Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713252

ABSTRACT

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Subject(s)
CDC2 Protein Kinase , Cyclin B1 , DNA-Binding Proteins , Kinesins , Multiple Myeloma , cdc25 Phosphatases , Animals , Female , Humans , Male , Mice , Middle Aged , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/genetics , Cell Line, Tumor , Cell Proliferation , Cyclin B1/metabolism , Cyclin B1/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Kinesins/metabolism , Kinesins/genetics , Mice, Inbred BALB C , Mice, Nude , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Prognosis , Signal Transduction
2.
Transl Lung Cancer Res ; 13(3): 552-572, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38601452

ABSTRACT

Background: With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods: Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results: CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions: MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.

3.
Cell Oncol (Dordr) ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616208

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential. METHOD: We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD. RESULTS: We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways. CONCLUSIONS: Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.

4.
Toxicology ; 501: 153707, 2024 01.
Article in English | MEDLINE | ID: mdl-38104654

ABSTRACT

Deoxynivalenol (DON) stands among the prevalent mycotoxins, and usually contaminates cereal foods and animal feed, leading to human and animal clinical poisoning symptoms such as abdominal pain, diarrhea, and vomiting. To date, the mechanism of toxicity of DON in different mammalian cells is not fully elucidated. In this study, we explored the detrimental impacts of DON on porcine intestinal epithelial cells (IPEC-1), serving as a representative model for porcine intestinal epithelial cells. After treating cells with DON for 24 h, DON can significantly inhibit the activity of cells, induce the production of reactive oxygen species (ROS), significantly reduce the content of glutathione and the activity of catalase, and increase the activity of superoxide dismutase and malondialdehyde, leading to an imbalance in intracellular redox status. In addition, DON can induce DNA double-strand breaks, and decrease mitochondrial membrane potential. Furthermore, DON can promote the release of Cyt C through changes in mitochondrial permeability through inhibit the expression of B-cell lymphoma 2 (Bcl-2) proteins, leading to apoptosis through the mitochondrial pathway. On the other hand, we found that DON can cause IPEC-1 cells G2 phase cycle arrest. Different with our pervious study, DON induces cell cycle arrest in the G2 phase only by activating the ATM-Chk2-Cdc 25 C pathway, but cannot regulate the cell cycle arrest via the ATM-p53 pathway. These results indicate that DON can induce the same toxic phenotype in different cells, but its toxic mechanism is different. All these provide a rationale for revealing DON induced cytotoxicity and intestinal diseases.


Subject(s)
Trichothecenes , Tumor Suppressor Protein p53 , Animals , Swine , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Trichothecenes/toxicity , Cell Line , Apoptosis , Epithelial Cells/metabolism , DNA Damage , Mammals
5.
Bioorg Chem ; 142: 106952, 2024 01.
Article in English | MEDLINE | ID: mdl-37952486

ABSTRACT

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/pathology , Proteomics , Cell Proliferation , Cell Cycle Checkpoints , Nitrogen , Cell Line, Tumor , cdc25 Phosphatases , Poly (ADP-Ribose) Polymerase-1 , CDC2 Protein Kinase
6.
Cell Rep ; 42(9): 113041, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37682709

ABSTRACT

Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Alternative Splicing/genetics , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism , Cell Cycle/genetics , Cell Division , Cell Line, Tumor , Lung Neoplasms/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
7.
Int J Oncol ; 62(5)2023 May.
Article in English | MEDLINE | ID: mdl-36929198

ABSTRACT

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Cycle Checkpoints , Drugs, Chinese Herbal , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , cdc25 Phosphatases/metabolism , Cell Division , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Kinesins/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MAP Kinase Signaling System/drug effects , Mice, Nude , NF-kappa B/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
8.
Biomedicines ; 11(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36830899

