Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 834
Filter
1.
BMC Bioinformatics ; 25(1): 232, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982382

ABSTRACT

BACKGROUND: Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. RESULTS: To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. CONCLUSIONS: gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.


Subject(s)
Software , Computational Biology/methods , Data Analysis
2.
Insects ; 15(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921156

ABSTRACT

The determination of innate rate of increase (r) values under different grain storage conditions is critical for insect population predictions. The r values for Cryptolestes ferrugineus (Stephens) and Tribolium castaneum (Herbst) were calculated by using a new suggested method (continuous time analysis) and data from the literature, and these calculated r values were compared to identify the r values and carrying capacities under real grain storage conditions and times. The insects were reared in small glass vials (0.3 kg wheat), small PVC columns (2 kg wheat), large PVC columns (14 kg wheat), and shallow containers (14 kg wheat or wheat + cracked wheat). The wheat or cracked wheat had 13.8 to 14.5% moisture contents at different constant temperatures (17.5 to 42.5 °C) and fluctuating temperatures. The r values at the beginning of the population were the highest. Before r became negative, it gradually decreased with increasing time. After the r value became negative, it sometimes increased to positive; however, the rebounded r was much less than the initial r and gradually tended to stabilize within an up-and-down range. This up-and-down r was related to the carrying capacity. The larger the grain bulk, the higher the innate rate was for both species. The r values associated with 14 kg of wheat could be used to predict the insect population dynamics in stored grain bins.

3.
Sci Rep ; 14(1): 11853, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789485

ABSTRACT

The objective of this study is to comprehensively assess the behavior of partially encased concrete (PEC) columns with web openings under axial compression. The primary objectives of this study are to analyze damage patterns and investigate the influence of key parameters, such as concrete strength, opening rate, and opening shape, on the ductility index and ultimate load-carrying capacity. The study employs experimental testing to examine the response of the PEC columns, with a particular focus on the mechanisms of concrete fracture and flange flexing. Notably, the study reveals a significant impact of the opening rate on the bearing capacity, while the effect of opening shape is comparatively minor. Furthermore, computational analyses are conducted to deepen the understanding of structural behavior. The study builds upon existing research to propose a novel method for calculating the bearing capacity of PEC columns with web openings. This method introduces two discount factors to enhance predictive accuracy.

4.
Sci Rep ; 14(1): 10401, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710750

ABSTRACT

This investigation considered the usability of ceramic waste powder (CWP) in altered quantities in reinforced concrete beams (RCBs). In this way, it was aimed to reduce the environmental impacts of concrete by using CWP as a raw material in RCBs. 12 small-scale shear RCBs with the dimensions of 100 × 150 × 1000 mm were tested in this study. The variations of stirrups spacing and CWP ratio were examined in these specimens. The percentages of CWP by weight utilized in RCBs were 10%, 20%, and 30%, and stirrups spacings were adopted as 270 mm, 200 mm, and 160 mm. At the end of the study, it was determined that more than 10% CWP additive negatively affected the RCBs' compressive strength. The load-carrying capacity reduced between 30.3% and 59.4% when CWP increased from 0% to 30% as compared to RCB with stirrups spacing of 270 mm without CWP. However, compared to RCB with stirrups spacings of 200 mm and 160 mm without CWP, there were decreases in the load-carrying capacity as 21.4%-54.3% and 18.6%-54.6%, respectively. While the CWP ratio increased, the specimens with 160 mm, 200 mm, and 270 mm stirrups spacings obtained a lower maximum load value. However, with the increase of the CWP ratio in the specimens with 160 mm stirrups spacing, RCBs reached the maximum load-carrying capacity at an earlier displacement value. When stirrups spacing was selected as 270 mm, it was observed that the maximum load-carrying capacity of RCBs reached at a similar displacement value as the CWP ratio increased. Besides, it was resulted that the bending stiffness of RCBs reduced as the quantity of CWP enhanced. The bending stiffness decreased by 29.1% to 66.4% in the specimens with 270 mm stirrups spacing, 36.3% to 20.2% with 200 mm stirrups spacing, and 10.3% to 36.9% with 160 mm stirrups spacing. As an implication of the experiments, the use of CWP up to 10% in RCBs was realized as an economical and environmental approach and is suggested. There is some evidence to report that making use of CWP may be considered to be ecologically benign. This is due to the fact that reusing CWP may significantly reduce CO2 emissions, save energy, and reduce total power consumption. Furthermore, the experimental results were compared to the analytical calculations.

