Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Chem Ecol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38949747

ABSTRACT

Plant responses to damage by insectivorous herbivores are well-documented in mature leaves. The resulting herbivore-induced plant volatiles (HIPVs) protect the plant by attracting carnivorous arthropods and even some insectivorous vertebrates, to parasitize or consume the plant invaders. However, very little is known about plant production of HIPVs in developing buds, particularly when herbivorous insects are too small to be considered a prey item. It is additionally unclear whether plants respond differently to generalist and specialist chewing insects that overlap in distribution. Therefore, we compared HIPV production of Downy oak (Quercus pubescens Willd.) buds infested with freshly hatched caterpillars of Tortrix viridana (specialist) and Operophtera brumata (generalist), against uninfested buds. Of the compounds identified in both years of the experiment, we found that (Z)-hex-3-enyl acetate, (E)-ß-ocimene, acetophenone, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, α-copaene, α-humulene, (E)-caryophyllene, and (E,E)-α-farnesene appeared to be higher in infested buds compared to controls. We found no difference in HIPV production between the specialist and the generalist herbivores. Production of HIPVs was also associated with leaf damage, with higher HIPV production in more severely attacked buds. Thus, our study shows that oak trees already start responding to insect herbivory before leaves are developed, by producing compounds similar to those found in damaged mature leaves. Future work should focus on how Downy oak may benefit from initiating alarm cues at a time when carnivorous arthropods and insectivorous vertebrates are unable to use herbivorous insects as host or food.

2.
Ecol Lett ; 27(5): e14427, 2024 May.
Article in English | MEDLINE | ID: mdl-38698677

ABSTRACT

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Subject(s)
Arthropods , Biodiversity , Birds , Climate , Predatory Behavior , Trees , Animals , Arthropods/physiology , Birds/physiology , Food Chain , Larva/physiology
3.
Proc Natl Acad Sci U S A ; 121(23): e2322674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768327

ABSTRACT

Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.


Subject(s)
Predatory Behavior , Wasps , Animals , Predatory Behavior/physiology , Wasps/physiology , Air , Static Electricity
4.
Anim Cogn ; 27(1): 35, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656554

ABSTRACT

Cognition is a powerful adaptation, enabling animals to utilise resources that are unavailable without manipulation. Tool use and food processing are examples of using cognition to overcome the protective mechanisms of food resources. Here, we describe and examine the flexibility of proto-tool use (defined as the alteration of an object through object-substrate manipulation) for food processing in a cooperatively breeding bird, the Arabian babbler (Argya squamiceps). Field observations demonstrate that the birds transport different caterpillar species to different substrate types depending on the processing method needed to prepare the caterpillar for eating. Species with toxic setae (e.g. Casama innotata) are transported to be rubbed on rough substrates (e.g. sand) before consumption, while other species (e.g. Hyles livornica) are transported to be pounded against hard substrates until their inner organs are removed and only their external body part is consumed. These results are among the few to describe flexible proto-tool use for food processing in wild animals. They thereby contribute to the taxonomic mapping of proto-tool use and food processing in non-human species, which is a fundamental step to advance comparative studies on the evolution of these behaviours and their underlying cognitive mechanisms.


Subject(s)
Feeding Behavior , Passeriformes , Animals , Passeriformes/physiology , Tool Use Behavior , Cognition , Predatory Behavior , Female , Male
5.
Glob Chang Biol ; 30(3): e17241, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38525809

ABSTRACT

Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.


Subject(s)
Ecosystem , Moths , Animals , Humans , Urbanization , Larva , Phylogeny , Biodiversity , Insecta
6.
Ecol Evol ; 14(2): e11002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343573