ABSTRACT

Given that, even after multimodal therapy, early-stage lung cancer (LC) often recurs, novel prognostic markers to help guide therapy are highly desired. The mRNA levels of cell division cycle 25C (CDC25C), a phosphatase that regulates G2/M cell cycle transition in malignant cells, correlate with poor clinical outcomes in lung adenocarcinoma (LUAD). However, whether CDC25C protein detected by immunohistochemistry can serve as a prognostic marker in LUAD is yet unknown. We stained an LC tissue array and a cohort of 61 LUAD tissue sections for CDC25C and searched for correlations between CDC25C staining score and the pathological characteristics of the tumors and the patients' clinical outcomes. Clinical data were retrieved from our prospectively maintained departmental database. We found that high expression of CDC25C was predominant among poorly differentiated LUAD (p < 0.001) and in LUAD > 1cm (p < 0.05). Further, high expression of CDC25C was associated with reduced disease-free survival (p = 0.03, median follow-up of 39 months) and with a trend for reduced overall survival (p = 0.08). Therefore, high expression of CDC25C protein in LUAD is associated with aggressive histological features and with poor outcomes. Larger studies are required to further validate CDC25C as a prognostic marker in LUAD.

9.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675024

ABSTRACT

Cell division regulators play a vital role in neural progenitor cell (NPC) proliferation and differentiation. Cell division cycle 25C (CDC25C) is a member of the CDC25 family of phosphatases which positively regulate cell division by activating cyclin-dependent protein kinases (CDKs). However, mice with the Cdc25c gene knocked out were shown to be viable and lacked the apparent phenotype due to genetic compensation by Cdc25a and/or Cdc25b. Here, we investigate the function of Cdc25c in developing rat brains by knocking down Cdc25c in NPCs using in utero electroporation. Our results indicate that Cdc25c plays an essential role in maintaining the proliferative state of NPCs during cortical development. The knockdown of Cdc25c causes early cell cycle exit and the premature differentiation of NPCs. Our study uncovers a novel role of CDC25C in NPC division and cell fate determination. In addition, our study presents a functional approach to studying the role of genes, which elicit genetic compensation with knockout, in cortical neurogenesis by knocking down in vivo.


Subject(s)
Cell Cycle Proteins , Neural Stem Cells , Neurogenesis , cdc25 Phosphatases , Animals , Rats , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cyclin-Dependent Kinases/metabolism , Down-Regulation/genetics , Neurogenesis/genetics , Neurogenesis/physiology , Neural Stem Cells/metabolism
10.
J Cancer ; 13(9): 2954-2969, 2022.
Article in English | MEDLINE | ID: mdl-35912011

ABSTRACT

Purpose: Cancer stem cells (CSCs) are the evil source of tumor metastasis and recurrence. Polyploid giant cancer cells (PGCCs) that exhibit the characteristics of CSCs produced daughter cells via asymmetric division. The molecular mechanisms of daughter cells derived from PGCCs with high migration, invasion, and proliferation abilities in colorectal cancer (CRC) are explored in this paper based on the bioinformatics analysis. Materials and Methods: We characterized the expression of CSC-related genes in CRCs by analyzing the mRNAsi of The Cancer Genome Atlas and survival time. Weighted gene co-expression network analysis was performed to identify the modules of the hub and key genes. The migration, invasion, and proliferation abilities of cells, the expression of epithelial-mesenchymal transition (EMT)-related proteins and polo-like kinase 4 (PLK4) were compared in LoVo and Hct116 cells with and without bufalin treatment. In addition, the expression and subcellular location of cell division cycle 25C (CDC25C) in cells before and after PLK4 knockdown were assessed. Results: Eight hub genes were screened out and positively association with mRNAsi in CRCs based on bioinformatic analysis. Among them, checkpoint Kinase-1 (CHEK1), budding uninhibited by benzimidazoles 1 Homolog Beta (BUB1B) and PLK4 were closely associated with the prognosis of CRC patients. Bufalin could induce the formation of PGCCs in LoVo and Hct116 cell lines. PLK4 was overexpressed in PGCCs with progeny cells and progeny cells derived from PGCCs had strong migration and invasion abilities by expressing epithelial-mesenchymal transition (EMT)-related proteins. PLK4 could interact with CDC25C and promote CDC25C phosphorylation which was associated with the formation of PGCCs. Decreasing CDC25C expression in both LoVo and Hct116 PGCCs with progeny cells, while levels of pCDC25C-ser216 and pCDC25C-ser198 were increased in LoVo and decreased in Hct116 PGCCs with progeny cells. pCDC25C-ser216 located in the cytoplasm and pCDC25C-ser198 located in the nucleus in cells after bufalin treatment. Furthermore, expression of CDC25C, pCDC25C-ser216, and pCDC25C-ser198 was downregulated after PLK4 knockdown. Furthermore, the expression level of PLK4 was associated with differentiated degree, and lymph node metastasis in human CRC tissues. Conclusion: PLK4 contributes to the formation of PGCCs by regulating the expression of CDC25C and is associated with the expression and subcellular location of CDC25C, pCDC25C-ser216 and pCDC25C-ser198.