5.
Sci Rep ; 14(1): 11986, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796635

ABSTRACT

Due to global warming and the disturbance of the interannual variability of precipitation, the frequency of extreme drought events has increased. The impact of global climate change on water resources is becoming increasingly apparent, then it is particularly necessary to explore the carrying capacity of water ecological environment under extreme drought conditions, which can guarantee the ecological water security in river basins. This study takes the Guanzhong area of the Wei River Basin as an example, calculating the water environment carrying capacity of 40 areas in the Weihe Guanzhong area in different levels of years under extreme drought conditions by comprehensive evaluation model of carrying capacity and using geographic information system GIS to display the spatial distribution of water environment carrying capacity in 40 regions. According to the results of the spatial distribution of water environmental bearing capacity, four different schemes are designed to improve the bearing capacity. The first plan reduces the industrial water consumption and irrigation quota by 5%, the second plan increases the industrial water and sewage treatment rate on this basis. the third plan further improves the development and utilization rate of surface and groundwater, and the fourth plan, on the basis of the first three plans, supplies 600 million cubic meters of industrial and agricultural water to Guanzhong region. Through comparative analysis, without taking any measures, under the extreme drought conditions, the water environment carrying capacity of the 40 areas in Guanzhong is all in an unbearable state. Overall, plan 4 has the most significant improvement in the water environment-carrying capacity, especially the Dong zhuang Reservoir of the Jing River which has played a very important role in enhancing the water ecological environment carrying capacity of the downstream water of the Wei River.

6.
Proc Natl Acad Sci U S A ; 121(21): e2318293121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753504

ABSTRACT

The antiquity of human dispersal into Mediterranean islands and ensuing coastal adaptation have remained largely unexplored due to the prevailing assumption that the sea was a barrier to movement and that islands were hostile environments to early hunter-gatherers [J. F. Cherry, T. P. Leppard, J. Isl. Coast. Archaeol. 13, 191-205 (2018), 10.1080/15564894.2016.1276489]. Using the latest archaeological data, hindcasted climate projections, and age-structured demographic models, we demonstrate evidence for early arrival (14,257 to 13,182 calendar years ago) to Cyprus and predicted that large groups of people (~1,000 to 1,375) arrived in 2 to 3 main events occurring within <100 y to ensure low extinction risk. These results indicate that the postglacial settlement of Cyprus involved only a few large-scale, organized events requiring advanced watercraft technology. Our spatially debiased and Signor-Lipps-corrected estimates indicate rapid settlement of the island within <200 y, and expansion to a median of 4,000 to 5,000 people (0.36 to 0.46 km-2) in <11 human generations (<300 y). Our results do not support the hypothesis of inaccessible and inhospitable islands in the Mediterranean for pre-agropastoralists, agreeing with analogous conclusions for other parts of the world [M. I. Bird et al., Sci. Rep. 9, 8220 (2019), 10.1038/s41598-019-42946-9]. Our results also highlight the need to revisit these questions in the Mediterranean and test their validity with new technologies, field methods, and data. By applying stochastic models to the Mediterranean region, we can place Cyprus and large islands in general as attractive and favorable destinations for paleolithic peoples.


Subject(s)
Archaeology , Humans , Cyprus , Archaeology/methods , History, Ancient , Human Migration/history , Demography/methods
7.
Sci Total Environ ; 927: 172404, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608894

