Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Drug Dev Res ; 85(2): e22168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38450796

ABSTRACT

Hypoxia has been reported to promote the proliferation and migration of thyroid cancer, while the special mechanism was still unclear. HIF-1α/carnitine palmitoyl-transferase 1A (CPT1A) was found to be associated with papillary thyroid carcinoma (PTC) but the biological role of CPT1A in PTC was not explored. The effects of hypoxia and carnitine palmitoyl-transferase 1A (CPT1A) expression on PTC cells were determined by cell counting kit-8 assay, detection of oxidative stress, inflammation response and mitochondrial membrane motential (MMP). Oil Red O staining and the detection of free fatty acids were performed to assess the status of lipid metabolism. Flow cytometric analysis was performed to assess cell apoptosis. Quantitative polymerase chain reaction (qPCR) and western blot analysis were applied to investigate the expressions of CPT1A and HIF-1α and the molecules involved cell function. The expressions of CPT1A and HIF-1α were significantly increased in PTC cells with or without hypoxia treatment. CPT1A overexpression or silencing promoted or inhibited cell viability, and hypoxia further repressed cell viability. In addition, CPT1A overexpression alleviates hypoxia-induced increased oxidative stress, inflammation response and elevated MMP. CPT1A overexpression enhanced palmitic acid-induced decreased cell growth, enhanced the metabolic capacity of free fatty acid and suppressed cell apoptosis. Animal experiments showed that CPT1A overexpression promoted PTC tumor growth, reduced lipid deposition, oxidative stress and inflammation, as well as enhancing cell function indicators. However, CPT1A silencing showed the opposite effects both in vitro and in vivo. Hypoxia induces the high expression of HIF-1α/CPT1A, thereby reprogramming the lipid metabolism of PTC cells for adapting the hypoxia environment, meanwhile inhibiting the cell damage and apoptosis caused by oxidative stress.


Subject(s)
Lipid Metabolism , Thyroid Neoplasms , Animals , Thyroid Cancer, Papillary/genetics , Oxidative Stress , Thyroid Neoplasms/genetics , Hypoxia , Inflammation , Fatty Acids , Carnitine
2.
J Alzheimers Dis ; 97(2): 553-558, 2024.
Article in English | MEDLINE | ID: mdl-38143363

ABSTRACT

Despite decades of intense research, the precise etiology of Alzheimer's disease (AD) remains unclear. In this hypothesis, we present a new perspective on this matter by identifying carnitine palmitoyl transferase-2 (CPT2) as a central target in AD. CPT2 is an enzyme situated within the inner mitochondrial membrane, playing a crucial role in beta-oxidation of fatty acids. It exhibits high sensitivity to hydrogen peroxide. This sensitivity holds relevance for the etiology of AD, as all major risk factors for the disease share a commonality in producing an excess of hydrogen peroxide right at this very mitochondrial membrane. We will explain the high sensitivity of CPT2 to hydrogen peroxide and elucidate how the resulting inhibition of CPT2 can lead to the characteristic phenotype of AD, thus clarifying its central role in the disease's etiology. This insight holds promise for the development of therapies for AD which can be implemented immediately.


Subject(s)
Alzheimer Disease , Humans , Hydrogen Peroxide , Fatty Acids , Carnitine , Transferases
3.
Cancers (Basel) ; 15(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958356

ABSTRACT

Hepatoblastoma (HB) is a rare childhood tumour with an evolving molecular landscape. We present the first comprehensive metabolomic analysis using untargeted and targeted liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS) of paired tumour and non-tumour surgical samples in HB patients (n = 8 pairs). This study demonstrates that the metabolomic landscape of HB is distinct from that of non-tumour (NT) liver tissue, with 35 differentially abundant metabolites mapping onto pathways such as fatty acid transport, glycolysis, the tricarboxylic acid (TCA) cycle, branched-chain amino acid degradation and glutathione synthesis. Targeted metabolomics demonstrated reduced short-chain acylcarnitines and a relative accumulation of branched-chain amino acids. Medium- and long-chain acylcarnitines in HB were similar to those in NT. The metabolomic changes reported are consistent with previously reported transcriptomic data from tumour and non-tumour samples (49 out of 54 targets) as well as metabolomic data obtained using other techniques. Gene set enrichment analysis (GSEA) from RNAseq data (n = 32 paired HB and NT samples) demonstrated a downregulation of the carnitine metabolome and immunohistochemistry showed a reduction in CPT1a (n = 15 pairs), which transports fatty acids into the mitochondria, suggesting a lack of utilisation of long-chain fatty acids in HB. Thus, our findings suggest a reduced metabolic flux in HB which is corroborated at the gene expression and protein levels. Further work could yield novel insights and new therapeutic targets.