11.
Front Oncol ; 12: 867788, 2022.
Article in English | MEDLINE | ID: mdl-35574406

ABSTRACT

The application of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer has significantly improved patient survival. However, most patients fail to respond to ICIs or develop drug resistance during treatment. Therefore, novel biomarkers are needed to predict the efficacy of ICIs or provide clues on how to overcome drug resistance. Here, it was revealed that cell division cycle 25C (CDC25C) expression was upregulated in lung adenocarcinoma (LUAD) compared to that of normal lung tissue in multiple databases. This was further verified by q-PCR. Furthermore, higher CDC25C expression was associated with shorter overall survival and worse pathological stage. Most importantly, a higher CDC25C expression was associated with shorter progression-free survival in LUAD patients treated with nivolumab, suggesting the role of the cell cycle in immunotherapy. In addition, CDC25C expression was significantly associated with immune cell infiltration and immune-related signatures in the LUAD tumor microenvironment. Moreover, CDC25C was differentially expressed and correlated with overall survival in multiple tumors, indicating that CDC25C is a broad-spectrum biomarker. Taken together, our study demonstrates that CDC25C is a prognostic biomarker for LUAD patients, especially for patients treated with ICIs. Our study also provides strong evidence for the role of the cell cycle in ICIs therapy and tumor microenvironment.

12.
Bioengineered ; 13(5): 13089-13107, 2022 05.
Article in English | MEDLINE | ID: mdl-35615982

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a common digestive tract malignant tumor with an extremely poor prognosis. The survival and prognosis may significantly improve if it is diagnosed early. Therefore, identifying biomarkers for early diagnosis is still considered a great clinical challenge in PAAD. Cell Division Cycle 25C (CDC25C), a cardinal cell cycle regulatory protein, directly mediates the G2/M phase and is intimately implicated in tumor development. In the current study, we aim to explore the possible functions of CDC25C and determine the potential role of CDC25C in the early diagnosis and prognosis of PAAD. Expression analysis indicated that CDC25C was overexpressed in PAAD . In addition, survival analysis revealed a strong correlation between the enhanced expression of CDC25C and poor survival in PAAD. Furthermore, pathway analysis showed that CDC25C is related to TP53 signaling pathways, glutathione metabolism, and glycolysis. Mechanically, our in vitro experiments verified that CDC25C was capable of promoting cell viability and proliferation. CDC25C inhibition increases the accumulation of ROS, inhibits mitochondrial respiration, suppresses glycolysis metabolism and reduces GSH levels. To summarize, CDC25C may be involved in energy metabolism by maintaining mitochondrial homeostasis. Our results suggested that CDC25C is a potential biological marker and promising therapeutic target of PAAD.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , cdc25 Phosphatases , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Neoplastic , Homeostasis , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism , Pancreatic Neoplasms
13.
Tissue Cell ; 76: 101804, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35489195

ABSTRACT

RACGAP1 (Rac GTPase-activating protein 1) is correlated with tumor aggressiveness and poor prognosis, but the role of RACGAP1 in cervical cancer has not been fully reported. Analysis of RACGAP1 expression data in cervical cancer from the Cancer Genome Atlas (TCGA) database was carried out by GEPIA and UALCAN websites. In addition, the UALCAN database was used to identify the RACGAP1 positively correlated genes, which were used for the enrichment analysis. qRT-PCR, immunohistochemistry, western blot, and immunofluorescence were utilized to measure RACGAP1 expression in tissues and cells. Western blot, flow cytometry, MTT, and colony formation assays were applied to assess the effects of RACGAP1 on cell cycle, growth and viability in cervical cancer. Through bioinformatics analysis, we found that the level of RACGAP1 was aberrantly increased in cervical cancer, which was confirmed in cervical cancer tissues and cells. RACGAP1 associated genes, including CDC25C, were mainly enriched in cell cycle pathway, and RACGAP1 expression was negatively associated with CDC25C expression. RACGAP1 overexpression was related to patient's poor prognosis and promoted cervical cancer cell proliferation. Furthermore, RACGAP1 knockdown decreased the level of CDC2, p-CDC2, CDC25C, and Cyclin B1, inhibited proliferation and delayed cell cycle progression in cervical cancer cells. In mechanism, overexpression of CDC25C attenuated RACGAP1 knockdown-mediated cell growth inhibition and cell cycle arrest. Taken together, this study demonstrated that RACGAP1 was overexpressed in cervical cancer, and downregulation of RACGAP1 could inhibit the cervical cancer cell proliferation and cell cycle progression through regulating CDC25C expression.