ABSTRACT

The Qinghai-Tibet Plateau (QTP) serves as a vital barrier for both national security and ecological preservation. Overpopulation and urban sprawl pose threats to its ecological security, while underpopulation and small urban cities also undermine national security. Hence, optimizing population distribution and urban development on the QTP is crucial for bolstering the national security perimeter and ensuring basic modernisation across China. Nonetheless, understanding the population carrying capacity (CC) of the QTP and how large cities can safeguard both national security and ecological stability remains limited. To address this research gap, we utilised various model algorithms and methodologies to assess the population CC and urban scale of the QTP from seven different perspectives. The results indicate that the permanent population CC of the QTP in 2050 will be 26.2 million people, with an urbanisation level of 57.25 %, thereby allowing 15 million people to enter cities. Thus, the QTP can add 13.07 million people to its permanent population in the future, with a newly added urban population of 8.75 million, increasing the urbanisation level by 9.67 %. The future permanent population will mainly be distributed in the Xining, Lhasa, and Qaidam metropolitan areas. Combined, the permanent and urban populations will account for 38.54 % and 49.84 % of the QTP, respectively. Moreover, these populations will be moderately dispersed in 11 important node cities and more widely dispersed in key border towns. These findings provide a scientific basis for the sustainable development and high-quality urbanisation of the QTP, which have important implications for achieving sustainable development goals, offering crucial references for governments to formulate resource management policies and achieve sustainable resource utilisation.


Subject(s)
Cities , Urbanization , Urbanization/trends , Tibet , China , Humans , Conservation of Natural Resources
8.
Front Plant Sci ; 15: 1340566, 2024.
Article in English | MEDLINE | ID: mdl-38601311

ABSTRACT

It is crucial to estimate the theoretical carrying capacity of grasslands in Xinjiang to attain a harmonious balance between grassland and livestock, thereby fostering sustainable development in the livestock industry. However, there has been a lack of quantitative assessments that consider long-term, multi-scale grass-livestock balance and its impacts in the region. This study utilized remote sensing and empirical models to assess the theoretical livestock carrying capacity of grasslands. The multi-scale spatiotemporal variations of the theoretical carrying capacity in Xinjiang from 1982 to 2020 were analyzed using the Sen and Mann-Kendall tests, as well as the Hurst index. The study also examined the county-level grass-livestock balance and inter-annual trends. Additionally, the study employed the geographic detector method to explore the influencing factors. The results showed that: (1) The overall theoretical livestock carrying capacity showed an upward trend from 1982 to 2020; The spatial distribution gradually decreased from north to south and from east to west. In seasonal scale from large to small is: growing season > summer > spring > autumn > winter; at the monthly scale, the strongest livestock carrying capacity is in July. The different grassland types from largest to smallest are: meadow > alpine subalpine meadow > plain steppe > desert steppe > alpine subalpine steppe. In the future, the theoretical livestock carrying capacity of grassland will decrease. (2) From 1988 to 2020, the average grass-livestock balance index in Xinjiang was 2.61%, showing an overall increase. At the county level, the number of overloaded counties showed an overall increasing trend, rising from 46 in 1988 to 58 in 2020. (3) Both single and interaction factors of geographic detectors showed that annual precipitation, altitude and soil organic matter were the main drivers of spatiotemporal dynamics of grassland load in Xinjiang. The results of this study can provide scientific guidance and decision-making basis for achieving coordinated and sustainable development of grassland resources and animal husbandry in the region.

9.
Sci Rep ; 14(1): 9050, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643210

ABSTRACT

Land is the foundation of human life and development, which is also the most important part of a country. The study of land carrying capacity is one of the important contents of land management, wherein the evaluation of land resource carrying capacity (LRCC) is an important reference for land resource planning. Aiming at the information fuzziness and uncertainty in the evaluation of LRCC, firstly, a comprehensive evaluation model based on entropy weight and normal cloud similarity was proposed, which is based on cloud model theory and combined with normal cloud similarity measurement method and entropy weight method. Secondly, taking the asphalt pavement experiment as an example for empirical analysis, the experimental results are consistent with the actual situation, which proves the feasibility and effectiveness of the proposed model. Finally, taking China's Chongqing city as the research area, the proposed evaluation model is used to study LRCC. The research results indicate that the comprehensive carrying capacity and average carrying capacity of various systems in China's Chongqing have been improved in the past decade. Among them, the comprehensive carrying capacity rose from the second level during the "12th Five-Year Plan" period to the third level during the "13th Five-Year Plan" period. In the future, it is necessary to focus on the improvement of soil and water resources system and economic and technological system. This conclusion reflects LRCC of Chongqing in China objectively and has a reference value for Chongqing's land planning.