ABSTRACT

Insect herbivores, such as lepidopteran larvae, often have close evolutionary relationships with their host plants, with which they may be locked in an evolutionary arms race. Larval grouping behaviour may be one behavioural adaptation that improves host plant feeding, but aggregation also comes with costs, such as higher competition and limited resource access. Here, we use the Heliconiini butterfly tribe to explore the impact of host plant traits on the evolution of larval gregariousness. Heliconiini almost exclusively utilise species from the Passifloraceae as larval host plants. Passifloraceae display incredible diversity in leaf shape and a range of anti-herbivore defences, suggesting they are responding to, and influencing, the evolution of Heliconiini larvae. By analysing larval social behaviour as both a binary (solitary or gregarious) and categorical (increasing larval group size) trait, we revisit the multiple origins of larval gregariousness across Heliconiini. We investigate whether host habitat, leaf defences and leaf size are important drivers of, or constraints on, larval gregariousness. Whereas our data do not reveal links between larval gregariousness and the host plant traits included in this study, we do find an interaction between host plant specialisation and larval behaviour, revealing gregarious larvae to be more likely to feed on a narrower range of host plant species than solitary larvae. We also find evidence that this increased specialisation typically precedes the evolutionary transition to gregarious behaviour. The comparatively greater host specialisation of gregarious larvae suggests that there are specific morphological and/or ecological features of their host plants that favour this behaviour.

7.
Biol Lett ; 20(1): 20230565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38263881
8.
Oecologia ; 203(1-2): 205-218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37831151

ABSTRACT

There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.


Subject(s)
Herbivory , Trees , Biodiversity , Forests , Plants
9.
Oecologia ; 203(1-2): 13-25, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37689603

ABSTRACT

Shelter building caterpillars act as ecosystem engineers by creating and maintaining leaf shelters, which are then colonized by other arthropods. Foliage quality has been shown to influence initial colonization by shelter-building caterpillars. However, the effects of plant quality on the interactions between ecosystem engineers and their communities have yet to be studied at the whole plant level. We examined how leaf tying caterpillars, as ecosystem engineers, impact arthropod communities on Quercus alba (white oak), and the modifying effect of foliage quality on these interactions. We removed all leaf tying caterpillars and leaf ties on 35 Q. alba saplings during the season when leaf tying caterpillars were active (June-September), and compared these leaf tie removal trees to 35 control trees whose leaf ties were left intact. Removal of these ecosystem engineers had no impact on overall arthropod species richness, but reduced species diversity, and overall arthropod abundance and that of most guilds, and changed the structure of the arthropod community as the season progressed. There was an increase in plant-level species richness with increasing number of leaf ties, consistent with Habitat Diversity Hypothesis. In turn, total arthropod density, and that of both leaf tying caterpillars and free-feeding caterpillars were affected by foliar tannin and nitrogen concentrations, and leaf water content. The engineering effect was greatest on low quality plants, consistent with the Stress-Gradient Hypothesis. Our results demonstrate that interactions between ecosystem engineering and plant quality together determine community structure of arthropods on Q. alba in Missouri.


Subject(s)
Arthropods , Quercus , Animals , Ecosystem , Plant Leaves , Plants
10.
Naturwissenschaften ; 110(5): 46, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712985

ABSTRACT

In gregarious species, coordinated responses to environmental stimuli are important for a successful habitat and/or food selection. In this sense, maintenance of group cohesion after stochastic disturbances and during collective movements is expected to be advantageous, as is the existence of group leaders. Through laboratory experiments, we examined whether clusters of early instars of Mechanitis polymnia casabranca have both leaders and followers, as well as whether larvae are able to reaggregate depending on neighbors' degree of kinship. In the leadership experiment, clusters of second and third instars were placed in a trail arena having a stimulus leaf at its ending point. Every larva moving ahead from the group was recorded as a leader, and the remaining ones were followers. We also examined whether leaders were temporary or permanent. Of the 195 larvae tested, 22 were permanent leaders (11.28%), 71 larvae were assigned as temporary leaders (36.41%), and 102 larvae never behaved as leaders (52.31%). In the larval cohesion experiment, three treatments were assigned: (i) sibling larvae reared and tested together, (ii) sibling larvae separated after eclosion and tested together, and (iii) non-sibling larvae reared separated and tested together. Sibling larvae reaggregated significantly more compared to non-siblings, regardless of whether they were reared together or separately. Our results show that early instars of M. polymnia casabranca from the same egg cluster are able to recompose aggregations after disrupting disturbances and that group decision-making is mostly dependent on transient leaders.