Subject(s)
GTPase-Activating Proteins/metabolism , Uterine Cervical Neoplasms , Cell Cycle/genetics , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , Uterine Cervical Neoplasms/genetics , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/pharmacology
14.
Cancer Biomark ; 32(4): 491-504, 2021.
Article in English | MEDLINE | ID: mdl-34275890

ABSTRACT

BACKGROUND: The breast cancer subtype deficient in estrogen receptor and human epidermal growth factor receptor-2 (ER-/HER2-) displays enhanced aggressiveness, metastasis and disease relapse due to chemoresistance. ER-/HER2- patients lack molecularly targeted treatment hence, new therapeutic and prognostic biomarkers are required for better patient management. OBJECTIVES: To investigate the prognostic role of protein tyrosine phosphatase genes in Breast Cancer and their relevance as predictive markers for chemoresistance. METHODS: We examined the expression of 114 protein tyrosine phosphatase (PTP) genes in 1700 breast cancer patient's tumor samples with respect to ER-/HER2- subtype. Correlation of relevant candidates with chemoresistance was analyzed in breast cancer cells resistant to taxane/anthracycline based drugs. The prognostic value of key candidates was assessed using Kaplan Meier plots and Nottingham prognostic index and expression pattern was confirmed using qRT-PCR. The epigenetic regulation was analyzed using ChIP-Seq datasets. By plotting ROC plots, clinical outcome after treatment with taxane and anthracycline was established. RESULTS: Overexpression of CDC25A and CDC25C and under-expression of DUSP16 was observed in tumor samples of ER-/HER2- patients and breast cancer cells. Similar expression patterns of these candidate genes were observed in MCF7 cells resistant to paclitaxel and adriamycin and also correlated with poor prognosis of breast cancer patients. Increased CDC25A and CDC25C in ER-/HER2- cells was found to be regulated epigenetically by histone H3K4 methylation. Overall, the present study establishes increased expression of protein tyrosine phosphatase CDC25C as a poor prognostic marker for breast cancer. CONCLUSION: Our study highlights the role of CDC25C in chemoresistance to taxane and anthracycline based therapy and proposes CDC25C as a potential predictive marker for these cancer therapies.


Subject(s)
Breast Neoplasms/genetics , Genomics/methods , Protein Tyrosine Phosphatases/metabolism , cdc25 Phosphatases/metabolism , Breast Neoplasms/pathology , Female , Humans , Prognosis , Survival Analysis
15.
Int J Biol Sci ; 17(8): 1909-1924, 2021.
Article in English | MEDLINE | ID: mdl-34131395

ABSTRACT

Background: Estrogen-related receptor-α (ESRRA) is an orphan nuclear receptor, expressing at high level in exuberant metabolism organs and acting as transcription factor. High expression was found in many malignances but no research was done in gastric cancer (GC), where lipid metabolism disorder is common. Methods: Kaplan-Meier plot was utilized to find the relationship between ESRRA expression and patients' prognoses. The expression level of ESRRA was measured by real-time PCR. The protein expression levels were tested with western-blot and immunohistochemistry. Cell cycle and apoptosis was identified with flow cytometry. RNA-seq, bioinformatics analysis, dual-luciferase assay and ChIP assay were used to predict and validate ESRRA's target gene and binding motif. Animal models were also introduced in our study. Results: ESRRA expression is notably higher in GC cell lines and high ESRRA levels are correlated to poor prognoses. ESRRA silencing decreased GC cell viability, migration, and invasion capacities. Its downstream gene DSN1 was spotted by RNA-seq and confirmed by later bioinformatics analyses, dual-luciferase, and ChIP assays. Western-blot showed G2M arrest caused by ESRRA silencing was via CDC25C-CDK1-Cyclin B1 pathway. Conclusion: ESRRA/DSN1/CDC25C-CDK1-Cyclin B1 is of great importance in GC development. ESRRA could be a potential target as well as prognostic marker in GC.