10.
Biomimetics (Basel) ; 9(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667257

ABSTRACT

Power ultrasound is widely used in industrial production, medical equipment, aerospace, and other fields. Currently, there are two main types of commonly used power generation devices: piezoelectric ultrasonic transducers and magnetostrictive ultrasonic transducers. However, in certain situations with limited external dimensions, the applications of existing power ultrasound devices are limited. In nature, leaf-cutting ants excite vibrations through their tiny organs. Inspired by the vibratory organs of leaf-cutting ants, a new type of biomimetic ultrasonic vibrator (BUV) comprising a scraper, dentate disc, and fixture system was proposed, fabricated, and tested in this study. The experimental results showed that the BUV could operate in the frequency range of 16.8-19 kHz. Within the working frequency range, the vibration of the BUV was stable and the amplitude of the vibration displacement was greater than 22 µm. The operating frequency band of the BUV was broader than those of the piezoelectric and magnetostrictive ultrasonic transducers. In addition, the BUV can cut soft rubber and pig tissues with sufficient output power and load-carrying capacity. The BUV, as a new type of power ultrasonic excitation device, is expected to be applied in high-power micro operating scenarios, such as minimally invasive surgical instruments.

11.
Sci Rep ; 14(1): 9804, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684726

ABSTRACT

Interest continues to grow in Arctic megafaunal ecological engineering, but, since the mass extinction of megafauna ~ 12-15 ka, key physiographic variables and available forage continue to change. Here we sought to assess the extent to which contemporary Arctic ecosystems are conducive to the rewilding of megaherbivores, using a woolly mammoth (M. primigenius) proxy as a model species. We first perform a literature review on woolly mammoth dietary habits. We then leverage Oak Ridge National Laboratories Distributive Active Archive Center Global Aboveground and Belowground Biomass Carbon Density Maps to generate aboveground biomass carbon density estimates in plant functional types consumed by the woolly mammoth at 300 m resolution on Alaska's North Slope. We supplement these analyses with a NASA Arctic Boreal Vulnerability Experiment dataset to downgrade overall biomass estimates to digestible levels. We further downgrade available forage by using a conversion factor representing the relationship between total biomass and net primary productivity (NPP) for arctic vegetation types. Integrating these estimates with the forage needs of woolly mammoths, we conservatively estimate Alaska's North Slope could support densities of 0.0-0.38 woolly mammoth km-2 (mean 0.13) across a variety of habitats. These results may inform innovative rewilding strategies.


Subject(s)
Biomass , Ecosystem , Mammoths , Arctic Regions , Animals , Alaska , Carbon/analysis , Carbon/metabolism
12.
Sci Rep ; 14(1): 5830, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461308

ABSTRACT

Channel-forming discharge (Dcf) is an important parameter in river management and reservoir flood regulation. Applying the methods for calculating Dcf to reaches downstream reservoirs characterized by drastic changes in water and sediment conditions and long-term scouring status is difficult. Based on the riverbed-shaping principle of sediment-laden water flow, while simultaneously considering the active action of water flow and response of the riverbed, this study proposes a new method for calculating Dcf by identifying the extreme value of the suspended sediment-carrying capacity index. The application of this method to the middle and lower reaches of the Yangtze River showed that after the impoundment of the Three Gorges Reservoir, Dcf in this section was reduced by an amplitude between 2500 and 4700 m3/s. The results can be used to guide the operation of the Three Gorges Reservoir and the management of the middle and lower reaches of the Yangtze River, thus providing reference for other river channels downstream of the reservoir.