4.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513899

ABSTRACT

Canine mammary tumours (CMTs) are the most common cancer in intact female dogs. In addition to surgery, additional targeted and non-targeted therapies may offer survival benefits to these patients. Therefore, exploring new treatments for CMT is a promising area in veterinary oncology. CMT cells have an altered lipid metabolism and use the oxidation of fatty acids for their energy needs. Here we investigated the tumoricidal effects of teglicar, a reversible inhibitor of carnitine palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid import into mitochondria, on two CMT cells, P114 and CMT-U229. Viability and apoptosis were examined in CMT cells using the crystal violet assay, trypan blue assay, and flow cytometry analysis. The expression of mediators of apoptosis signalling (e.g., caspase-9, caspase-8, and caspase-3) was assessed by quantitative real-time polymerase chain reaction and western blot analyses. Teglicar was able to decrease cell viability and induce apoptosis in P114 and CMT-U229 cells. At the molecular level, the effect of teglicar was associated with an upregulation of the mRNA expression levels of caspase-9, caspase-8, and caspase-3 and an increase in their protein levels. In summary, our results show that teglicar has a potential effect against CMTs through the induction of apoptotic cell death, making it a promising therapeutic agent against CMTs.

5.
Int J Obstet Anesth ; 55: 103895, 2023 08.
Article in English | MEDLINE | ID: mdl-37276780

ABSTRACT

Carnitine palmitoyl transferase II (CPT II) deficiency is a rare disorder of fatty acid metabolism in cell mitochondria. There is limited information about the disease process and complications of anaesthesia, particularly in the obstetric population. Due to the increased risks of general anaesthesia in patients with CPT II deficiency, neuraxial anaesthesia is the preferred method of anaesthesia. We describe a patient with CPT II deficiency who had spinal anaesthesia for caesarean section. Subsequently, the patient had prolonged neuraxial blockade, a previously undescribed complication in a patient with CPT II deficiency.


Subject(s)
Anesthesia, Spinal , Humans , Female , Pregnancy , Anesthesia, Spinal/adverse effects , Anesthesia, Spinal/methods , Carnitine O-Palmitoyltransferase , Cesarean Section/methods , Carnitine
6.
Reprod Sci ; 30(11): 3315-3324, 2023 11.
Article in English | MEDLINE | ID: mdl-37268870

ABSTRACT

Cancer is one of the world's major causes of death. The aim of this study is to examine the acute effects of resveratrol on testicular toxicity, oxidative stress, and apoptosis caused by MTX, which is widely used in the treatment of many diseases, especially cancer, histochemically, immunohistochemically, and biochemical methods using different parameters. A total of 32 Wistar albino male rats were randomly divided into 4 groups: control, resveratrol (RES), MTX, and MTX + RES, with 8 animals in each group. At the end of the experiment, tissue and blood samples were taken, and histochemical, immunohistochemical, and biochemical parameters were examined. In this study, where parameters were compared for the first time, total thiol (TT) and native thiol (NT) are the highest in the RES group, disulfide (DS), and ischemia-modified albumin (IMA) are the highest in the MTX group. Total oxidant status (TOS) and oxidative stress index (OSI) are the highest in the MTX group, and total antioxidant status (TAS) is the highest in the RES group. Separation and deterioration in the tunica albuginea, congestion and edema in the interstitial region, vacuolization in the seminiferous epithelium, and spermatogenic serial cells spilling into the lumen without completing their maturation were observed. When examined in terms of histochemical, immunohistochemical, and biochemical examinations, our study revealed that resveratrol has positive effects on methotrexate-induced acute testicular damage, oxidative stress, and apoptosis.