Subject(s)
CDC2 Protein Kinase/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclin B1/metabolism , Receptors, Estrogen , Stomach Neoplasms , cdc25 Phosphatases/metabolism , Animals , Apoptosis , Biomarkers, Tumor , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Drug Discovery , Gene Expression Regulation, Neoplastic , Humans , Lipid Metabolism , Prognosis , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Signal Transduction , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , ERRalpha Estrogen-Related Receptor
16.
Arch Med Sci ; 17(2): 449-461, 2021.
Article in English | MEDLINE | ID: mdl-33747280

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC), mostly caused by external or environmental factors, is the third most common and lethal cancer worldwide. Although a large number of investigations have been carried out to reveal the evolution of CRC, the underlying mechanisms of CRC remain unclear. MATERIAL AND METHODS: Expression of zinc finger of the cerebellum 5 (ZIC5) in CRC tissues and cell models was measured by qRT-PCR and IHC. Cell transfection was carried out for ZIC5 overexpression or knockdown. The MTT assay was applied to examine the capacity of glioma cell proliferation. Wound healing assay and tumor invasion assay were used to test the capacity of glioma cell migration and invasion respectively. Cell cycle analysis and western blot were used to verify the apoptosis rates of CRC cells upon ZIC5 overexpression or downregulation. A further tumor Xenograft study was used to examine the effects of ZIC5 on tumor malignancy in vivo. RESULTS: Cell models using HCT116 and SW620 cells were established to study the ZIC5 function upon ZIC5 overexpression of knockdown. Consistently, we discovered that ZIC5 also significantly increased in Chinese CRC patients. In addition, ZIC5 promoted CRC cell proliferation through increasing the proportion of cells maintained in the S phase. ZIC5 overexpression facilitated the capacity of CRC cell migration and invasion. Inhibition of ZIC5 mitigated such malignant effects. CONCLUSIONS: Collectively, investigations of the ZIC5 in CRC provided a new insight into CRC diagnosis, treatment, prognosis and next-step translational therapeutic developments from bench to clinic.

17.
Technol Cancer Res Treat ; 19: 1533033820967474, 2020.
Article in English | MEDLINE | ID: mdl-33111630

ABSTRACT

Hepatocellular carcinoma (HCC) is the most aggressive type of gastrointestinal tumor, with a high rate of mortality. However, identifying biomarkers for the treatment of HCC remains to be developed. We aimed to determine whether cell division cycle 25C (CDC25C) could be used as a novel diagnostic and therapeutic biomarker in HCC. Expression of CDC25C in HCC was analyzed by using GEPIA (Gene Expression Profiling Interactive Analysis) and UALCAN databases. GEPIA and CBioPortal databases were applied to analyze patients'survival and CDC25C mutations, respectively. PPI (Protein-Protein Interaction) network was further built by STRING (Search Tool for the Retrieval of Interacting Genes) and Metascape Web portals. To the best of our knowledge, the novel observations identified in the present study reveal that the expression of CDC25C in HCC was significantly enhanced when compare to that in normal liver tissues (P < 0.001). A higher CDC25C expression resulted in a remarkably shorter disease free survival as well as overall survival. Moreover, the expression of CDC25C in HCC was related to HCC patients'grade and race, but not gender. The expression levels of CDC25C elevated gradually from stage 1 to 3 but decreased in stage 4. The specific gene mutations V41A, L87 H, N222 K and X309-splice of CDC25C occurred in HCC samples and these unique mutations were not detected in any other tumor tissues. Finally, PPI networks and GO enrichment analysis suggested that CDC25C might be associated with cell cycle and p53 signaling pathway. Taken together, bioinformatics analysis revealed that CDC25C might be a potential diagnostic predictor for HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular/metabolism , Computational Biology , Liver Neoplasms/metabolism , cdc25 Phosphatases/metabolism , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Gene Regulatory Networks , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Prognosis , Transcriptome
18.
Cancer Cell Int ; 20: 213, 2020.
Article in English | MEDLINE | ID: mdl-32518522