13.
Environ Pollut ; 348: 123831, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38513940

ABSTRACT

Predicting chemical flux to soil from industrial point sources accurately at a regional scale has been a significant challenge due to high uncertainty in spatial heterogeneity and quantification. To address this challenge, we developed an innovative approach by combining California Air Resources Board Puff (CALPUFF) and mass balance models, leveraging their complementary strengths in quantitative accuracy and spatial precision. Specifically, CALPUFF was used to predict the polycyclic aromatic hydrocarbons (PAHs) flux to soil due to industrial sources. Additionally, the spatial distribution coefficient of PAHs flux (e.g., si for spatial unit i) was calculated by neural network and combined with the mass balance model to obtain the results of total PAHs fluxes, which were then combined with the results predicted by CALPUFF to effectively estimate the contribution of industrial sources to soil PAHs flux. Taking a petrochemical industry region located in Zhejiang province, China as a case study, results showed the input Phenanthrene (Phe) and Benzo(a)pyrene (BaP) fluxes predicted by CALPUFF were generally lower than those by the mass balance model, with slightly different distribution patterns. CALPUFF results, based on 36 industrial sources, partially represent those of the mass balance model, which includes all sources and pathways. It was suggested that industrial sources contributed 49%-89% and 65%-100% of soil Phe and BaP, respectively across the study area. The average Phe flux from point sources by deposition averaged 2.68 mg m-2∙a-1 in 2021, accounting for approximately 60% of the total Phe flux to soil. The average BaP flux from point sources by deposition averaged 0.0755 mg m-2∙a-1, accounting for only 0.1%-3.65% of the total BaP flux to soil. Thereby, our approach fills up a gap between the relevance to point sources and the accuracy of deposition quantification in estimating chemical flux from specific point sources to soil at a regional scale.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Polycyclic Aromatic Hydrocarbons/analysis , Phenanthrenes/analysis , Soil Pollutants/analysis , China , Environmental Monitoring/methods
14.
Environ Sci Pollut Res Int ; 31(10): 15900-15919, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308779

ABSTRACT

The long-term dynamic comprehensive evaluation of the water resource carrying capacity (WRCC) and the analysis of its potential driving mechanism in arid areas are contemporary research issues and technical means of mitigating and coordinating the conflict between severe resource shortages and human needs. The purpose of this study was to explore the distribution of the WRCC and the spatiotemporal heterogeneity of drivers in arid areas based on an improved two-dimensional spatiotemporal dynamic evaluation model. The results show that (1) the spatial distribution of the WRCC in Xinjiang, China, is high in the north, low in the south, high in the west, and low in the east. (2) From 2005 to 2020, the centers of gravity of the WRCC in northern and southern Xinjiang moved to the southeast and west, respectively, and the spatial distribution exhibited slight diffusion. (3) The factors influencing the WRCC exhibit more obvious spatial and temporal heterogeneity. The domestic waste disposal rate and ecological water use rate were the main factors influencing the WRCC in the early stage, while the GDP per capita gradually played a dominant role in the later stage. (4) In the next 30 years, the WRCC in Xinjiang will increase. The results provide a theoretical reference for the sustainable development of water resources in arid areas.


Subject(s)
Gravitation , Water Resources , Humans , China , Diffusion , Head
15.
Sci Total Environ ; 919: 170757, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340851

ABSTRACT

Water resources carrying capacity (WRCC) is indispensable for sustainable development, acting as a crucial determinant for harmonizing ecological preservation with socio-economic advancement. This research delineates an advanced evaluation index system for WRCC, focusing on Henan Province, China, a region straddling the Yangtze, Huaihe, Yellow, and Haihe river basins. Leveraging the analytic hierarchy process (AHP) with a system dynamics (SD) model, our analysis dissects the nonlinear interplays among demographic expansion, economic activities, land use patterns, water resources, and water environment. We introduce a novel integration of the "Four Determinations with Water" principle with sustainable development tenets, thereby sculpting six exploratory scenarios that chart Henan's potential paths from 2022 to 2035. Through these scenarios, we forecast and scrutinize the evolution of population dynamics, GDP, water supply, and sewage discharge volumes, employing rigorous quantitative analyses for a holistic evaluation. The results show that: WRCC in Henan Province becomes larger gradually, and, in Scenario 6, the WRCC indicator is the largest (0.643 in 2035) and the prediction effect is the best, while in Scenario 1, the WRCC indicator is the smallest (0.472 in 2035) and the prediction effect is the worst. Based on the prediction results, suggestions were made to adjust the industrial structure and strengthen the awareness of water conservation to improve the regional water resources carrying capacity.