Subject(s)
Methotrexate , Neoplasms , Rats , Male , Animals , Resveratrol/pharmacology , Methotrexate/toxicity , Biomarkers , Rats, Wistar , Serum Albumin/pharmacology , Antioxidants/pharmacology , Oxidative Stress , Sulfhydryl Compounds/pharmacology
7.
World J Gastroenterol ; 29(12): 1765-1778, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37032731

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid ß-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/ß-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Carcinogenesis/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Carnitine/metabolism , Glypicans/metabolism
8.
Data Brief ; 48: 109090, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37020897

ABSTRACT

Clinical diagnosis of inborn errors of metabolism in the suspected patients is usually guided by the initial general investigations in the laboratory such as the concentration of ammonia, blood gases status, blood glucose and ketones. The establishment of a biochemical diagnosis in patients with inborn errors of metabolism depends on the detection of the specific metabolites in the abnormal metabolic pathway which can appear in any of the body fluids but are most commonly tested in blood and urine samples. Acylcarnitine and/or acylcarnitine ratio in patients with carnitine acylcarnitine translocase and carnitine palmitoyl transferase deficiency showed an abnormal profile regardless of the metabolic status of patients. The acylcarnitine was derived from the analysis of dried blood spot using multiple reaction monitoring (MRM) which was performed using quadrupole mass spectrometry. The dataset presented in this article was generated from analysis of acylcarnitines in the 17,121 dried blood spots from symptomatic Malaysian patients less than fifty years old who exhibited symptoms suggestive of inborn errors of metabolism, but had a normal acylcarnitine profile. A precursor or ion scan of m/z 85 was selected for the analysis. Quantification of each analyte was obtained using the signal intensity ratio of the acylcarnitine to its internal standard. The acylcarnitines analyzed included C0, C2, C3, C3DC, C4, C5, C5:1, C5DC, C5OH, C6, C8, C10, C12, C14, C16, C18, C18:1, C16OH, C18OH and C18:1OH and was analyzed using Neolynx V4.0 software. We decided to choose the 1st and 99th percentiles as the minimum and maximum cut-offs. The filtered part of data in this article was used in the article Novel mutations associated with Carnitine-Acylcarnitine Translocase and Carnitine Palmitoyl Transferase 2 deficiencies in Malaysia. This dataset is intended to enable the scientific communities to get access to the raw dataset for future translational research use in inborn errors of metabolism as very few acylcarnitine data was developed and published for the symptomatic patients suspected of inborn errors of metabolism especially in the Asian population.

9.
Psychiatry Investig ; 20(3): 212-219, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36990664

ABSTRACT

OBJECTIVE: Atomoxetine and fluoxetine are psychopharmacologic agents associated with loss of appetite and weight. Adenosine monophosphate-activated protein kinase (AMPK) is the cellular energy sensor that regulate metabolism and energy, being activated by fasting and inhibited by feeding in the hypothalamus. METHODS: Human brain cell lines (SH-SY5Y and U-87 MG cells) were used to study the outcome of atomoxetine and fluoxetine treatment in the activity of AMPK-acetyl-CoA carboxylase (ACC)- carnitine palmitoyl transferase 1 (CPT1) pathway and upstream regulation by calcium/calmodulin-dependent kinase kinase ß (CaMKKß) using immunoblotting and CPT1 enzymatic activity measures. RESULTS: Phosphorylation of AMPK and ACC increased significantly after atomoxetine and fluoxetine treatment in the first 30-60 minutes of treatment in the two cell lines. Activation of AMPK and inhibition of ACC was associated with an increase by 5-fold of mitochondrial CPT1 activity. Although the neuronal isoform CPT1C could be detected by immunoblotting, activity was not changed by the drug treatments. In addition, the increase in phospho-AMPK and phospho-ACC expression induced by atomoxetine was abolished by treatment with STO-609, a CaMKKß inhibitor, indicating that AMPK-ACC-CPT1 pathway is activated through CaMKKß phosphorylation. CONCLUSION: These findings indicate that at the cellular level atomoxetine and fluoxetine treatments may activate AMPK-ACC-CPT1 pathways through CaMKKß in human SH-SY5Y and U-87 MG cells.

