Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
Article in English | MEDLINE | ID: mdl-38988172

ABSTRACT

BACKGROUND: Melatonin (MT) has been demonstrated to have cardioprotective effects. Nevertheless, the precise mechanism through which MT provides protection against the etiology of LPS-induced myocardial injury remains uncertain. In this investigation, our objective was to explore the impact of MT on LPS-induced myocardial injury in an in vitro setting. METHODS: H9C2 cells were categorized into four groups: a control group (H9C2 group), an MT group, an LPS group, and an MT + LPS group. The H9C2 group received treatment with sterile saline solution, the LPS group was exposed to 5 µg/mL LPS for 24 hours, the MT + LPS group underwent pretreatment with 150 µmol/L MT for 2 hours, followed by exposure to 5 µg/mL LPS for 24 hours, and the MT group received only 150 µmol/L MT for 2 hours. Cell viability and lactate dehydrogenase (LDH) release were assessed using the CCK-8 assay and LDH activity assay, respectively. The levels of reactive oxygen species (ROS) were quantified in each group of cells, and the percentage of propidium iodide (PI)-stained apoptotic cells was determined by flow cytometry. The mRNA levels of caspase11, GSDMD, and IL-18 in each group of cells were quantified. RESULTS: MT treatment significantly protected H9C2 cells from LPS-induced damage, as evidenced by decreased LDH release. LPS treatment markedly increased ROS levels in H9C2 cells, which were subsequently reduced by MT. LPS caused a substantial decrease in superoxide dismutase (SOD) activity and a significant increase in malondialdehyde (MDA) levels, while MT treatment significantly reversed these effects. Additionally, MT markedly enhanced the proportion of viable H9C2 cells compared to LPS-treated controls, as evidenced by the PI staining assay. LPS upregulated both mRNA levels and protein levels of IL-18 in H9C2 cells. However, MT treatment effectively mitigated this LPS-induced increase. Furthermore, MT significantly decreased LPS-induced protein levels of cleaved-caspase 11 and GSDMD-N in H9C2 cells. CONCLUSION: Overall, our findings suggest that MT inhibits the Caspase11-GSDMD signaling pathway via pyroptosis-related proteins (caspase-11 and GSDMD-N) and reduces the expression of inflammation-related cytokines (IL-18), thereby exerting a protective effect on H9C2 cells after LPS injury.

2.
Acta Physiol (Oxf) ; : e14187, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864370

ABSTRACT

AIM: Animals exhibit physiological changes designed to eliminate the perceived danger, provoking similar symptoms of fever. However, a high-grade fever indicates poor clinical outcomes. Caspase11 (Casp11) is involved in many inflammatory diseases. Whether Casp11 leads to fever remains unclear. In this study, we investigate the role of the preoptic area of the hypothalamus (PO/AH) microglia Casp11 in fever. METHODS: We perform experiments using a rat model of LPS-induced fever. We measure body temperature and explore the functions of peripheral macrophages and PO/AH microglia in fever signaling by ELISA, immunohistochemistry, immunofluorescence, flow cytometry, macrophage depletion, protein blotting, and RNA-seq. Then, the effects of macrophages on microglia in a hyperthermic environment are observed in vitro. Finally, adeno-associated viruses are used to knockdown or overexpress microglia Casp11 in PO/AH to determine the role of Casp11 in fever. RESULTS: We find peripheral macrophages and PO/AH microglia play important roles in the process of fever, which is proved by macrophage and microglia depletion. By RNA-seq analysis, we find Casp11 expression in PO/AH is significantly increased during fever. Co-culture and conditioned-culture simulate the induction of microglia Casp11 activation by macrophages in a non-contact manner. Microglia Casp11 knockdown decreases body temperature, pyrogenic factors, and inflammasome, and vice versa. CONCLUSION: We report that Casp11 drives fever. Mechanistically, peripheral macrophages transmit immune signals via cytokines to microglia in PO/AH, which activate the Casp11 non-canonical inflammasome. Our findings identify a novel player, the microglia Casp11, in the control of fever, providing an explanation for the transmission and amplification of fever immune signaling.