16.
R Soc Open Sci ; 11(2): 231462, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420629

ABSTRACT

For the 40 years after the end of commercial whaling in 1976, humpback whale populations in the North Pacific Ocean exhibited a prolonged period of recovery. Using mark-recapture methods on the largest individual photo-identification dataset ever assembled for a cetacean, we estimated annual ocean-basin-wide abundance for the species from 2002 through 2021. Trends in annual estimates describe strong post-whaling era population recovery from 16 875 (± 5955) in 2002 to a peak abundance estimate of 33 488 (± 4455) in 2012. An apparent 20% decline from 2012 to 2021, 33 488 (± 4455) to 26 662 (± 4192), suggests the population abruptly reached carrying capacity due to loss of prey resources. This was particularly evident for humpback whales wintering in Hawai'i, where, by 2021, estimated abundance had declined by 34% from a peak in 2013, down to abundance levels previously seen in 2006, and contrasted to an absence of decline in Mainland Mexico breeding humpbacks. The strongest marine heatwave recorded globally to date during the 2014-2016 period appeared to have altered the course of species recovery, with enduring effects. Extending this time series will allow humpback whales to serve as an indicator species for the ecosystem in the face of a changing climate.

17.
Heliyon ; 10(3): e25500, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333827

ABSTRACT

The objective of the study was to examine the dynamics and sugar content of nectar of major bee flora species and to determine an approximate honeybee colony carrying capacity in northeast dry land areas of the Amhara region. Acacia asak, Acacia etbaica, Acacia tortolis, Becium grandiflorum, and Cordia africana honeybee floral species were selected on the basis of relative dominance in the area. Floral nectar was collected through micropipette and washing techniques based on the flower nature of the species and nectar sugar was measured by refractometer. Hence, A.asak, A.etbaica, A.tortolis, B.grandiflorum, and C.africana could have been estimated to produce 10.2 ± 6.4 mg, 5.3 ± 4.6 mg, and 2.6±1 mg. 4, 3.7 ± 2.1 mg, and 5.7 ± 3.2mg/flower head of nectar sugar, respectively. In a single tree of A.etbaica, A.asak, A.tortolis, B.grandiflorum, and C.africana a mean of 0.15 kg, 0.15 kg, 0.06 kg, 0.01 kg, and 0.03 kg of honey yield was expected to produce respectively. Similarly in a hectare of land, a mean of 49.9 kg, 128.9 kg, 5.6 kg, 5.5 kg, and 2.2 kg of honey was estimated to harvest. In a hectare of land a sum of 57.5 kg, 57.5 kg, and 128.9 kg of honey in highland, midland, and lowland locations, respectively was estimated to produce during the main harvesting season of the area. The mean number of honeybee colonies introduced in the lowland have estimated to be 18 traditional, 6 transitional, and 5 modern hives, and in the highland 12 traditional, 6 transitional, and 5 modern hives whereas in the midland 8 traditional, 5 transitional, 3 modern hives. In summary, even in the study area with limited rainfall and high temperatures, these species secreted a substantial amount of nectar sugar and supporting the enhancement of honey yield.

18.
J Appl Physiol (1985) ; 136(4): 984-993, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38420680

ABSTRACT

Absolute total hemoglobin mass (tHbmass) and blood compartment volumes are often considered to be higher in endurance athletes compared with nonathletes, yet little data support a fitness effect in older age. Therefore, we measured tHbmass and blood compartment volumes (carbon monoxide rebreathing) in 77 healthy individuals (23% female; aged, 60-87 yr). Participants were recruited into groups based upon their lifelong (>25 yr) exercise "dose": 1) 15 sedentary individuals, <2 sessions/wk; 2) 25 casual exercisers, 2-3 sessions/wk; 3) 24 committed exercisers, 4-5 sessions/wk; and 4) 13 competitive Masters athletes, 6-7 sessions/wk, plus regular competitions. Absolute (L/min) and relative (mL/kg/min) V̇o2peak were higher with increasing exercise "dose" (P = 0.0005 and P < 0.0001, respectively). Hemoglobin concentration, hematocrit, and absolute tHbmass and blood compartment volumes were not significantly different between groups (all, P > 0.1328). When scaled to body mass, tHbmass (Sedentary, 9.2 ± 1.7 mL/kg; Casual, 9.2 ± 1.3; Committed, 10.2 ± 1.4; Competitive, 11.5 ± 1.4, ANOVA P < 0.0001) and blood volume were significantly different between groups [Sedentary, 63.4 (59.2-68.5) mL/kg; Casual, 67.3 (64.4-72.6); Committed, 73.5 (67.5-80.2); Competitive, 83.4 (78.9-88.6), ANOVA P < 0.0001], whereby all values were highest in Masters athletes. However, when scaled to fat-free mass (FFM), tHbmass and blood compartment volumes were greater in Competitive compared with Casual exercisers (all, P < 0.0340) and tHbmass and erythrocyte volume were also higher in Committed compared with Casual exercisers (both, P < 0.0134). In conclusion, absolute tHbmass and blood compartment volumes are not different between groups, with dose-dependent differences only among exercisers when scaled for FFM, with the highest tHbmass and blood compartment volumes in competitive Masters athletes.NEW & NOTEWORTHY We observed that absolute oxygen carrying capacity (total hemoglobin mass, tHbmass) and blood compartment volumes were not associated with lifelong exercise dose. However, hematological adaptations associated with lifelong habitual exercise are only present among exercisers, whereby competitive Masters athletes have a greater oxygen carrying capacity (tHbmass) and expanded blood compartment volumes when scaled to fat-free mass.