10.
Acta Pharm Sin B ; 13(3): 1145-1163, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970205

ABSTRACT

MEK is a canonical effector of mutant KRAS; however, MEK inhibitors fail to yield satisfactory clinical outcomes in KRAS-mutant cancers. Here, we identified mitochondrial oxidative phosphorylation (OXPHOS) induction as a profound metabolic alteration to confer KRAS-mutant non-small cell lung cancer (NSCLC) resistance to the clinical MEK inhibitor trametinib. Metabolic flux analysis demonstrated that pyruvate metabolism and fatty acid oxidation were markedly enhanced and coordinately powered the OXPHOS system in resistant cells after trametinib treatment, satisfying their energy demand and protecting them from apoptosis. As molecular events in this process, the pyruvate dehydrogenase complex (PDHc) and carnitine palmitoyl transferase IA (CPTIA), two rate-limiting enzymes that control the metabolic flux of pyruvate and palmitic acid to mitochondrial respiration were activated through phosphorylation and transcriptional regulation. Importantly, the co-administration of trametinib and IACS-010759, a clinical mitochondrial complex I inhibitor that blocks OXPHOS, significantly impeded tumor growth and prolonged mouse survival. Overall, our findings reveal that MEK inhibitor therapy creates a metabolic vulnerability in the mitochondria and further develop an effective combinatorial strategy to circumvent MEK inhibitors resistance in KRAS-driven NSCLC.

11.
EClinicalMedicine ; 57: 101827, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36816347

ABSTRACT

Background: Antiangiogenic drug (AAD)-triggered oxygen and nutrient depletion through suppression of angiogenesis switches glucose-dependent to lipid-dependent metabolism. Blocking fatty acid oxidation can enhance AAD-mediated anti-tumor effects in colorectal cancer (CRC). Therefore, we hypothesised that genetic variants in the lipid metabolism pathway may predict clinical outcomes [overall response rate (ORR), overall survival (OS) and progression-free survival (PFS)] in metastatic CRC (mCRC) patients receiving bevacizumab-based first-line treatment. Methods: Genomic DNA from blood samples of patients enrolled in FIRE-3 (a global, randomised, open-label, phase 3 trial, between 2007-6-23 and 2012-9-19, discovery cohort: FOLFIRI/bevacizumab arm, n = 107; control cohort: FOLFIRI/cetuximab arm, n = 129) and MAVERICC (a global, randomised, open-label, phase II study, between 2011-8 and 2015-7, in United States, Canada, Estonia, Ireland, Switzerland, Norway, and Portugal. Validation cohort: FOLFIRI/bevacizumab arm, n = 163) trials, was genotyped using the OncoArray-500 K beadchip panel. The impact on OS and PFS of 17 selected SNPs in 7 genes involved in the lipid metabolism pathway (CD36, FABP4, LPCAT1/2, CPT1A, FASN, ACACA) was analysed using Kaplan-Meier curves, the log-rank test for univariate analyses and likelihood ratio tests of Cox proportional hazards regression parameters for multivariable analyses. ORR and SNP associations were evaluated using Chi-square or Fisher's exact tests. Findings: In the discovery cohort, patients with FASN rs4485435 any C allele (n = 21) showed significantly shorter PFS (median PFS: 8.69 vs 13.48 months) compared to carriers of G/G (n = 62) in multivariable (HR = 2.87; 95%CI 1.4-5.9; p = 0.00675) analysis. These data were confirmed in the validation cohort in multivariable analysis (HR = 2.07, 95%CI: 1.15-3.74; p = 0.02), but no association was observed in the cetuximab cohort of FIRE-3. In the comparison of bevacizumab vs cetuximab arm in FIRE-3, a significant interaction was shown with FASN rs4485435 (p = 0.017) on PFS. Interpretation: Our study demonstrates for the first time, to our knowledge, that FASN polymorphisms may predict outcome of bevacizumab-based treatment in patients with mCRC. These findings support a possible role of the lipid metabolism pathway in contributing to resistance to anti-VEGF treatment. Funding: This work was supported by the National Cancer Institute [P30CA 014089 to H.-J.L.], Gloria Borges WunderGlo Foundation, Dhont Family Foundation, Victoria and Philip Wilson Research Fund, San Pedro Peninsula Cancer Guild, Ming Hsieh Research Fund, Eddie Mahoney Memorial Research Fund, Shanghai Sailing Program (22YF1407000), China National Postdoctoral Program for Innovative Talents (BX20220084), China Postdoctoral Science Foundation (2022M710768), National Natural Science Foundation of China (82202892).

