biomarkers , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Susceptibility , Drug Discovery , Gene Expression Regulation , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Organ Specificity , Polycomb Repressive Complex 1/antagonists & inhibitors , Signal Transduction , Stem Cells/metabolism
11.
Cell Mol Biol Lett ; 25(1): 50, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33292162

ABSTRACT

BACKGROUND: Human cardiac stem cells expressing the W8B2 marker (W8B2+ CSCs) were recently identified and proposed as a new model of multipotent CSCs capable of differentiating into smooth muscle cells, endothelial cells and immature myocytes. Nevertheless, no characterization of ion channel or calcium activity during the differentiation of these stem cells has been reported. METHODS: The objectives of this study were thus to analyze (using the TaqMan Low-Density Array technique) the gene profile of W8B2+ CSCs pertaining to the regulation of ion channels, transporters and other players involved in the calcium homeostasis of these cells. We also analyzed spontaneous calcium activity (via the GCaMP calcium probe) during the in vitro differentiation of W8B2+ CSCs into cardiac myocytes. RESULTS: Our results show an entirely different electrophysiological genomic profile between W8B2+ CSCs before and after differentiation. Some specific nodal genes, such as Tbx3, HCN, ICaT, L, KV, and NCX, are overexpressed after this differentiation. In addition, we reveal spontaneous calcium activity or a calcium clock whose kinetics change during the differentiation process. A pharmacological study carried out on differentiated W8B2+ CSCs showed that the NCX exchanger and IP3 stores play a fundamental role in the generation of these calcium oscillations. CONCLUSIONS: Taken together, the present results provide important information on ion channel expression and intrinsic calcium dynamics during the differentiation process of stem cells expressing the W8B2 marker.


Subject(s)
Antigens, Surface/metabolism , Calcium/metabolism , Cell Differentiation/physiology , Ion Channels/metabolism , Myocytes, Cardiac/metabolism , Stem Cells/metabolism , Aged , Cell Proliferation/physiology , Cells, Cultured , Endothelial Cells/metabolism , Female , Gene Expression/physiology , Humans , Male , Multipotent Stem Cells/metabolism , Myocytes, Smooth Muscle/metabolism
12.
Front Cell Dev Biol ; 8: 594226, 2020.
Article in English | MEDLINE | ID: mdl-33178704

ABSTRACT

In the past few decades, cardiac regeneration has been the central target for restoring the injured heart. In mammals, cardiomyocytes are terminally differentiated and rarely divide during adulthood. Embryonic and fetal cardiomyocytes undergo robust proliferation to form mature heart chambers in order to accommodate the increased workload of a systemic circulation. In contrast, postnatal cardiomyocytes stop dividing and initiate hypertrophic growth by increasing the size of the cardiomyocyte when exposed to increased workload. Extracellular and intracellular signaling pathways control embryonic cardiomyocyte proliferation and postnatal cardiac hypertrophy. Harnessing these pathways could be the future focus for stimulating endogenous cardiac regeneration in response to various pathological stressors. Meanwhile, patient-specific cardiomyocytes derived from autologous induced pluripotent stem cells (iPSCs) could become the major exogenous sources for replenishing the damaged myocardium. Human iPSC-derived cardiomyocytes (iPSC-CMs) are relatively immature and have the potential to increase the population of cells that advance to physiological hypertrophy in the presence of extracellular stimuli. In this review, we discuss how cardiac proliferation and maturation are regulated during embryonic development and postnatal growth, and explore how patient iPSC-CMs could serve as the future seed cells for cardiac cell replacement therapy.

13.
Int J Mol Sci ; 21(20)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33080988

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells' delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.


Subject(s)
Heart/physiology , Regeneration/physiology , Stem Cell Transplantation , Stem Cells/cytology , Tissue Engineering , Animals , Humans , Myocardium/metabolism
14.
Stem Cells Transl Med ; 9(12): 1570-1584, 2020 12.
Article in English | MEDLINE | ID: mdl-32790136

