ABSTRACT
In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.
Subject(s)
Genome, Fungal , Manihot , Plant Diseases , Manihot/microbiology , Plant Diseases/microbiology , Asia, Southeastern , Phylogeny , Basidiomycota/genetics , Basidiomycota/isolation & purificationABSTRACT
Cassava witches' broom disease (CWBD) is one of the main diseases of cassava in Southeast Asia (SEA). Affected cassava plants show reduced internodal length and proliferation of leaves (phyllody) in the middle and top part of the plant, which results in reduced root yields of 50% or more. It is thought to be caused by phytoplasma; however, despite its widespread distribution in SEA still little is known about CWBD pathology. The overarching goal of this study was to review and corroborate published information on CWBD biology and epidemiology considering recent field observations. We report the following: (1) CWBD symptoms are conserved and persistent in SEA and are distinct from what has been reported as witches' broom in Argentina and Brazil. (2) In comparison with cassava mosaic disease, another major disease of cassava in SEA, symptoms of CWBD develop later. (3) Phytoplasma detected in CWBD-affected plants belong to different ribosomal groups and there is no association study available indicating phytoplasma as the causing agent of CWBD. These findings are essential clues for designing surveillance and management strategies and for future studies to better understand the biology, tissue localization and spatial spread of CWBD in SEA and other potential risk areas.