Subject(s)
Butterflies , Animals , Larva , Leadership , Plant Leaves
11.
Biology (Basel) ; 12(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37237505

ABSTRACT

Predatory stink bugs capture prey by injecting salivary venom from their venom glands using specialized stylets. Understanding venom function has been impeded by a scarcity of knowledge of their venom composition. We therefore examined the proteinaceous components of the salivary venom of the predatory stink bug Arma custos (Fabricius, 1794) (Hemiptera: Pentatomidae). We used gland extracts and venoms from fifth-instar nymphs or adult females to perform shotgun proteomics combined with venom gland transcriptomics. We found that the venom of A. custos comprised a complex suite of over a hundred individual proteins, including oxidoreductases, transferases, hydrolases, ligases, protease inhibitors, and recognition, transport and binding proteins. Besides the uncharacterized proteins, hydrolases such as venom serine proteases, cathepsins, phospholipase A2, phosphatases, nucleases, alpha-amylases, and chitinases constitute the most abundant protein families. However, salivary proteins shared by and unique to other predatory heteropterans were not detected in the A. custos venom. Injection of the proteinaceous (>3 kDa) venom fraction of A. custos gland extracts or venom into its prey, the larvae of the oriental armyworm Mythimna separata (Walker, 1865), revealed insecticidal activity against lepidopterans. Our data expand the knowledge of heteropteran salivary proteins and suggest predatory asopine bugs as a novel source for bioinsecticides.

12.
Front Genet ; 14: 1137618, 2023.
Article in English | MEDLINE | ID: mdl-37144120

ABSTRACT

Grassland caterpillars (Lepidoptera: Erebidae: Gynaephora) are important pests in alpine meadows of the Qinghai-Tibetan Plateau (QTP). These pests have morphological, behavioral, and genetic adaptations for survival in high-altitude environments. However, mechanisms underlying high-altitude adaptation in QTP Gynaephora species remain largely unknown. Here, we performed a comparative analysis of the head and thorax transcriptomes of G. aureata to explore the genetic basis of high-altitude adaptation. We detected 8,736 significantly differentially expressed genes (sDEGs) between the head and thorax, including genes related to carbohydrate metabolism, lipid metabolism, epidermal proteins, and detoxification. These sDEGs were significantly enriched in 312 Gene Ontology terms and 16 KEGG pathways. We identified 73 pigment-associated genes, including 8 rhodopsin-associated genes, 19 ommochrome-associated genes, 1 pteridine-associated gene, 37 melanin-associated genes, and 12 heme-associated genes. These pigment-associated genes were related to the formation of the red head and black thorax of G. aureata. A key gene, yellow-h, in the melanin pathway was significantly upregulated in the thorax, suggesting that it is related to the formation of the black body and contributed to the adaptation of G. aureata to low temperatures and high ultraviolet radiation in the QTP. Another key gene, cardinal, in the ommochrome pathway was significantly upregulated in the head and may be related to red warning color formation. We also identified 107 olfactory-related genes in G. aureata, including genes encoding 29 odorant-binding proteins, 16 chemosensory proteins, 22 odorant receptor proteins, 14 ionotropic receptors, 12 gustatory receptors, 12 odorant degrading enzymes, and 2 sensory neuron membrane proteins. Diversification of olfactory-related genes may be associated with the feeding habits of G. aureata, including larvae dispersal and searching for plant resources available in the QTP. These results provide new insights into high-altitude adaptation of Gynaephora in the QTP and may contribute to the development of new control strategies for these pests.