ABSTRACT

One of the most prominent features of tumor cells is uncontrolled cell proliferation caused by an abnormal cell cycle, and the abnormal expression of cell cycle-related proteins gives tumor cells their invasive, metastatic, drug-resistance, and anti-apoptotic abilities. Recently, an increasing number of cell cycle-associated proteins have become the candidate biomarkers for early diagnosis of malignant tumors and potential targets for cancer therapies. As an important cell cycle regulatory protein, Cell Division Cycle 25C (CDC25C) participates in regulating G2/M progression and in mediating DNA damage repair. CDC25C is a cyclin of the specific phosphatase family that activates the cyclin B1/CDK1 complex in cells for entering mitosis and regulates G2/M progression and plays an important role in checkpoint protein regulation in case of DNA damage, which can ensure accurate DNA information transmission to the daughter cells. The regulation of CDC25C in the cell cycle is affected by multiple signaling pathways, such as cyclin B1/CDK1, PLK1/Aurora A, ATR/CHK1, ATM/CHK2, CHK2/ERK, Wee1/Myt1, p53/Pin1, and ASK1/JNK-/38. Recently, it has evident that changes in the expression of CDC25C are closely related to tumorigenesis and tumor development and can be used as a potential target for cancer treatment. This review summarizes the role of CDC25C phosphatase in regulating cell cycle. Based on the role of CDC25 family proteins in the development of tumors, it will become a hot target for a new generation of cancer treatments.

19.
J Exp Clin Cancer Res ; 39(1): 83, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32393310

ABSTRACT

BACKGROUND: Our previous studies have confirmed that cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs), which is the key to the heterogeneity of solid tumors. PGCC formation is closely related to the abnormal expression of cell cycle-related proteins and cell fusion. In this study, we investigated the molecular mechanism of PGCCs formation by detecting the expression of cell cycle-related proteins in mutant and wild-type p53 cancer cell lines. METHODS: HEY, BT-549, SKOv3 and MDA-MB-231 cells were treated with CoCl2 and the cell cycle was detected by flow cytometry. The expression and subcellular localization of cell cycle-related proteins, kinases, and P53 were compared before and after CoCl2 treatment. Immunoprecipitation was used to analyze the interacting proteins of pCDC25C-Ser216 and pCDC25C-Ser198. The clinicopathologic significances of these cell cycle-related proteins and protein kinases expression were studied. RESULTS: CoCl2 induced the formation of PGCCs and G2/M arrest. CDC25C, cyclin B1, and CDK1 expressions after CoCl2 treatment were lower than that in control cells. Cytoplasmic CDC25C was degraded by ubiquitin-dependent proteasome. The expression of P53 and phosphokinases including CHK1, CHK2, PLK1, and Aurora A increased after CoCl2 treatment. The expression of pCDC25C-Ser216 and pCDC25C-Ser198 depended upon the genotype of p53. The expressions of cell cycle-related proteins and kinases gradually increased with the development of ovarian cancer and breast cancer. CONCLUSION: CHK1, CHK2-pCDC25C-Ser216-cyclin B1-CDK1, and Aurora A-PLK1-pCDC25C-Ser198-cyclin B1-CDK1 signaling pathways may participate in the formation of PGCCs and different phosphorylation sites of CDC25C may be associated with the genotype of p53.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Giant Cell/metabolism , Ovarian Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , cdc25 Phosphatases/metabolism , Apoptosis/physiology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , CDC2 Protein Kinase/metabolism , Carcinoma, Giant Cell/genetics , Carcinoma, Giant Cell/pathology , Cell Line, Tumor , Cobalt/pharmacology , Cyclin B1/metabolism , Female , Genotype , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphorylation , Polyploidy , Signal Transduction , Subcellular Fractions/metabolism , Tumor Suppressor Protein p53/metabolism , cdc25 Phosphatases/genetics
20.
Toxicol Rep ; 7: 583-595, 2020.
Article in English | MEDLINE | ID: mdl-32426239

ABSTRACT

The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...