ABSTRACT

Stem cell replacement offers a great potential for cardiac regenerative therapy. However, one of the critical barriers to stem cell therapy is a significant loss of transplanted stem cells from ischemia and inflammation in the host environment. Here, we tested the hypothesis that inhibition of the soluble epoxide hydrolase (sEH) enzyme using sEH inhibitors (sEHIs) to decrease inflammation and fibrosis in the host myocardium may increase the survival of the transplanted human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in a murine postmyocardial infarction model. A specific sEHI (1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea [TPPU]) and CRISPR/Cas9 gene editing were used to test the hypothesis. TPPU results in a significant increase in the retention of transplanted cells compared with cell treatment alone. The increase in the retention of hiPSC-CMs translates into an improvement in the fractional shortening and a decrease in adverse remodeling. Mechanistically, we demonstrate a significant decrease in oxidative stress and apoptosis not only in transplanted hiPSC-CMs but also in the host environment. CRISPR/Cas9-mediated gene silencing of the sEH enzyme reduces cleaved caspase-3 in hiPSC-CMs challenged with angiotensin II, suggesting that knockdown of the sEH enzyme protects the hiPSC-CMs from undergoing apoptosis. Our findings demonstrate that suppression of inflammation and fibrosis using an sEHI represents a promising adjuvant to cardiac stem cell-based therapy. Very little is known regarding the role of this class of compounds in stem cell-based therapy. There is consequently an enormous opportunity to uncover a potentially powerful class of compounds, which may be used effectively in the clinical setting.


Subject(s)
Epoxide Hydrolases/therapeutic use , Fibrosis/therapy , Inflammation/therapy , Myocytes, Cardiac/transplantation , Stem Cell Transplantation/methods , Animals , Epoxide Hydrolases/pharmacology , Humans , Mice , Mice, Inbred NOD
15.
EBioMedicine ; 57: 102862, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32629392

ABSTRACT

BACKGROUND: Bone marrow stem cell clonal dysfunction by somatic mutation is suspected to affect post-infarction myocardial regeneration after coronary bypass surgery (CABG). METHODS: Transcriptome and variant expression analysis was studied in the phase 3 PERFECT trial post myocardial infarction CABG and CD133+ bone marrow derived hematopoetic stem cells showing difference in left ventricular ejection fraction (∆LVEF) myocardial regeneration Responders (n=14; ∆LVEF +16% day 180/0) and Non-responders (n=9; ∆LVEF -1.1% day 180/0). Subsequently, the findings have been validated in an independent patient cohort (n=14) as well as in two preclinical mouse models investigating SH2B3/LNK antisense or knockout deficient conditions. FINDINGS: 1. Clinical: R differed from NR in a total of 161 genes in differential expression (n=23, q<0•05) and 872 genes in coexpression analysis (n=23, q<0•05). Machine Learning clustering analysis revealed distinct RvsNR preoperative gene-expression signatures in peripheral blood acorrelated to SH2B3 (p<0.05). Mutation analysis revealed increased specific variants in RvsNR. (R: 48 genes; NR: 224 genes). 2. Preclinical:SH2B3/LNK-silenced hematopoietic stem cell (HSC) clones displayed significant overgrowth of myeloid and immune cells in bone marrow, peripheral blood, and tissue at day 160 after competitive bone-marrow transplantation into mice. SH2B3/LNK-/- mice demonstrated enhanced cardiac repair through augmenting the kinetics of bone marrow-derived endothelial progenitor cells, increased capillary density in ischemic myocardium, and reduced left ventricular fibrosis with preserved cardiac function. 3. VALIDATION: Evaluation analysis in 14 additional patients revealed 85% RvsNR (12/14 patients) prediction accuracy for the identified biomarker signature. INTERPRETATION: Myocardial repair is affected by HSC gene response and somatic mutation. Machine Learning can be utilized to identify and predict pathological HSC response. FUNDING: German Ministry of Research and Education (BMBF): Reference and Translation Center for Cardiac Stem Cell Therapy - FKZ0312138A and FKZ031L0106C, German Ministry of Research and Education (BMBF): Collaborative research center - DFG:SFB738 and Center of Excellence - DFG:EC-REBIRTH), European Social Fonds: ESF/IV-WM-B34-0011/08, ESF/IV-WM-B34-0030/10, and Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany. Japanese Ministry of Health : Health and Labour Sciences Research Grant (H14-trans-001, H17-trans-002) TRIAL REGISTRATION: ClinicalTrials.gov NCT00950274.


Subject(s)
AC133 Antigen/genetics , Bone Marrow Transplantation/methods , Coronary Artery Disease/therapy , Hematopoietic Stem Cell Transplantation/methods , Myocardial Ischemia/therapy , Adolescent , Adult , Aged , Bone Marrow Cells/cytology , Cellular Senescence/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/physiopathology , Female , Heart/growth & development , Heart/physiopathology , Hematopoietic Stem Cells/cytology , Humans , Male , Middle Aged , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Regeneration/genetics , Young Adult
16.
Physiol Int ; 107(1): 166-176, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32490852