3.
Tissue Cell ; 89: 102425, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38875922

ABSTRACT

Caspase-11 is the murine homologue of human caspases-4 and -5 and is involved in mediating the inflammatory response. However, its functions are often confused and misinterpreted with the more important and better described caspase-1. Therefore, this study focused exclusively on the specific roles of caspase-11, both in cartilage formation and in the inflammatory environment. The presence of caspase-11 during mouse limb development and in chondrogenic cell cultures was investigated by immunofluorescence detection. Subsequently, the function of caspase-11 was downregulated and the affected molecules investigated. The expression analysis applied for osteo/chondrogenesis associated factors and inflammatory cytokines. Simultaneously, morphological appearance of the micromass cultures was evaluated. The results revealed that caspase-11 is physiologically present during cartilage development, but its inhibition under physiological conditions has no significant effect on chondrogenic differentiation. However, in an inflammatory environment, inhibition and downregulation of caspase-11 leads to reduced differentiation of cartilage nodules. Additionally, reduced expression of several genes including Col2a1 and Sp7 and conversely increased expression of Mmp9 were observed. In the cytokine expression panel, a significant decrease was found in molecules that, along with the inflammatory function, may also be involved in cartilage differentiation. The findings bring new information about caspase-11 in chondrogenesis and show that its downregulation under inflammatory conditions reduces cartilage formation.

4.
mBio ; : e0297523, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837391

ABSTRACT

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.

5.
MedComm (2020) ; 5(6): e610, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881675

ABSTRACT

Noncanonical pyroptosis is triggered by Caspase 4/5/11, which cleaves Gasdermin D (GSDMD), leading to cell lysis. While GSDMD has been studied previously in systemic lupus erythematosus (SLE), the role of pyroptosis in SLE pathogenesis remains unclear and contentious, with limited understanding of Caspase 11-mediated pyroptosis in this condition. In this study, we explored the level of Caspase 11-mediated pyroptosis in SLE, identifying both the upstream pathways and the interaction between pyroptosis and adaptive immune responses. We observed increased Caspase 5/11 and GSDMD-dependent pyroptosis in the macrophages/monocytes of both lupus patients and mice. We identified serum lipopolysaccharide (LPS), released from the gut due to a compromised gut barrier, as the signal that triggers Caspase 11 activation in MRL/lpr mice. We further discovered that pyroptotic macrophages promote the differentiation of mature B cells independently of T cells. Additionally, inhibiting Caspase 11 and preventing LPS leakage proved effective in improving lupus symptoms in MRL/lpr mice. These findings suggest that elevated serum LPS, resulting from a damaged gut barrier, induces Caspase 11/GSDMD-mediated pyroptosis, which in turn promotes B cell differentiation and enhances autoimmune responses in SLE. Thus, targeting Caspase 11 could be a viable therapeutic strategy for SLE.

6.
Immunobiology ; 229(3): 152796, 2024 May.
Article in English | MEDLINE | ID: mdl-38484431

ABSTRACT

BACKGROUND: We have previously found that enhancer of zeste homolog 2 (EZH2) is correlated with inflammatory infiltration and mucosal cell injury in ulcerative colitis (UC). This study aims to analyze the role of X-inactive specific transcript (XIST), a possible interactive long non-coding RNA of EZH2, in UC and to explore the mechanisms. METHODS: C57BL/6N mice were treated with dextran sulfate sodium (DSS), and mouse colonic mucosal epithelial cells were treated with DSS and lipopolysaccharide (LPS) for UC modeling. The UC-related symptoms in mice, and the viability and apoptosis of mucosal epithelial cells were determined. Inflammatory injury in animal and cellular models were assessed through the levels of ACS, occludin, IL-1ß, IL-18, TNF-α, caspase-1, and caspase-11. Molecular interactions between XIST, EZH2, and GABA type A receptor-associated protein (GABARAP) were verified by immunoprecipitation assays, and their functions in inflammatory injury were determined by gain- or loss-of-function assays. RESULTS: XIST was highly expressed in DSS-treated mice and in DSS + LPS-treated mucosal epithelial cells. It recruited EZH2, which mediated gene silencing of GABARAP through H3K27me3 modification. Silencing of XIST alleviated body weight loss, colon shortening, and disease active index of mice and reduced inflammatory injuries in their colon tissues. Meanwhile, it reduced apoptosis and inflammation in mucosal epithelial cells. However, these alleviating effects were blocked by either EZH2 overexpression or GABARAP knockdown. Rescue experiments identified caspase-11 as a key effector mediating the inflammatory injury following GABARAP loss. CONCLUSION: This study suggests that the XIST-EZH2 interaction-mediated GABARAP inhibition activates caspase-11-dependent inflammatory injury in UC.


