ABSTRACT
Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology. We obtained a heterozygous CDK5+/- clone for the FN2.1 hiPSC line that retained hiPSC stemness and pluripotent potential. Then, neural stem cells (NSCs) and further neurons were derived from the CDK5+/- KO FN2.1 hiPSCs, and their phenotype was validated by immunofluorescence staining using antibodies that recognize lineage-specific markers (SOX-1, SOX-2, and NESTIN for NSCs and TUJ-1, MAP-5, and MAP-2 for neurons). We found that the proliferation rate increased in CDK5+/- KO hiPSC-derived neurons concomitantly with a reduction in NEUN and P35 expression levels. However, the morphometric analysis revealed that CDK5 deficiency caused an increase in the length of the main, primary, and secondary neurites and the neuronal soma area. As a whole, we found that a deficit in CDK5 does not impair hiPSC neuronal differentiation but deregulates proliferation and neurite outgrowth, favoring elongation. The misregulated activity of specific kinases leads to abnormalities such as impaired axonal connectivity in neurodegenerative diseases. Thus, therapeutic approaches aimed at normalizing the activity of kinases, such as CDK5, may help prevent the degeneration of vulnerable neurons.
ABSTRACT
Resveratrol is a natural compound with a wide range of biological functions that generate health benefits under normal conditions and in multiple diseases. This has attracted the attention of the scientific community, which has revealed that this compound exerts these effects through its action on different proteins. Despite the great efforts made, due to the challenges involved, not all the proteins with which resveratrol interacts have yet been identified. In this work, using protein target prediction bioinformatics systems, RNA sequencing analysis and protein-protein interaction networks, 16 proteins were identified as potential targets of resveratrol. Due to its biological relevance, the interaction of resveratrol with the predicted target CDK5 was further investigated. A docking analysis found that resveratrol can interact with CDK5 and be positioned in its ATP-binding pocket. Resveratrol forms hydrogen bonds between its three hydroxyl groups (-OH) and CDK5 residues C83, D86, K89 and D144. Molecular dynamics analysis showed that these bonds allow resveratrol to remain in the pocket and suggest inhibition of CDK5 activity. All this allows us to better understand how resveratrol acts and to consider CDK5 inhibition within its biological actions, mainly in neurodegenerative diseases where this protein has been shown to be relevant.Communicated by Ramaswamy H. Sarma.
Subject(s)
Molecular Dynamics Simulation , Resveratrol/pharmacology , Resveratrol/chemistry , Molecular Docking SimulationABSTRACT
Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease.Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022.Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention.Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.
ABSTRACT
Glutamate excitotoxicity triggers overactivation of CDK5 and increases calcium influx in neural cells, which promotes dendritic retraction, spine loss, increased mitochondrial calcium from the endoplasmic reticulum, and neuronal death. Our previous studies showed that CDK5 knockdown (KD) in astrocytes improves neurovascular integrity and cognitive functions and exerts neuroprotective effects. However, how CDK5-targeted astrocytes affect calcium regulation and whether this phenomenon is associated with changes in neuronal plasticity have not yet been analyzed. In this study, CDK5 KD astrocytes transplanted in CA3 remained at the injection site without proliferation, regulated calcium in the CA1 hippocampal region after excitotoxicity by glutamate in ex vivo hippocampal slices, improving synapsin and PSD95 clustering. These CDK5 KD astrocytes induced astrocyte stellation and neuroprotection after excitotoxicity induced by glutamate in vitro. Also, these effects were supported by CDK5 inhibition (CDK5i) in vitro through intracellular stabilization of calcium levels in astrocytes. Additionally, these cells in cocultures restored calcium homeostasis in neurons, redistributing calcium from somas to dendrites, accompanied by dendrite branching, higher dendritic spines and synapsin-PSD95 clustering. In summary, induction of calcium homeostasis at the CA1 hippocampal area by CDK5 KD astrocytes transplanted in the CA3 area highlights the role of astrocytes as a cell therapy target due to CDK5-KD astrocyte-mediated synaptic clustering, calcium spreading regulation between both areas, and recovery of the intracellular astrocyte-neuron calcium imbalance and plasticity impairment generated by glutamate excitotoxicity.