ABSTRACT

Exercise-induced stem cell activation is implicated in cardiovascular regeneration. However, ageing limits the capacity of cellular and molecular remodelling of the heart. It has been shown that exercise improves structure regeneration and function in the process of ageing. Aged male Wistar rats (n = 24) were divided into three groups: Control (CO), High-intensity interval training (HIIT) (80-100% of the maximum speed), and continuous endurance training (CET) (60-70% of the maximum speed) groups. Training groups were trained for 6 weeks. The expression of the Nkx2.5 gene was determined by real-time (RT-PCRs) analysis. Immunohistochemical staining was performed to assess the C-kit positive cardiac progenitor and Ki67 positive cells. The mRNA level of Nkx2.5 was significantly increased in the CET and HIIT groups (P < 0.05). Also, cardiac progenitor cells positive for C-kit were increased in both the CET and HIIT groups (P < 0.05). Exercise training improved the ejection fraction and fractional shortening in both training groups (P < 0.05). This study indicated that training initiates the activation of cardiac progenitor cells, leading to the generation of new myocardial cells (R = 0.737, P = 0.001). It seems that C-kit positive cells in training groups showed an increase in the expression of some transcription factors (Nkx2.5 gene), representing an increased regenerative capacity of cardiomyocytes during the training period. These findings suggest that the endogenous regenerative capacity of the adult heart, mediated by cardiac stem cells, would be increased in response to exercise.


Subject(s)
Aging/physiology , Heart/physiology , Homeobox Protein Nkx-2.5/genetics , Motor Activity/physiology , Myocardium , Myocytes, Cardiac/physiology , Proto-Oncogene Proteins c-kit/genetics , Regeneration/physiology , Animals , Myocardium/metabolism , Myocardium/pathology , Physical Conditioning, Animal/methods , Rats , Rats, Wistar , Stem Cells/physiology , Stroke Volume , Transcriptional Activation
17.
Mol Med ; 26(1): 15, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005100

ABSTRACT

BACKGROUND: Sca-1+ cardiac stem cells and their limited proliferative potential were major limiting factors for use in various studies. METHODS: Therefore, the effects of sphere genetically engineered cardiac stem cells (S-GECS) inserted with telomerase reverse transcriptase (TERT) were investigated to examine cardiomyocyte survival under hypoxic conditions. GECS was obtained from hTERT-immortalized Sca-1+ cardiac stem cell (CSC) lines, and S-GECS were generated using poly-HEMA. RESULTS: The optimal conditions for S-GECS was determined to be 1052 GECS cells/mm2 and a 48 h culture period to produce spheroids. Compared to adherent-GECS (A-GECS) and S-GECS showed significantly higher mRNA expression of SDF-1α and CXCR4. S-GECS conditioned medium (CM) significantly reduced the proportion of early and late apoptotic cardiomyoblasts during CoCl2-induced hypoxic injury; however, gene silencing via CXCR4 siRNA deteriorated the protective effects of S-GECS against hypoxic injury. As downstream pathways of SDF-1α/CXCR4, the Erk and Akt signaling pathways were stimulated in the presence of S-GECS CM. S-GECS transplantation into a rat acute myocardial infarction model improved cardiac function and reduced the fibrotic area. These cardioprotective effects were confirmed to be related with the SDF-1α/CXCR4 pathway. CONCLUSIONS: Our findings suggest that paracrine factors secreted from transplanted cells may protect host cardiomyoblasts in the infarcted myocardium, contributing to beneficial left ventricle (LV) remodeling after acute myocardial infarction (AMI).


Subject(s)
Ataxin-1/metabolism , Myocytes, Cardiac/cytology , Spheroids, Cellular/cytology , Stem Cells/cytology , Telomerase/genetics , Animals , Ataxin-1/genetics , Cell Adhesion , Cell Culture Techniques , Cell Hypoxia , Cell Line , Cell Proliferation , Cell Survival , Chemokine CXCL12/genetics , Cobalt/adverse effects , Gene Expression Regulation/drug effects , Genetic Engineering , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Paracrine Communication , Promoter Regions, Genetic , Rats , Receptors, CXCR4/genetics , Spheroids, Cellular/metabolism , Stem Cells/drug effects , Stem Cells/metabolism
18.
Trends Cardiovasc Med ; 30(6): 338-343, 2020 08.
Article in English | MEDLINE | ID: mdl-31515053