12.
Cell Cycle ; 22(4): 433-449, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36196456

ABSTRACT

Severe hydronephrosis increases the risk of urinary tract infection and irretrievable renal fibrosis. While TGFß1-mediated fibrotic changes in proximal tubular epithelial cells and fatty acid oxidation (FAO) deregulation contribute to renal fibrosis and hydronephrosis. Firstly, a few elements were analyzed in this paper, including differentially-expressed long non-coding RNAs (lncRNAs), and miRNAs correlated to CPT1A, RXRA, and NCOA1. This paper investigated TGFß1 effects on lncRNA FABP5P3, CPT1A, RXRA, and NCOA1 expression and fibrotic changes in HK-2 cells and FABP5P3 overexpression effects on TGFß1-induced changes. Moreover, this paper predicted and proved that miR-22 binding to lncRNA FABP5P3, 3'UTR of CPT1A, RXRA, and NCOA1 was validated. The dynamic effects of the FABP5P3/miR-22 axis on TGFß1-induced changes were investigated. A Renal fibrosis model was established in unilateral ureteral obstruction (UUO) mice, and FABP5P3 effects were investigated. Eventually, this paper concluded that TGFß1 inhibited lncRNA FABP5P3, CPT1A, RXRA, and NCOA1 expression, induced fibrotic changes in HK-2 cells, and induced metabolic reprogramming within HK-2 cells, especially lower FAO. FABP5P3 overexpression partially reversed TGFß1-induced changes. miR-22 targeted lncRNA FABP5P3, CPT1A, RXRA, and NCOA1. LncRNA FABP5P3 counteracted miR-22 inhibition of CPT1A, NCOA1, and RXRA through competitive binding. TGFß1 stimulation induced the activation of TGFß/SMAD and JAG/Notch signaling pathways; Nocth2 knockdown reversed TGFß1 suppression on lncRNA FABP5P3. FABP5P3 overexpression attenuated renal fibrosis in unilateral ureteral obstruction mice. The LncRNA FABP5P3/miR-22 axis might be a potent target for improving the FAO deregulation and fibrotic changes in proximal TECs under TGFß1 stimulation.


Subject(s)
Hydronephrosis , Kidney Diseases , MicroRNAs , RNA, Long Noncoding , Ureteral Obstruction , Animals , Mice , Epithelial Cells/metabolism , Fatty Acids/metabolism , Fibrosis , Hydronephrosis/metabolism , Hydronephrosis/pathology , Kidney Diseases/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Humans
13.
Acta Pharmaceutica Sinica B ; (6): 1145-1163, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-971757

ABSTRACT

MEK is a canonical effector of mutant KRAS; however, MEK inhibitors fail to yield satisfactory clinical outcomes in KRAS-mutant cancers. Here, we identified mitochondrial oxidative phosphorylation (OXPHOS) induction as a profound metabolic alteration to confer KRAS-mutant non-small cell lung cancer (NSCLC) resistance to the clinical MEK inhibitor trametinib. Metabolic flux analysis demonstrated that pyruvate metabolism and fatty acid oxidation were markedly enhanced and coordinately powered the OXPHOS system in resistant cells after trametinib treatment, satisfying their energy demand and protecting them from apoptosis. As molecular events in this process, the pyruvate dehydrogenase complex (PDHc) and carnitine palmitoyl transferase IA (CPTIA), two rate-limiting enzymes that control the metabolic flux of pyruvate and palmitic acid to mitochondrial respiration were activated through phosphorylation and transcriptional regulation. Importantly, the co-administration of trametinib and IACS-010759, a clinical mitochondrial complex I inhibitor that blocks OXPHOS, significantly impeded tumor growth and prolonged mouse survival. Overall, our findings reveal that MEK inhibitor therapy creates a metabolic vulnerability in the mitochondria and further develop an effective combinatorial strategy to circumvent MEK inhibitors resistance in KRAS-driven NSCLC.