ABSTRACT
One of the changes found in the brain in Alzheimer's disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-ß clearance in astrocytes, as opposed to amyloid-ß accumulation in neurons.
Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Brain/metabolism , Calpain/metabolism , Neuronal Plasticity , Alzheimer Disease/pathology , Animals , Astrocytes/pathology , Calcineurin/metabolism , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Disease Models, Animal , Humans , Neuroinflammatory Diseases/metabolismABSTRACT
Attention deficit/Hyperactivity disorder (ADHD) is one of the most diagnosed psychiatric disorders nowadays. The core symptoms of the condition include hyperactivity, impulsiveness and inattention. The main pharmacological treatment consists of psychostimulant drugs affecting Dopamine Transporter (DAT) function. We have previously shown that genetically modified mice lacking p35 protein (p35KO), which have reduced Cdk5 activity, present key hallmarks resembling those described in animal models useful for studying ADHD. The p35KO mouse displays spontaneous hyperactivity and shows a calming effect of methylphenidate or amphetamine treatment. Interestingly, dopaminergic neurotransmission is altered in these mice as they have an increased Dopamine (DA) content together with a low DA turnover. This led us to hypothesize that the lack of Cdk5 activity affects DAT expression and/or function in this animal model. In this study, we performed biochemical assays, cell-based approaches, quantitative fluorescence analysis and functional studies that allowed us to demonstrate that p35KO mice exhibit decreased DA uptake and reduced cell surface DAT expression levels in the striatum (STR). These findings are supported by in vitro observations in which the inhibition of Cdk5 activity in N2a cells induced a significant increase in constitutive DAT endocytosis with a concomitant increase in DAT localization to recycling endosomes. Taken together, these data provide evidences regarding the role of Cdk5/p35 in DAT expression and function, thus contributing to the knowledge of DA neurotransmission physiology and also providing therapeutic options for the treatment of DA pathologies such as ADHD.
Subject(s)
Attention Deficit Disorder with Hyperactivity/metabolism , Cyclin-Dependent Kinase 5/deficiency , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/biosynthesis , Animals , Attention Deficit Disorder with Hyperactivity/genetics , Cell Line , Cyclin-Dependent Kinase 5/genetics , Dopamine Plasma Membrane Transport Proteins/genetics , Enzyme Activation/physiology , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, KnockoutABSTRACT
Voltage-gated Ca2+ (CaV) channels regulate multiple cell processes, including neurotransmitter release, and have been associated with several pathological conditions, such as neuropathic pain. Cdk5, a neuron-specific kinase, may phosphorylate CaV channels, altering their functional expression. During peripheral nerve injury, upregulation of CaV channels and Cdk5 in the dorsal root ganglia (DRG) and the spinal cord, has been correlated with allodynia. We recently reported an increase in the amplitude of the C component of the compound action potential (cAP) of afferent fibers in animals with allodynia induced by L5-6 spinal nerve ligation (SNL), recorded in the corresponding dorsal roots. This was related to an increase in T-type (CaV3.2) channels generated by Cdk5-mediated phosphorylation. Here, we show that CaV channel functional expression is also altered in the L4 adjacent intact afferent fibers in rats with allodynia induced by L5-6 SNL. Western blot analysis showed that both Cdk5 and CaV3.2 total levels are not increased in the DRG L3-4, but their subcellular distribution changes by concentrating on the neuronal soma. Likewise, the Cdk5 inhibitor olomoucine affected the rapid and the slow C components of the cAP recorded in the dorsal roots. Patch-clamp recordings revealed an increase in T- and N-type currents recorded in the soma of acute isolated L3-4 sensory neurons after L5-6 SNL, which was prevented by olomoucine. These findings suggest changes in CaV channels location and function in L3-4 afferent fibers associated with Cdk5-mediated phosphorylation after L5-6 SNL, which may contribute to nerve injury-induced allodynia.