Subject(s)
Conservation of Natural Resources , Exercise , Humans , Female , Aged , Male , Blood Volume , Exercise Test , Hemoglobins/analysis , Oxygen Consumption
19.
Eur J Appl Physiol ; 124(7): 2057-2067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38393417

ABSTRACT

The human spleen acts as a reservoir for red blood cells, which is mobilized into the systemic circulation during various conditions such as hypoxia and physical exertion. Cross-country (XC) skiers, renowned for their exceptional aerobic capacity, are regularly exposed to high-intensity exercise and local oxygen deficits. We investigated a putative dose-dependent relationship between splenic contraction and concomitant hemoglobin concentration ([Hb]) elevation across four exercise intensities in well-trained XC skiers. Fourteen male XC skiers voluntarily participated in a 2-day protocol, encompassing a serial apnea test and a V ˙ O2max test (day 1), followed by three submaximal exercise intensities on a roller skiing treadmill corresponding to 55, 70, and 85% of V ˙ O2max (day 2). Spleen volume was measured via ultrasonic imaging, and venous blood samples were used to determine [Hb] levels. Baseline spleen volume was similar (266(35) mL) for all conditions (NS). Notably, all conditions induced significant splenic contractions and transient [Hb] elevations. The V ˙ O2max test exhibited the most pronounced splenic contraction (35.8%, p < 0.001) and a [Hb] increase of 8.1%, while the 85% exercise intensity led to 27.1% contraction and the greatest [Hb] increase (8.3%, < 0.001) compared to baseline. The apnea test induced relatively smaller responses (splenic contraction: 20.4%, [Hb] = 3.3%, p < 0.001), akin to the response observed at the 70% exercise intensity (splenic contraction = 23%, [Hb] = 6.4%, p < 0,001) and 55% (splenic contraction = 20.0%, [Hb] = 4.8%, p < 0.001). This study shows a discernible dose-dependent relationship between splenic contraction and [Hb] increase with levels of exercise, effectively distinguishing between submaximal and maximal exercise intensity.


Subject(s)
Hemoglobins , Skiing , Spleen , Humans , Male , Spleen/diagnostic imaging , Hemoglobins/metabolism , Skiing/physiology , Adult , Exercise/physiology , Apnea/physiopathology , Apnea/blood , Oxygen Consumption/physiology , Muscle Contraction/physiology , Physical Exertion/physiology , Young Adult
20.
Ecol Lett ; 27(1): e14363, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235912

ABSTRACT

Global change is rapidly and fundamentally altering many of the processes regulating the flux of energy throughout ecosystems, and although researchers now understand the effect of temperature on key rates (such as aquatic primary productivity), the theoretical foundation needed to generate forecasts of biomass dynamics and extinction risk remains underdeveloped. We develop new theory that describes the interconnected effects of nutrients and temperature on phytoplankton populations and show that the thermal response of equilibrium biomass (i.e. carrying capacity) always peaks at a lower temperature than for productivity (i.e. growth rate). This mismatch is driven by differences in the thermal responses of growth, death, and per-capita impact on the nutrient pool, making our results highly general and applicable to widely used population models beyond phytoplankton. We further show that non-equilibrium dynamics depend on the pace of environmental change relative to underlying vital rates and that populations respond to variable environments differently at high versus low temperatures due to thermal asymmetries.


Subject(s)
Ecosystem , Phytoplankton , Temperature , Biomass , Population Dynamics , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL
...