14.
Article in English | MEDLINE | ID: mdl-36473042

ABSTRACT

Carnitine palmitoyltransferase II deficiency (CPT II) is an autosomal recessive inherited disorder of long-chain fatty acid oxidation in the mitochondrial matrix, resulting in an inability to utilize fat for energy in cells. The most frequent myopathic form occurs in young adults and is associated with recurrent episodes of exercise-induced rhabdomyolysis. The myopathic form is caused by the Ser113Leu mutation of the CPT II gene. Rarely, massive rhabdomyolysis could be complicated by acute kidney injury (AKI), cardiomyopathy, and respiratory insufficiency. We present a case of an 18-year old male with myalgia, muscular weakness, and dark-colored urine after prolonged exercise and a recent mildSARS-CoV-2infection. Massive rhabdomyolysis was diagnosed with markedly increased serum concentrations of myoglobin and creatine kinase, with normal kidney function. The patient experienced two similar episodes in the years 2017 and 2018, with rhabdomyolysis and AKI treated with hemodialysis. After excluding autoimmune and infectious diseases as causes of recurrent rhabdomyolysis, the patient was genetically tested and Ser113Leu mutation of the CPT II gene was confirmed. When a patient presents with myalgia and dark-colored urine triggered by minor physical activities, genetic testing for possible CPT II deficiency should be initiated. TheSARS-CoV-2infection could be a factor that triggers the occurrence of rhabdomyolysis and aggravates the severity of the attack in patients with CPT II deficiency.


Subject(s)
COVID-19 , Carnitine O-Palmitoyltransferase , Humans , Adolescent , Carnitine O-Palmitoyltransferase/genetics , COVID-19/complications , SARS-CoV-2 , Exercise
15.
J Exp Biol ; 225(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36200468

ABSTRACT

Migratory birds undergo seasonal changes to muscle biochemistry. Nonetheless, it is unclear to what extent these changes are attributable to the exercise of flight itself versus endogenous changes. Using starlings (Sturnus vulgaris) flying in a wind tunnel, we tested the effects of exercise training, a single bout of flight and dietary lipid composition on pectoralis muscle oxidative enzymes and lipid transporters. Starlings were either unexercised or trained over 2 weeks to fly in a wind tunnel and sampled either immediately following a long flight at the end of this training or after 2 days recovery from this flight. Additionally, they were divided into dietary groups that differed in dietary fatty acid composition (high polyunsaturates versus high monounsaturates) and amount of dietary antioxidant. Trained starlings had elevated (19%) carnitine palmitoyl transferase and elevated (11%) hydroxyacyl-CoA dehydrogenase in pectoralis muscle compared with unexercised controls, but training alone had little effect on lipid transporters. Immediately following a long wind-tunnel flight, starling pectoralis had upregulated lipid transporter mRNA (heart-type fatty acid binding protein, H-FABP, 4.7-fold; fatty acid translocase, 1.9-fold; plasma membrane fatty acid binding protein, 1.6-fold), and upregulated H-FABP protein (68%). Dietary fatty acid composition and the amount of dietary antioxidants had no effect on muscle catabolic enzymes or lipid transporter expression. Our results demonstrate that birds undergo rapid upregulation of catabolic capacity that largely becomes available during flight itself, with minor effects due to training. These effects likely combine with endogenous seasonal changes to create the migratory phenotype observed in the wild.


Subject(s)
Starlings , Animal Migration/physiology , Animals , Antioxidants/metabolism , Carnitine/metabolism , Coenzyme A/metabolism , Fatty Acid Binding Protein 3/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Pectoralis Muscles/metabolism , RNA, Messenger/genetics , Starlings/physiology , Transferases/metabolism
16.
Front Genet ; 13: 823687, 2022.
Article in English | MEDLINE | ID: mdl-35360862