Subject(s)
Neuralgia , Spinal Nerves , Action Potentials , Animals , Cyclin-Dependent Kinase 5 , Ganglia, Spinal , Hyperalgesia , Neurons, Afferent , Rats , Rats, Sprague-DawleyABSTRACT
INTRODUCTION: Flaviviridae family belongs to the Spondweni serocomplex, which is mainly transmitted by vectors from the Aedes genus. Zika virus (ZIKV) is part of this genus. It was initially reported in Brazil in December 2014 as an unknown acute generalized exanthematous disease and was subsequently identified as ZIKV infection. ZIKV became widespread all over Brazil and was linked with potential cases of microcephaly. CASE REPORT: We report a case of a 28-year-old Colombian woman, who came to the Obstetric Department with an assumed conglomerate of fetal abnormalities detected via ultrasonography, which was performed at 29.5 weeks of gestation. The patient presented with multiple abnormalities, which range from a suggested Arnold-Chiari malformation, compromising the lateral and third ventricles, liver calcifications, bilateral pyelocalic dilatations, other brain anomalies, and microcephaly. At 12 weeks of gestation, the vertical transmission of ZIKV was suspected. At 38.6 weeks of gestation, the newborn was delivered, with the weight in the 10th percentile (3,180 g), height in the 10th percentile (48 cm), and cephalic circumference under the 2nd percentile (31 cm). Due to the physical findings, brain magnetic resonance imaging (MRI) was performed, revealing a small and deviated brain stem, narrowing of the posterior fossa, a giant posterior fossa cyst with ventricular dilatation, a severe cortical and white matter thinning, cerebellar vermis with hypoplasia, and superior and lateral displacement of the cerebellum. In addition, hydrocephalus was displayed by the axial sequence, and the cerebral cortex was also compromised with lissencephaly. Schizencephaly was found with left frontal open-lip, and no intracranial calcifications were found. Two novel heterozygous nonsense mutations were identified using whole-exome sequencing, and both are located in exon 8 under the affection of ZIKV congenital syndrome (CZS) that produced a premature stop codon resulting in the truncation of the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) protein. CONCLUSION: We used molecular and microbiological assessments to report the initial case of vertically transmitted ZIKV infection with congenital syndrome associated with a neurological syndrome, where a mutation in the CDK5RAP2 gene was also identified. The CDK5RAP2 gene encodes a pericentriolar protein that intervenes in microtubule nucleation and centriole attachment. Diallelic mutation has previously been associated with primary microcephaly.
ABSTRACT
OBJECTIVE: Genome-wide association studies (GWAS) and literature have identified polymorphisms in the KCNJ11, HNF1A, IRS1, TCF7L2, CDKAL1, CDKN2B, RPSAP52, GPR45 HHEX, IL18, and RUNX2 genes associated with type 2 diabetes mellitus (T2DM) and/or periodontitis (P) in diverse populations, and we sought to evaluate them as genetic risk variants for these diseases in the Brazilian population. MATERIAL AND METHODS: Periodontal, glycemic, and lipid data were obtained from 931 individuals divided into: control (n = 334), periodontitis (P; n = 358), and periodontitis associated with T2DM (P + T2DM; n = 239). After genotyping, associations between polymorphisms and pathologies were tested by multiple logistic and linear regressions, adjusting for age, sex, and smoking habits. RESULTS: Considering the studied subjects, the increased risk to develop periodontitis in the periodontitis P + T2DM group was found for HNF1A-rs7957197-TA, CDKAL1-rs7754840-CG, RPSAP52-rs1531343-GC, TCF7L2-rs7903146-TT, and CDKN2B-rs7018475-GG. The association of these genetic variants for TCF7L2 and CDKN2B was confirmed for female, never smokers, and poorly controlled P + T2DM. CDKN2B-rs7018475 was associated with worse glycemic condition and periodontal parameters. CONCLUSION: These five reported genetic variants were associated in the studied Southeastern Brazilian population as genetic risk variants of periodontitis and T2DM associated to periodontitis as comorbidity. Gene-phenotype associations with sex and smoking habits and the CDKN2B-rs7018475 with the poor glycemic control and more severe periodontal conditions should be further investigated. CLINICAL RELEVANCE: Polymorphisms in the CDKAL1-rs7754840, HNF1A-rs7957197, RPSAP52-rs1531343, TCF7L2-rs7903146, and CDKN2B-rs7018475 might predispose to periodontitis and T2DM associated with periodontitis. These findings may be useful in public health genomics and future advanced clinical practice, since genetic carriage can be measured before disease onset, being of potential great benefit for treatment planning and prognosis in early disease stages.
Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Brazil , Diabetes Mellitus, Type 2/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single NucleotideABSTRACT
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Subject(s)
Astrocytes/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Drug Delivery Systems/methods , Gene Silencing/physiology , Neurovascular Coupling/physiology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Clinical Trials as Topic/methods , Gene Silencing/drug effects , Humans , Neurovascular Coupling/drug effects , Protein Kinase Inhibitors/administration & dosageABSTRACT
Neurotransmission is one of the most important processes in neuronal communication and depends largely on Ca2+ entering synaptic terminals through voltage-gated Ca2+ (CaV) channels. Although the contribution of L-type CaV channels in neurotransmission has not been unambiguously established, increasing evidence suggests a role for these proteins in noradrenaline, dopamine, and GABA release. Here we report the regulation of L-type channels by Cdk5, and its possible effect on GABA release in the substantia nigra pars reticulata (SNpr). Using patch-clamp electrophysiology, we show that Cdk5 inhibition by Olomoucine significantly increases current density through CaV1.3 (L-type) channels heterologously expressed in HEK293 cells. Likewise, in vitro phosphorylation showed that Cdk5 phosphorylates residue S1947 in the C-terminal region of the pore-forming subunit of CaV1.3 channels. Consistent with this, the mutation of serine into alanine (S1947A) prevented the regulation of Cdk5 on CaV1.3 channel activity. Our data also revealed that the inhibition of Cdk5 increased the frequency of high K+-evoked miniature inhibitory postsynaptic currents in rat SNpr neurons, acting on L-type channels. These results unveil a novel regulatory mechanism of GABA release in the SNpr that involves a direct action of Cdk5 on L-type channels.
Subject(s)
Calcium Channels, L-Type/metabolism , Cyclin-Dependent Kinase 5/metabolism , Inhibitory Postsynaptic Potentials , Neostriatum/metabolism , Receptors, GABA-A/metabolism , Substantia Nigra/metabolism , Animals , Animals, Newborn , Calcium Channels, L-Type/chemistry , HEK293 Cells , Humans , Male , Phosphorylation , Rats, Wistar , gamma-Aminobutyric Acid/metabolismABSTRACT
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor with a key role in metabolic processes and is target of CDK5 kinase phosphorylation at S245 (S273 in PPARγ isoform 2), thereby inducing insulin resistance. A remarkable effort has been addressed to find PPARγ ligands that inhibit S245 phosphorylation, but the poor understanding in this field challenges the design of such ligands. Here, through computational and biophysical methods, we explored an experimentally validated model of PPARγ-CDK5 complex, and we presented K261, K263 or K265, which are conserved in mammals, as important anchor residues for this interaction. In addition, we observed, from structural data analysis, that PPARγ ligands that inhibit S245 phosphorylation are not in direct contact with these residues; but induce structural modifications in PPARγ:CDK5/p25 interface. In summary, our PPARγ and CDK5/p25 interaction analyses open new possibilities for the rational design of novel inhibitors that impair S245 phosphorylation.
Subject(s)
Cyclin-Dependent Kinase 5/chemistry , Multiprotein Complexes/chemistry , PPAR gamma/chemistry , Protein Conformation , Animals , Binding Sites/genetics , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Humans , Ligands , Models, Molecular , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphorylation , Protein BindingABSTRACT
The cyclin-dependent kinase 5 (CDK5) is known as an exceptional component of the CDK family, due to its characteristic regulatory pathways and its atypical roles in comparison to the classical cyclins. Despite its functional uniqueness, CDK5 shares a great part of its structural similarity with other members of the cyclin-dependent kinase family. After its discovery 26 years ago, a progressive set of cellular functions has been associated with this protein kinase, ranging from neuronal migration, axonal guidance, and synaptic plasticity in diverse stages of brain development, including specific and complex cognitive functions. More than 30 substrates for CDK5 have been found in different cellular pathways. Together with its essential physiological roles, a major discovery was the finding twenty years ago that CDK5 participates in neurodegenerative diseases responsible for tau hyperphosphorylations, and, as a consequence, it becomes a neurotoxic factor. This review focuses on the wide roles of CDK5 in the central nervous system, its implications in neurodegeneration, and provides an integrative insight of its involvement in pain modulation, Alzheimer's disease, and other contexts.