13.
Proc Biol Sci ; 290(1994): 20230153, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36883276

ABSTRACT

Artificial light at night (ALAN) is a globally widespread and expanding form of anthropogenic change that impacts arthropod biodiversity. ALAN alters interspecific interactions between arthropods, including predation and parasitism. Despite their ecological importance as prey and hosts, the impact of ALAN on larval arthropod stages, such as caterpillars, is poorly understood. We examined the hypothesis that ALAN increases top-down pressure on caterpillars from arthropod predators and parasitoids. We experimentally illuminated study plots with moderate levels (10-15 lux) of LED lighting at light-naive Hubbard Brook Experimental Forest, New Hampshire. We measured and compared between experimental and control plots: (i) predation on clay caterpillars, and (ii) abundance of arthropod predators and parasitoids. We found that predation rates on clay caterpillars and abundance of arthropod predators and parasitoids were significantly higher on ALAN treatment plots relative to control plots. These results suggest that moderate levels of ALAN increase top-down pressure on caterpillars. We did not test mechanisms, but sampling data indicates that increased abundance of predators near lights may play a role. This study highlights the importance of examining the effects of ALAN on both adult and larval life stages and suggests potential consequences of ALAN on arthropod populations and communities.


Subject(s)
Arthropods , Lepidoptera , Animals , Clay , Light Pollution , Biodiversity , Forests , Larva
14.
Ecotoxicol Environ Saf ; 252: 114638, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36791502

ABSTRACT

Biodiversity is currently declining worldwide. Several threats have been identified such as habitat loss and climate change. It is unknown if and how air pollution can work in addition or in synergy to these threats, contributing to the decline of current species and/or local extinction. Few studies have investigated the effects of particulate matter (PM), the main component of air pollution, on insects, and no studies have investigated its genotoxic effects through Micronucleus assay. Butterflies play an important role in the environment, as herbivores during larval stages, and as pollinators as adults. The aim of this study was to evaluate the genotoxic effects of PM10 from different sites along a gradient of population urbanization, on a common cabbage butterfly species (Pieris brassicae). PM10 was collected from April to September in an urban (Turin, Italy), a suburban (Druento, Italy) and a mountain site (Ceresole Reale, Italy) with different urbanization levels. P. brassicae larvae (n = 218) were reared in the laboratory under controlled conditions (26 °C, L:D 15:9) on cabbage plants (average 9.2 days), and they were exposed to PM10 organic extracts (20 and 40 m3/mL) or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected and cells were used for the Micronucleus (MN) assay. Results showed that all PM extracts induced significant DNA damage in exposed larvae compared to controls, and that increasing the PM dose (from 20 to 40 m3/mL) increased genotoxic effects. However, we did not detect any significant differences between sites with different urbanization levels. In conclusion, PM at different concentrations induced genotoxic effects on larvae of a common butterfly species. More alarmingly, PM could work in addition to and/or in synergy with other compounds (e.g. pesticides) and, especially on species already threatened by other factors (e.g. fragmentation), thus affecting the vitality of populations, leading to local extinctions.


Subject(s)
Air Pollutants , Butterflies , Animals , Particulate Matter/toxicity , Particulate Matter/analysis , Larva , Urbanization , DNA Damage , Air Pollutants/toxicity , Air Pollutants/analysis
15.
Environ Sci Pollut Res Int ; 30(15): 45285-45294, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36705823

ABSTRACT

Atmospheric pollution poses a serious threat to environment and human health, and particulate matter (PM) is one of the major contributors. Biological effects induced by PM are investigated through in vitro assays using cells and by in vivo tests with laboratory model animals. However, also the estimation of adverse effects of pollutants, including airborne ones, on wild animals, such as insects, is an essential component of environmental risk assessment. Among insects, butterflies are sensitive to environmental changes and are important wild pollinators, so they might be suitable as environmental bioindicator species. The aim of this study was to evaluate the suitability of a wild cabbage butterfly species (Pieris brassicae) as a bioindicator organism to assess the genotoxic effects of PM10 collected in different sites. PM10 was collected from April to September in urban, suburban, and rural sites. P. brassicae larvae were reared in laboratory under controlled conditions on cabbage plants and exposed to PM10 organic extracts or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected, and cells were used for comet assay. All PM extracts induced significant DNA damage in exposed larvae compared to controls and the extract collected in the most polluted site caused the highest genotoxic effect. In conclusion, the study suggested that butterflies, such as P. brassicae, could be applied as sensitive and promising bioindicators to investigate air quality and PM genotoxicity. Indeed, the use of these organisms allows the detection of genotoxic effects induced by PM sampled also in low-polluted areas.