ABSTRACT

Background: Disorders of mitochondrial carnitine-acylcarnitine cycle is a heterogeneous group of hereditary diseases of mitochondrial ß-oxidation of fatty acids tested in NBS program in Zhejiang province, China. Large-scale studies reporting disorders of mitochondrial carnitine-acylcarnitine cycle among Chinese population in NBS are limited. The aim of this study was to explain the incidence and biochemical, clinical, and genetic characteristics of disorders of mitochondrial carnitine-acylcarnitine cycle in NBS. Methods: From January 2009 to June 2021, 4,070,375 newborns were screened by tandem mass spectrometry. Newborns with elevated C0 levels and/or C0/(C16 + C18) ratios were identified as having CPT1D, whereas those with decreased C0 levels and/or C0/(C16 + C18) ratios and/or elevated C12-C18:1 level were identified as having CPT2D or CACTD. Suspected positive patients were further subjected to genetic analysis. All confirmed patients received biochemical and nutritional treatment, as well as follow-up sessions. Results: Overall, 20 patients (12 with CPT1D, 4 with CPT2D, and 4 with CACTD) with disorders of mitochondrial carnitine-acylcarnitine cycle were diagnosed by NBS. The overall incidence of these disorders was one in 203,518 newborns. In toal, 11 patients with CPT1D exhibited increased C0 levels and C0/(C16 + C18) ratios. In all patients of CPT2D, all long chain acyl-carnitines levels were elevated except for case 14 having normal C12 levels. In all patients with CACTD, all long chain acyl-carnitines levels were elevated except for case 17 having normal C12, C18, and C18:1 levels. Most patients with CPT1D were asymptomatic. Overall, two of 4 patients with CPT2D did not present any clinical symptom, but other two patients died. In 4 cases with CACTD, the disease was onset after birth, and 75% patients died. In total, 14 distinct mutations were identified in CPT1A gene, of which 11 were novel and c.1910C > A (p.S637T), c.740C > T (p.P247L), and c.1328T > C (p.L443P) were the most common mutations. Overall, 3 novel mutations were identified in CPT2 gene, and the most frequent mutation was c.1711C > A (p.P571T). The most common variant in SLC25A20 gene was c.199-10T > G. Conclusion: Disorders of mitochondrial carnitine-acylcarnitine cycle can be detected by NBS, and the combined incidence of these disorders in newborns was rare in Zhejiang province, China. Most patients presented typical acylcarnitine profiles. Most patients with CPT1D presented normal growth and development, whereas those with CPT2D/CACTD exhibited a high mortality rate. Several novel CPT1A and CPT2 variants were identified, which expanded the variant spectrum.

17.
Acta Pharm Sin B ; 12(2): 558-580, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35256934

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.

18.
JHEP Rep ; 4(4): 100440, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35287291

ABSTRACT

Background & Aims: MicroRNAs (miRNAs) act as a regulatory mechanism on a post-transcriptional level by repressing gene transcription/translation and play a central role in the cellular stress response. Osmotic changes occur in a variety of diseases including liver cirrhosis and hepatic encephalopathy. Changes in cell hydration and alterations of the cellular volume are major regulators of cell function and gene expression. In this study, the modulation of hepatic gene expression in response to hypoosmolarity was studied. Methods: mRNA analyses of normo- and hypoosmotic perfused rat livers by gene expression arrays were used to identify miRNA and their potential target genes associated with cell swelling preceding cell proliferation. Selected miR-141-3p was also investigated in isolated hepatocytes treated with miRNA mimic, cell stretching, and after partial hepatectomy. Inhibitor perfusion studies were performed to unravel signalling pathways responsible for miRNA upregulation. Results: Using genome-wide transcriptomic analysis, it was shown that hypoosmotic exposure led to differential gene expression in perfused rat liver. Moreover, miR-141-3p was upregulated by hypoosmolarity in perfused rat liver and in primary hepatocytes. In concert with this, miR-141-3p upregulation was prevented after Src-, Erk-, and p38-MAPK inhibition. Furthermore, luciferase reporter assays demonstrated that miR-141-3p targets cyclin dependent kinase 8 (Cdk8) mRNA. Partial hepatectomy transiently upregulated miR-141-3p levels just after the initiation of hepatocyte proliferation, whereas Cdk8 mRNA was downregulated. The mechanical stretching of rat hepatocytes resulted in miR-141-3p upregulation, whereas Cdk8 mRNA tended to decrease. Notably, the overexpression of miR-141-3p inhibited the proliferation of Huh7 cells. Conclusions: Src-mediated upregulation of miR-141-3p was found in hepatocytes in response to hypoosmotic swelling and mechanical stretching. Because of its antiproliferative function, miR-141-3p may counter-regulate the proliferative effects triggered by these stimuli. Lay summary: In this study, we identified microRNA 141-3p as an osmosensitive miRNA, which inhibits proliferation during liver cell swelling. Upregulation of microRNA 141-3p, controlled by Src-, Erk-, and p38-MAPK signalling, results in decreased mRNA levels of various genes involved in metabolic processes, macromolecular biosynthesis, and cell cycle progression.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940426