Subject(s)
Apoptosis Regulatory Proteins , Caspases, Initiator , Colitis, Ulcerative , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein , RNA, Long Noncoding , Animals , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , RNA, Long Noncoding/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Mice , Caspases, Initiator/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Dextran Sulfate , Apoptosis , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Inflammation/metabolism , Humans , Male , Lipopolysaccharides , Colon/pathology , Colon/metabolism
7.
Cell Mol Life Sci ; 81(1): 114, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436813

ABSTRACT

Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.


Subject(s)
Extracellular Traps , Hyperuricemia , Renal Insufficiency, Chronic , Humans , Hyperuricemia/complications , Actins , Uric Acid , Caspases , Inflammation , Fibrosis , Gasdermins , Phosphate-Binding Proteins
8.
Chin J Integr Med ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532152

ABSTRACT

OBJECTIVE: To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS: Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 ß, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 ß were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS: SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 ß, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS: SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.

9.
Free Radic Biol Med ; 215: 64-76, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437927

ABSTRACT

BACKGROUND: Sepsis-induced cardiomyopathy (SICM) is common complication in septic patients with a high mortality and is characterized by an abnormal inflammation response, which was precisely regulated by endogenous specialized pro-resolving mediators (SPMs). However, the metabolic changes of cardiac SPMs during SICM and the roles of SPMs subset in the development of SICM remain unknown. METHODS: In this work, the SPMs concentration was assessed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) of SICM mice and SICM patients. The cardiac function was measured by echocardiography after the treatment of a SPMs subset, termed Resolvin D2 (RvD2). Caspase-11-/-, GSDMD-/- and double deficient (Caspase-11-/-GSDMD-/-) mice were used to clarify the mechanisms of RvD2 in SICM. RESULTS: We found that endogenous cardiac SPMs were disorders and RvD2 was decreased significantly and correlated with left ventricular ejection fraction (LVEF) and ß-BNP, cTnT in Lipopolysaccharide/Cecum ligation and puncture (CLP) induced SICM models. Treatment with RvD2 attenuated lethality, cardiac dysfunction and cardiomyocytes death during SICM. Mechanistically, RvD2 alleviated SICM via inhibiting Caspase-11/GSDMD-mediated cardiomyocytes pyroptosis. Finally, the plasma levels of RvD2 were also decreased and significantly correlated with IL-1ß, ß-BNP, cTnT and LVEF in patients with SICM. Of note, plasma RvD2 level is indicator of SICM patients from healthy controls or sepsis patients. CONCLUSION: These findings suggest that decreased cardiac RvD2 may involve in the pathogenesis of SICM. In addition, treatment with RvD2 represents a novel therapeutic strategy for SICM by inhibiting cardiomyocytes pyroptosis.


Subject(s)
Cardiomyopathies , Docosahexaenoic Acids , Sepsis , Humans , Mice , Animals , Pyroptosis , Chromatography, Liquid , Stroke Volume , Tandem Mass Spectrometry , Ventricular Function, Left , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Sepsis/complications , Sepsis/drug therapy , Sepsis/genetics , Gasdermins , Phosphate-Binding Proteins/genetics
10.
Cell Rep ; 43(4): 114004, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38522070