Subject(s)
Cyclin-Dependent Kinase 5/physiology , Nervous System Physiological Phenomena , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Animals , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinases , Humans , Nervous System/metabolism , Pain/metabolismABSTRACT
OBJECTIVES: The inflammatory response is a key mechanism of neuronal damage and loss during acute ischemic stroke. Hypothermia has shown promise as a treatment for ischemic stroke. In this study, we investigated the molecular signaling pathways in ischemic stroke after hypothermia treatment. METHODS: Cyclin-dependent kinase 5 (CDK5) was overexpressed or silenced in cultured cells. Nuclear transcription factor-κB (NF-κB) activity was assessed by measurement of the luciferase reporter gene. An ischemic stroke model was established in Sprague-Dawley (SD) rats using the suture-occluded method. Animals were assigned to three groups: sham operation control, ischemic stroke, and ischemic stroke + hypothermia treatment groups. Interleukin 1β (IL-1β) levels in the culture supernatant and blood samples were assessed by ELISA. Protein expression was measured by Western blotting. RESULTS: In HEK293 cells and primary cortical neuronal cultures exposed to hypothermia, CDK5 overexpression was associated with increased IL-1β, caspase 1, and NF-κB levels. In both a murine model of stroke and in patients, increased IL-1β levels were observed after stroke, and hypothermia treatment was associated with lower IL-1β levels. Furthermore, hypothermia-treated patients showed significant improvement in neurophysiological functional outcome. CONCLUSIONS: Overall, hypothermia offers clinical benefit, most likely through its effects on the inflammatory response.
Subject(s)
Humans , Animals , Rats , Brain Ischemia/therapy , NF-kappa B/blood , Cyclin-Dependent Kinase 5/blood , Interleukin-1beta/blood , Hypothermia, Induced/methods , Inflammation/blood , Enzyme-Linked Immunosorbent Assay , Biomarkers/blood , Brain Ischemia/blood , Blotting, Western , Acute Disease , Treatment Outcome , Rats, Sprague-Dawley , Disease Models, AnimalABSTRACT
Astrocytes play metabolic and structural support roles and contribute to the integrity of the blood-brain barrier (BBB), linking communication between neurons and the endothelium. Cyclin-dependent kinase 5 (CDK5) likely exerts a dual effect on the endothelium and astrocytes due to its involvement in migration and angiogenesis; the overactivation of CDK5 is associated with dysfunction in glutamate recapture and hypoxia. Recently, we proposed that CDK5-targeted astrocytes facilitate the recovery of neurological and motor function in transplanted ischemic rats. In the current study, we treated cerebral ischemic rats and endothelial cells exposed to glutamate toxicity with CDK5 knock-down (CDK5-KD) astrocytes to determine the role of CDK5 in neurovascular integrity. We found that the effects of CDK5-KD were sustained for 4 months, preventing neuronal and astrocyte loss, facilitating the recovery of the BBB via the production of BDNF by endogenous astrocytes (GFP-) surrounding vessels in the motor cortex and the corpus callosum of global ischemic rats, and improving neurological performance. These findings were supported by the in vitro findings of increased transendothelial resistance, p120-ctn+ adhesion and reduced intercellular gaps induced by a CDK5 inhibitor (roscovitine) in bEnd.3 cells in a glutamate-toxicity model. Additionally, CDK5-KD astrocytes in co-culture protected the endothelial cell viability, increased BDNF release from astrocytes, increased BDNF immunoreactivity in neighboring astrocytes and endothelial cells and enhanced cell adhesion in a glutamate-toxicity model. Altogether, these findings suggest that a CDK5 reduction in astrocytes protects the endothelium, which promotes BDNF release, endothelial adhesion, and the recovery of neurovascular unit integrity and brain function in ischemic rats.