Subject(s)
Air Pollutants , Brassica , Butterflies , Animals , Humans , Particulate Matter/analysis , Sentinel Species , Air Pollutants/analysis , DNA Damage , Environmental Biomarkers
16.
Pest Manag Sci ; 79(2): 803-810, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36259248

ABSTRACT

BACKGROUND: Plants defend themselves from insect feeding by activating specific metabolic pathways. We performed a metabolomic analysis to compare the metabolome reorganization that occurs in the leaves of two genotypes of cabbage (one partially resistant and one susceptible) when attacked by Mamestra brassicae caterpillars. RESULTS: The comparison of the metabolomic reorganization of both genotypes allowed us to identify 43 metabolites that are specifically associated with the insect feeding response in the resistant genotype. Of these, 19% are lipids or lipid-related compounds, most of which are modified fatty acids. These include glycosylated, glycerol-binding and oxidized fatty acids, the majority being associated with the oxylipin pathway. Some of the identified lipids are unlikely to be produced by plants and may be the result of biochemical reactions in the caterpillar oral secretions. A further 16% are phenylpropanoids. Interestingly, some phenylpropanoids were not present in the susceptible genotype, making them possible candidates for specific resistance-related compounds. CONCLUSION: Our results suggest that glucosinolates do not have a clear role in the resistance to M. brassicae feeding on cabbage. Using an untargeted metabolomics approach, we associated the regulation of metabolic pathways related to lipid signalling and phenylpropanoid compounds with the resistance to this pest. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Brassica , Lepidoptera , Moths , Animals , Brassica/genetics , Moths/physiology , Signal Transduction/genetics , Fatty Acids , Lipids
17.
J Anim Ecol ; 92(2): 442-453, 2023 02.
Article in English | MEDLINE | ID: mdl-36507573

ABSTRACT

Global biodiversity decline and its cascading effects through trophic interactions pose a severe threat to human society. Establishing the impacts of biodiversity decline requires a more thorough understanding of multi-trophic interactions and, more specifically, the effects that loss of diversity in primary producers has on multi-trophic community assembly. Within a synthetic conceptual framework for multi-trophic beta-diversity, we tested a series of hypotheses on neutral and niche-based bottom-up processes in assembling herbivore and carnivore communities in a subtropical forest using linear models, hieratical variance partitioning based on linear mixed-effects models (LMMs) and simulation. We found that the observed taxonomic, phylogenetic and functional beta-diversity of both herbivorous caterpillars and carnivorous spiders were significantly and positively related to tree dissimilarity. Linear models and variance partitioning for LMMs jointly suggested that as a result of bottom-up effects, producer dissimilarities were predominant in structuring consumer dissimilarity, the strength of which highly depended on the trophic dependencies on producers, the diversity facet examined, and data quality. Importantly, linear models for standardized beta-diversities against producer dissimilarities implied a transition between niche-based processes such as environmental filtering and competitive exclusion, which supports the role of bottom-up effect in determining consumer community assembly. These findings enrich our mechanistic understanding of the 'Diversity Begets Diversity' hypothesis and the complexity of higher-trophic community assembly, which is fundamental for sustainable biodiversity conservation and ecosystem management.


Subject(s)
Ecosystem , Herbivory , Humans , Animals , Phylogeny , Biodiversity , Forests
18.
Microb Ecol ; 86(1): 647-657, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36002667