ABSTRACT

During infections, host cells are exposed to pathogen-associated molecular patterns (PAMPs) and virulence factors that stimulate multiple signaling pathways that interact additively, synergistically, or antagonistically. The net effect of such higher-order interactions is a vital determinant of the outcome of host-pathogen interactions. Here, we demonstrate one such complex interplay between bacterial exotoxin- and PAMP-induced innate immune pathways. We show that two caspases activated during enterohemorrhagic Escherichia coli (EHEC) infection by lipopolysaccharide (LPS) and Shiga toxin (Stx) interact in a functionally antagonistic manner; cytosolic LPS-activated caspase-11 cleaves full-length gasdermin D (GSDMD), generating an active pore-forming N-terminal fragment (NT-GSDMD); subsequently, caspase-3 activated by EHEC Stx cleaves the caspase-11-generated NT-GSDMD to render it nonfunctional, thereby inhibiting pyroptosis and interleukin-1ß maturation. Bacteria typically subvert inflammasomes by targeting upstream components such as NLR sensors or full-length GSDMD but not active NT-GSDMD. Thus, our findings uncover a distinct immune evasion strategy where a bacterial toxin disables active NT-GSDMD by co-opting caspase-3.


Subject(s)
Caspase 3 , Gasdermins , Intracellular Signaling Peptides and Proteins , Macrophages , Phosphate-Binding Proteins , Pyroptosis , Pyroptosis/drug effects , Phosphate-Binding Proteins/metabolism , Macrophages/metabolism , Macrophages/microbiology , Intracellular Signaling Peptides and Proteins/metabolism , Caspase 3/metabolism , Humans , Animals , Mice , Apoptosis Regulatory Proteins/metabolism , Bacterial Toxins/metabolism , Caspases/metabolism , Lipopolysaccharides/pharmacology , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/pathogenicity , Caspases, Initiator/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Interleukin-1beta/metabolism
11.
Respir Res ; 25(1): 119, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459541

ABSTRACT

BACKGROUND: The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS: House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS: Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION: Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.


Subject(s)
Asthma , Lectins, C-Type , Neutrophils , Animals , Humans , Mice , Asthma/metabolism , Caspases/metabolism , Chemokines/metabolism , Gasdermins , Inflammation/metabolism , Lung/metabolism , Macrophages/metabolism , Neutrophils/metabolism , Pyroglyphidae , Pyroptosis
12.
J Pharmacol Sci ; 154(3): 166-174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395517

ABSTRACT

Imidazole derivatives are commonly used as antifungal agents. Here, we aimed to investigate the functions of imidazole derivatives on macrophage lineage cells. We assessed the expression levels of inflammatory cytokines in mouse monocyte/macrophage lineage (RAW264.7) cells. All six imidazole derivatives examined, namely ketoconazole, sulconazole, isoconazole, luliconazole, clotrimazole, and bifonazole, reduced the expression levels of inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-α, after induction by lipopolysaccharide (LPS) in RAW264.7 cells. These imidazole derivatives also induced cell death in RAW264.7 cells, regardless of the presence or absence of LPS. Since the cell death was characteristic in morphology, we investigated the mode of the cell death. An imidazole derivative, sulconazole, induced gasdermin D degradation together with caspase-11 activation, namely, pyroptosis in RAW264.7 cells and peritoneal macrophages. Furthermore, priming with interferon-γ promoted sulconazole-induced pyroptosis in RAW264.7 cells and macrophages and reduced the secretion of the inflammatory cytokine, IL-1ß, from sulconazole-treated macrophages. Our results suggest that imidazole derivatives suppress inflammation by inducing macrophage pyroptosis, highlighting their modulatory potential for inflammatory diseases.


Subject(s)
Interferon-gamma , Pyroptosis , Mice , Animals , Interferon-gamma/metabolism , Monocytes/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Imidazoles/pharmacology , Imidazoles/metabolism , Cytokines/metabolism
13.
Mol Biol Rep ; 51(1): 351, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400865

ABSTRACT

The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1ß (IL-1ß). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.


Subject(s)
Inflammasomes , Nervous System Diseases , Humans , Inflammasomes/metabolism , Cytokines/metabolism , Caspase 1/metabolism , Apoptosis , Nervous System Diseases/genetics , Caspases , Intracellular Signaling Peptides and Proteins
14.
Int Immunopharmacol ; 129: 111615, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38330799