Subject(s)
Astrocytes/transplantation , Brain Ischemia/enzymology , Brain Ischemia/therapy , Brain/blood supply , Cyclin-Dependent Kinase 5/metabolism , Gene Knockdown Techniques , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Cell Adhesion , Cell Line , Coculture Techniques , Corpus Callosum/metabolism , Disease Models, Animal , Electric Impedance , Endothelial Cells/metabolism , Glutamates/toxicity , Male , Mice , Motor Activity , Motor Cortex/metabolism , Motor Cortex/pathology , Neurons/metabolism , Rats, Wistar , Stroke/pathology , Stroke/physiopathologyABSTRACT
The participation of reactive oxygen species (ROS) generated by NOX1 and NOX2/NADPH oxidase has been documented during inflammatory pain. However, the molecular mechanism involved in their activation is not fully understood. We reported earlier a key role of Cyclin-dependent kinase 5 (Cdk5) during inflammatory pain. In particular, we demonstrated that TNF-α increased p35 expression, a Cdk5 activator, causing Cdk5-mediated TRPV1 phosphorylation followed by an increment in Ca2+ influx in nociceptive neurons and increased pain sensation. Here we evaluated if Cdk5 activation mediated by p35 transfection in HEK293 cells or by TNF-α treatment in primary culture of nociceptive neurons could increase ROS production. By immunofluorescence we detected the expression of catalytic subunit (Nox1 and Nox2) and their cytosolic regulators (NOXO1 and p47phox) of NOX1 and NOX2/NADPH oxidase complexes, and their co-localization with Cdk5/p35 in HEK293 cells and in nociceptive neurons. By using a hydrogen peroxide sensor, we detected a significant increase of ROS production in p35 transfected HEK293 cells as compared with control cells. This effect was significantly blocked by VAS2870 (NADPH oxidase inhibitor) or by roscovitine (Cdk5 activity inhibitor). Also by using another ROS probe named DCFH-DA, we found a significant increase of ROS production in nociceptive neurons treated with TNF-α and this effect was also blocked by VAS2870 or by roscovitine treatment. Interestingly, TNF-α increased immunodetection of p35 protein and NOX1 and NOX2/NADPH oxidase complexes in primary culture of trigeminal ganglia neurons. Finally, the cytosolic regulator NOXO1 was significantly translocated to plasma membrane after TNF-α treatment and roscovitine blocked this effect. Altogether these results suggest that Cdk5 activation is implicated in the ROS production by NOX1 and NOX2/NADPH oxidase complexes during inflammatory pain.
ABSTRACT
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.
ABSTRACT
Introducción: La enfermedad de Alzheimer exhibe un compromiso neurodegenerativo e irreversible. Hoy, numerosas investigaciones promueven la inhibición de algunas quinasas para su tratamiento, de especial mención la CDK5. Objetivo: Identificación de nuevas moléculas con posibilidad de interactuar con la proteína quinasa dependiente de ciclina 5, CDK5, inhibiendo su función. Material y Métodos: Se realizó un estudio in silico, para lo cual se extrajeron 911 moléculas de pubchem, y mediante AutoDock Vina se hicieron acoplamientos moleculares con la proteína CDK5 extraída de Protein Data Bank y con un inhibidor conocido para la proteína. Además se realizó un acoplamiento inverso para la identificación de otros posibles blancos moleculares con los mejores ligandos seleccionados. Resultados: Con los resultados obtenidos fueron identificadas cinco moléculas con valores de afinidad entre -11,6 hasta -17,7 Kcal/mol que se unen en el sitio activo de la proteína, de igual forma que lo hace el inhibidor conocido de la misma, e interactúan con los residuos cisteína 83 y glutamina 81. Conclusiones: Las moléculas identificadas pueden interactuar con la CDK5 a nivel de su sitio activo, por lo que podrían actuar como inhibidores de esta quinasa. Esto abre una futura ventana terapéutica en el tratamiento de la enfermedad de Alzheimer)AU)