ABSTRACT

ObjectiveTo investigate the effect and mechanism of Mori Folium extract on the glucose and lipid metabolism disorders in the liver of rats with type 2 diabetes mellitus (T2DM) through the phosphatidylinositol 3-kinase/protein kinase B/peroxisome proliferation-activated receptor α/carnitine palmitoyl transferase-1 (PI3K/Akt/PPARα/CPT-1) signaling pathway. MethodThe T2DM model was induced by the high-fat diet combined with the intraperitoneal injection of streptozotocin (STZ). The model rats were randomly divided into a model group, a metformin (0.2 g·kg-1) group, and a Mori Folium water extract (4.0 g·kg-1) group according to blood glucose and body weight. In the 8-week administration, fasting blood glucose was measured at the same time every week. The histomorphological and fat changes in the rat liver were observed by hematoxylin-eosin (HE) staining and oil red O staining. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum were measured by biochemical methods. Western blot (WB) was used to quantitatively detect the protein expression of p-PI3K,PI3K,p-Akt,Akt,PPARα,and CPT-1 in the rat liver. ResultAfter 8-week administration, the blood glucose of rats was higher in the model group than that in the control group (P<0.01), and lower in the Mori Folium water extract group than that in the model group (P<0.01). The results of HE staining showed that the liver tissue structure of the control group was complete, and the hepatocytes were arranged radially around the central vein, while the hepatocyte injury in the model group was obvious. Compared with the model group, the Mori Folium water extract group showed improved vacuolar degeneration and no lesions such as small bile duct hyperplasia. Oil red O staining showed that there was no obvious steatosis and necrosis in the hepatocytes of rats in the control group, and no lipid droplets in the hepatocytes were observed, while the model group showed increased lipid droplets. Mori Folium significantly reduced the lipid droplets in the liver. Biochemical analysis showed that the levels of TC, TG, LDL-C, AST, and ALT in the model group were significantly higher than those in control group (P<0.01). The levels of TC, TG, LDL-C, AST, and ALT in the Mori Folium water extract group were significantly lower than those in the model group (P<0.05,P<0.01). WB showed that the protein expression of p-PI3K/PI3K, p-Akt/Akt, PPARα, and CPT-1 in the model group were lower than those in the control group (P<0.01). Mori Folium water extract could increase the protein expression of p-PI3K/PI3K, p-Akt/Akt, PPARα, and CPT-1 (P<0.05 or P<0.01). ConclusionThe hypoglycemic mechanism of Mori Folium water extract may be related to the regulation of the PI3K/Akt/PPARα/CPT-1 signaling pathway.

20.
Biochem Biophys Res Commun ; 583: 135-141, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34735875

ABSTRACT

Inflammatory osteolysis is usually linked to the activation of proinflammatory macrophage and the consequent excessive osteoclast formation. Emerging evidence indicates that agents or drugs targeting lipid metabolism in macrophages might be potential in the prevention and treatment of osteolysis. d-mannose, as a natural-existed metabolic regulator, exerts strong effects on attenuating osteopenia and inflammation. However, whether d-mannose is therapeutically effective on osteolysis and whether a metabolic mechanism counts for the effect remain to be addressed. Here, by using an in vivo lipopolysaccharide (LPS)-induced inflammatory osteolysis mouse model as well as an in vitro LPS-induced inflammatory macrophage culture system, we show that d-mannose attenuates inflammatory osteolysis and inhibits excessive osteoclastogenesis by reversing the LPS-induced activation of proinflammatory macrophage. Mechanically, d-mannose recovers LPS-suppressed Cpt1a transcription and promotes lipid metabolism of macrophage. Treatment with etomoxir, an inhibitor of CPT1A, abolishes the effects of d-mannose on LPS-treated macrophage in vitro and eliminates its protection against osteolysis in vivo. Collectively, our results imply that d-mannose attenuates LPS-induced osteolysis by manipulating CPT1A-mediated lipid metabolism in macrophages. Our results disclose the unrecognized utilization of d-mannose as an effective intervention against inflammatory osteolysis and provide evidence to manage inflammatory scenarios by therapeutically targeting lipid metabolism in macrophage.

SELECTION OF CITATIONS
SEARCH DETAIL
...