ABSTRACT

Maclurin is a natural phenolic compound isolated from Morus alba(white mulberry) andGarcinia mangostana (purple mangosteen) and has been reported to regulate cancer progression, oxidative stress, and melanogenesis. The regulatory role of maclurin, however, has never been demonstrated. This study investigated in vitro and in vivo anti-inflammatory roles of maclurin and the underlying mechanism in caspase-11 non-canonical inflammasome-stimulated inflammatory responses in macrophages and an animal model of acute lethal sepsis. Maclurin protected J774A.1 macrophages from LPS-induced cytotoxicity and suppressed caspase-11 non-canonical inflammasome-stimulated pyroptosis. Maclurin decreased the secretion and mRNA expression of pro-inflammatory cytokines and inflammatory mediators, such as IL-1ß, IL-18, TNF-α, IL-6, nitric oxide (NO), and inducible NO synthase (iNOS) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages. Mechanistic studies revealed that maclurin markedly suppressed the proteolytic activation of caspase-11 and gasdermin D (GSDMD) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages, while it did not inhibit caspase-11-mediated direct sensing of LPS. In vivo study revealed that maclurin ameliorated acute lethal sepsis in mice by increasing the survival rate and decreasing the serum levels of IL-1ß and IL-18 without significant toxicity. In conclusion, this study suggests that maclurin is a novel anti-inflammatory agent in inflammatory responses and against acute lethal sepsis via the inhibition of the caspase-11 non-canonical inflammasome in macrophages, which justifies its potential as an anti-inflammatory therapeutic agent in traditional medicine.


Subject(s)
Inflammasomes , Plant Lectins , Sepsis , Animals , Mice , Inflammasomes/metabolism , Caspases/metabolism , Interleukin-18/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Anti-Inflammatory Agents/pharmacology
15.
Alzheimers Res Ther ; 16(1): 29, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38326859

ABSTRACT

Alzheimer's disease (AD) is the sixth leading cause of death in the USA. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release pro-inflammatory products such as IL-1ß which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed reduced representation bisulfite sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed promotes the generation of IL-1ß and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4 and CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-ß (Aß) and increased microglial production of IL-1ß in 5xFAD mice. Utilizing RNA-sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1ß from macrophages in response to cytosolic Aß through cleavage of downstream effector Gasdermin D (GSDMD). Therefore, here we unravel the role for CASP11 and GSDMD in the generation of IL-1ß in response to Aß and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential DNA methylation in AD microglia contributes to the progression of AD pathobiology. Thus, we identify CASP4 as a potential target for immunotherapies for the treatment and prevention of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Caspases, Initiator , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , DNA Methylation , Inflammation/pathology , Mice, Transgenic , Microglia/metabolism , Caspases, Initiator/metabolism
16.
Int J Biol Sci ; 20(4): 1413-1435, 2024.
Article in English | MEDLINE | ID: mdl-38385085

ABSTRACT

Caspase-11 detection of intracellular lipopolysaccharide mediates non-canonical pyroptosis, which could result in inflammatory damage and organ lesions in various diseases such as sepsis. Our research found that lactate from the microenvironment of acetaminophen-induced acute liver injury increased Caspase-11 levels, enhanced gasdermin D activation and accelerated macrophage pyroptosis, which lead to exacerbation of liver injury. Further experiments unveiled that lactate inhibits Caspase-11 ubiquitination by reducing its binding to NEDD4, a negative regulator of Caspase-11. We also identified that lactates regulated NEDD4 K33 lactylation, which inhibits protein interactions between Caspase-11 and NEDD4. Moreover, restraining lactylation reduces non-canonical pyroptosis in macrophages and ameliorates liver injury. Our work links lactate to the exquisite regulation of the non-canonical inflammasome, and provides a basis for targeting lactylation signaling to combat Caspase-11-mediated non-canonical pyroptosis and acetaminophen-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Pyroptosis , Humans , Acetaminophen/toxicity , Caspases, Initiator/metabolism , Caspases/metabolism , Lactic Acid
17.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396768