Introduction: The illness of Alzheimer exhibits a neurodegenerative and irreversible commitment. Today, numerous investigations promote the inhibition of some kinases to the treatment, of special mention the CDK5. Objective: Identification of new molecules witch are able to interact with the cicline dependent kinase protein 5, CDK5, inhibiting their function. Material and Methods: it was carried out a study in silico, for that 911 pubchem molecules were extracted, and by means of AutoDock Vina molecular joining were made with the protein CDK5 extracted from the Protein Data Bank and with a well-known inhibitor for the protein. It was also carried out an inverse joining for the identification of other possible molecular targets with the best selected ligands. Results: With the obtained results five molecules were identified with values of likeness among -11,6 until -17,7 Kcal/mol that joins in the active site of the protein, in the same form that makes it the well-known inhibitor of the CDK5, and interact with the residuals cysteine 83 and glutamine 81. Conclusions: The identified molecules can interact with the CDK5 at level of their active place, for what you/they could act as inhibitors of this quinasa. This opens a future therapeutic window in the treatment of the illness of Alzheimer(AU)
Subject(s)
Female , Middle Aged , Aged , Alzheimer Disease/therapy , Molecular Docking Simulation/methods , Computer Simulation/standards , Alzheimer Disease/epidemiologyABSTRACT
CDK5 is a serine/threonine kinase that is involved in the normal function of the adult brain and plays a role in neurotransmission and synaptic plasticity. However, its over-regulation has been associated with Tau hyperphosphorylation and cognitive deficits. Our previous studies have demonstrated that CDK5 targeting using shRNA-miR provides neuroprotection and prevents cognitive deficits. Dendritic spine morphogenesis and forms of long-term synaptic plasticity-such as long-term potentiation (LTP)-have been proposed as essential processes of neuroplasticity. However, whether CDK5 participates in these processes remains controversial and depends on the experimental model. Using wild-type mice that received injections of CDK5 shRNA-miR in CA1 showed an increased LTP and recovered the PPF in deficient LTP of APPswe/PS1Δ9 transgenic mice. On mature hippocampal neurons CDK5, shRNA-miR for 12 days induced increased dendritic protrusion morphogenesis, which was dependent on Rac activity. In addition, silencing of CDK5 increased BDNF expression, temporarily increased phosphorylation of CaMKII, ERK, and CREB; and facilitated calcium signaling in neurites. Together, our data suggest that CDK5 downregulation induces synaptic plasticity in mature neurons involving Ca2+ signaling and BDNF/CREB activation.
Subject(s)
Cyclin-Dependent Kinase 5/genetics , Down-Regulation , Hippocampus/cytology , Neuronal Plasticity , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcium Signaling , Cells, Cultured , Cyclin-Dependent Kinase 5/metabolism , Female , Gene Silencing , Hippocampus/physiology , Long-Term Potentiation , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurites/metabolism , Phosphorylation , Rats, Wistar , Signal Transduction , Up-RegulationABSTRACT
Post-stroke cognitive impairment is a major cause of long-term neurological disability. The prevalence of post-stroke cognitive deficits varies between 20% and 80% depending on brain region, country, and diagnostic criteria. The biochemical mechanisms underlying post-stroke cognitive impairment are not known in detail. Cyclin-dependent kinase 5 is involved in neurodegeneration, and its dysregulation contributes to cognitive disorders and dementia. Here, we administered cyclin-dependent kinase 5-targeting gene therapy to the right hippocampus of ischemic rats after transient right middle cerebral artery occlusion. Cyclin-dependent kinase 5 RNA interference prevented the impairment of reversal learning four months after ischemia as well as neuronal loss, tauopathy, and microglial hyperreactivity. Additionally, cyclin-dependent kinase 5 silencing increased the expression of brain-derived neurotrophic factor in the hippocampus. Furthermore, deficits in hippocampal long-term potentiation produced by excitotoxic stimulation were rescued by pharmacological blockade of cyclin-dependent kinase 5. This recovery was blocked by inhibition of the TRKB receptor. In summary, these findings demonstrate the beneficial impact of cyclin-dependent kinase 5 reduction in preventing long-term post-ischemic neurodegeneration and cognitive impairment as well as the role of brain-derived neurotrophic factor/TRKB in the maintenance of normal synaptic plasticity.