ABSTRACT

Cardiovascular disease remains the primary cause of death in the United States and in most nations worldwide, despite ongoing intensive efforts to promote cardiac health and treat heart failure. Replacing damaged myocardium represents perhaps the most promising treatment strategy, but also the most challenging given that the adult mammalian heart is notoriously resistant to endogenous repair. Cardiac regeneration following pathologic challenge would require proliferation of surviving tissue, expansion and differentiation of resident progenitors, or transdifferentiation of exogenously applied progenitor cells into functioning myocardium. Adult cardiomyocyte proliferation has been the focus of investigation for decades, recently enjoying a renaissance of interest as a therapeutic strategy for reversing cardiomyocyte loss due in large part to ongoing controversies and frustrations with myocardial cell therapy outcomes. The promise of cardiac cell therapy originated with reports of resident adult cardiac stem cells that could be isolated, expanded and reintroduced into damaged myocardium, producing beneficial effects in preclinical animal models. Despite modest functional improvements, Phase I clinical trials using autologous cardiac derived cells have proven safe and effective, setting the stage for an ongoing multi-center Phase II trial combining autologous cardiac stem cell types to enhance beneficial effects. This overview will examine the history of these two approaches for promoting cardiac repair and attempt to provide context for current and future directions in cardiac regenerative research.


Subject(s)
Heart Diseases/surgery , Myocardium/pathology , Myocytes, Cardiac/transplantation , Regeneration , Stem Cell Transplantation , Animals , Cell Differentiation , Cell Proliferation , Cellular Senescence , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Recovery of Function , Treatment Outcome
19.
Life Sci ; 221: 319-326, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30802510

ABSTRACT

AIM: Myocardial infarction (MI), an important cause of morbidity and mortality, can be followed by left ventricular dysfunction and cardiomyocyte loss. Cardiac repair mechanisms may subsequently improve left ventricular function. Exercise training has been suggested to have cardioprotective effects against MI damage, but detailed knowledge is lacking on the effects of different types and intensities of exercise training on molecular targets of cardiomyocyte regeneration. MAIN METHODS: MI was induced in male Wistar rats by ligating the left anterior descending coronary artery. After MI induction, the rats were randomly assigned to one of five groups: sham operated, and experimental MI followed by no exercise, or low, moderate or high intensity exercise Cardiac function and infarct size were assessed by echocardiography and Evans blue/TTC staining, respectively. The expression of mRNA markers and proteins associated with myocardial regeneration was measured with RT-PCR and western blotting. KEY FINDINGS: Exercise training at different intensities improved cardiac function and levels of stem cell and cardiomyocyte markers, and reduced infarct size. mRNA levels of GATA4, Nkx2.5 and c-Kit and protein expression of Nkx2.5 and c-Kit were significantly increased in all MI-exercise groups. The high-intensity exercise group had greater increases than the low and moderate intensity exercise groups. In the high-intensity exercise group, Sca-1 and CITED4 increased more than in the low-intensity exercise group. C/EBPß mRNA and protein levels decreased after exercise training, with greater reductions in the high-intensity exercise group than the low- or moderate-intensity groups. SIGNIFICANCE: The findings suggest that by targeting cardiogenesis, high-intensity training can exert cardioprotective effects against cardiac dysfunction in an experimental model of MI.


Subject(s)
Myocardial Infarction/metabolism , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Animals , CCAAT-Enhancer-Binding Protein-beta , Coronary Vessels , Disease Models, Animal , Echocardiography , GATA4 Transcription Factor/metabolism , High-Intensity Interval Training/methods , Homeobox Protein Nkx-2.5/metabolism , Male , Myocardium , Myocytes, Cardiac , Proto-Oncogene Proteins c-kit/metabolism , Rats , Rats, Wistar , Ventricular Function, Left
20.
J Cell Mol Med ; 23(4): 0, 2019 04.
Article in English | MEDLINE | ID: mdl-30734494

ABSTRACT

Tumour necrotic factor receptor-2 (TNFR2) has been to be cardiac-protective and is expressed in cardiac progenitor cells. Our goal is to define the mechanism for TNFR2-mediated cardiac stem cell activation and differentiation. By employing a protocol of in vitro cardiac stem cell (CSC) differentiation from human inducible pluripotent stem cell (hiPSC), we show that expression of TNFR2 precedes expression of CSC markers followed by expression of mature cardiomyocyte proteins. Activation of TNFR2 by a specific agonist promotes whereas inhibition of TNFR2 by neutralizing antibody diminishes hiPSC-based CSC differentiation. Interestingly, pluripotent cell factor RNA-binding protein Lin28 enhances TNFR2 protein expression in early CSC activation by directly binding to a conserved Lin28-motif within the 3'UTR of Tnfr2 mRNA. Furthermore, inhibition of Lin28 blunts TNFR2 expression and TNFR2-dependent CSC activation and differentiation. Our study demonstrates a critical role of Lin28-TNFR2 axis in CSC activation and survival, providing a novel strategy to enhance stem cell-based therapy for the ischaemic heart diseases.


Subject(s)
Cell Differentiation , Human Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , RNA-Binding Proteins/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Cells, Cultured , Human Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...