ABSTRACT

Inflammasomes are intracellular multiprotein complexes that activate inflammatory signaling pathways. Inflammasomes comprise two major classes: canonical inflammasomes, which were discovered first and are activated in response to a variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and non-canonical inflammasomes, which were discovered recently and are only activated in response to intracellular lipopolysaccharide (LPS). Although a larger number of studies have successfully demonstrated that canonical inflammasomes, particularly the NLRP3 inflammasome, play roles in various rheumatic diseases, including rheumatoid arthritis (RA), infectious arthritis (IR), gouty arthritis (GA), osteoarthritis (OA), systemic lupus erythematosus (SLE), psoriatic arthritis (PA), ankylosing spondylitis (AS), and Sjögren's syndrome (SjS), the regulatory roles of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical inflammasomes, in these diseases are still largely unknown. Interestingly, an increasing number of studies have reported possible roles for non-canonical inflammasomes in the pathogenesis of various mouse models of rheumatic disease. This review comprehensively summarizes and discusses recent emerging studies demonstrating the regulatory roles of non-canonical inflammasomes, particularly focusing on the caspase-11 non-canonical inflammasome, in the pathogenesis and progression of various types of rheumatic diseases and provides new insights into strategies for developing potential therapeutics to prevent and treat rheumatic diseases as well as associated diseases by targeting non-canonical inflammasomes.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Rheumatic Diseases , Animals , Mice , Humans , Inflammasomes/metabolism , Caspases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 1/metabolism
18.
Elife ; 132024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231198

ABSTRACT

Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.


Subject(s)
Caspases , Inflammasomes , Animals , Mice , Caspases/genetics , Cytosol , Lipopolysaccharides , Proteolysis
19.
J Dent Res ; 103(3): 298-307, 2024 03.
Article in English | MEDLINE | ID: mdl-38197150

ABSTRACT

Periodontitis (PD) is the primary cause of tooth loss in adults. Porphyromonas gingivalis (P.g), a keystone pathogen, has been identified as a crucial contributor to this process. Pyroptosis activation in PD is acknowledged, with accumulating evidence underscoring the crucial role of Caspase-11 (described as Caspase-4/5 in humans)-mediated noncanonical pyroptosis. However, the mechanism behind its impact on PD remains unclear. In this study, we delved into the interplay between the Caspase-11-mediated noncanonical pyroptosis, subgingival microbiota alteration, and macrophage polarization. Clinical samples from PD patients revealed heightened expression of Caspase-4, gasdermin-D, and their active fragments, pointing to the activation of the noncanonical pyroptosis. Single-cell sequencing analysis linked Caspase-4 with gingival macrophages, emphasizing their involvement in PD. In vitro cell experiments confirmed that P.g-induced pyroptosis was activated in macrophages, with Casp11 deficiency attenuating these effects. In an experimental PD mouse model, Casp11 deficiency led to an alteration in subgingival microbiota composition and reduced alveolar bone resorption. Casp11-/- mice cohousing with wild-type mice confirmed the alteration of the subgingival microbiota and aggravated the alveolar bone resorption. Notably, Casp11 deficiency led to decreased M1-polarized macrophages, corresponding with reduced alveolar bone resorption, uncovering a connection between subgingival microbiota alteration, macrophage M1 polarization, and alveolar bone resorption. Taken together, we showed that Caspase-11 fulfilled a crucial role in the noncanonical pyroptosis in PD, potentially influencing the subgingival microbiota and linking to M1 polarization, which was associated with alveolar bone resorption. These findings underscored the pivotal role of the Caspase-11-mediated noncanonical pyroptosis in PD pathogenesis and may provide critical insights into potential therapeutic avenues for mitigating PD.


Subject(s)
Alveolar Bone Loss , Microbiota , Periodontitis , Adult , Animals , Humans , Mice , Alveolar Bone Loss/complications , Caspases , Periodontitis/complications , Porphyromonas gingivalis
20.
Cell Rep ; 42(12): 113581, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38103201

ABSTRACT

Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1ß and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1ß to generate a 27-kDa fragment that deactivates IL-1ß signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1ß recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.


Subject(s)
Caspases , Interleukin-18 , Interleukin-1beta , Caspases/genetics , Caspases/immunology , Interleukin-18/chemistry , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/chemistry , Interleukin-1beta/genetics , Interleukin-1beta/immunology , RAW 264.7 Cells , HEK293 Cells , HeLa Cells , THP-1 Cells , Humans , Inflammasomes/immunology , Signal Transduction/genetics , Proteolysis , Protein Binding , Protein Multimerization , Salmonella Infections/enzymology , Salmonella Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...