ABSTRACT

Entomopathogenic fungi may play a crucial role in the regulation of caterpillar populations in soybean crops, either through natural occurrences or applied as mycopesticides. In the present work, we reported the naturally occurring entomopathogenic fungus Pandora gammae attacking the caterpillar Chrysodeixis includens, with infection rates in field trials ran in two consecutive years in the 10-35% range. As many chemicals are potentially harmful to entomopathogenic fungi, this work aimed to investigate the potential impact of two chemical fungicides (azoxystrobin + benzovindiflupyr and trifloxistrobina + prothioconazole) used to control soybean rust (Phakopsora pachyrhizi) on the natural occurrence of P. gammae and Metarhizium rileyi, as well as the efficacy of the latter fungus applied as different formulations against the soybean caterpillars Anticarsia gemmatalis and C. includens. Under laboratory conditions, fungicides used at field-recommended rates had a considerable negative impact on the germinability of M. riley on the medium surface, and all tested formulations did not protect conidia from damage by these chemicals. This harmful effect also impacted host infectivity, as the larval mortality owing to this fungus was reduced by 30-40% compared to that of the fungicide-free treatments. In field trials conducted in two subsequent years, unformulated and formulated M. rileyi conidia applied to soybean plants produced primary infection sites in caterpillar populations after a single spray. Spraying unformulated or formulated M. rileyi conidia following fungicide application on plants did not affect host infection rates over time. Moreover, the use of M. rileyi-based formulations or chemical fungicide did not interfere with the natural infection rates by P. gammae on its host, C. includens. Although a higher degree of exposure to non-selective fungicides can negatively affect fungal entomopathogens, a single foliar application of fungicides may be harmless to both M. rileyi and P. gammae in soybean fields. Additionally, this work showed that naturally occurring wasps and tachnids also play an important role in the regulation of A. gemmatalis and, notably, C. includens, with parasitism rates above 40-50% in some cases.


Subject(s)
Fungicides, Industrial , Metarhizium , Moths , Animals , Glycine max , Larva/microbiology , Crops, Agricultural , Fungicides, Industrial/pharmacology
19.
Insects ; 13(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36292834

ABSTRACT

There are 472 edible insect species in sub-Saharan Africa, of which 31% are Lepidoptera. Wild harvesting is still the main source of supply for these prized species to this day, with some harvesting techniques negatively impacting the environment. The successful production of edible caterpillars requires the appropriate and efficient implementation of husbandry techniques and practices. In this review, we present current literature on edible caterpillars. We provide a general overview of their life history, nutritional composition, and availability associated with specific host plants, with emphasis on semi-domestication and rearing practices that should replace wild harvest. Based on the assimilated information, a proposal of potential species for farming is provided, with details on key characteristics of development cycles to promote the establishment and development of sustainable farms of edible caterpillars at small and large scales. Such advances would contribute toward reducing anthropological pressure related to the exploitation of these food resources, as well as the environmental footprint of this widespread practice.

20.
J Equine Vet Sci ; 114: 104001, 2022 07.
Article in English | MEDLINE | ID: mdl-35490973

ABSTRACT

Mare Reproductive Loss Syndrome (MRLS) is the term given to abortions in mares associated with Eastern Tent caterpillars (ETC; Malacosoma americanum). This paper aims to examine if the hypothesis for a toxin as the cause of MRLS holds up to testing using Westerman's Correlates of Causal Strength of Evidence (WCCSE) and fits with known environmental factors that influence the occurrence of MRLS. Using WCCSE all correlates fit with a toxin as a potential causative agent. Environmental factors also fitted with this hypothesis. MRLS events were associated with higher than normal ambient temperatures and lower than normal precipitation. Higher temperatures facilitated a rapid tightly grouped hatching interval which produced a higher population density of ETCs during a specific time period and encouraged more active ingestion of Black Cherry tree leaves. These leaves contain prunasin, the precursor of a toxin produced by the ETCs, which protects the caterpillars from predation. ETCs serve as the vector for the toxin which contaminated pasture and water during off-tree feeding bouts. The toxin accumulated on the pasture forage in the absence of rainfall, thus increasing exposure and clinical responses. Precipitation diluted the contaminate which reduced the toxin dose and clinical affects following ingestion of the contaminated grass or water. The pathogenesis of MRLS remains unconfirmed. However, the potential role of a toxin in this syndrome should be considered.


Subject(s)
Horse Diseases , Lepidoptera , Abortion, Veterinary/epidemiology , Animals , Female , Horse Diseases/chemically induced , Horses , Pregnancy , Reproduction , Syndrome , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...