Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Struct Biol ; 207(3): 317-326, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31319193

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor with a key role in metabolic processes and is target of CDK5 kinase phosphorylation at S245 (S273 in PPARγ isoform 2), thereby inducing insulin resistance. A remarkable effort has been addressed to find PPARγ ligands that inhibit S245 phosphorylation, but the poor understanding in this field challenges the design of such ligands. Here, through computational and biophysical methods, we explored an experimentally validated model of PPARγ-CDK5 complex, and we presented K261, K263 or K265, which are conserved in mammals, as important anchor residues for this interaction. In addition, we observed, from structural data analysis, that PPARγ ligands that inhibit S245 phosphorylation are not in direct contact with these residues; but induce structural modifications in PPARγ:CDK5/p25 interface. In summary, our PPARγ and CDK5/p25 interaction analyses open new possibilities for the rational design of novel inhibitors that impair S245 phosphorylation.


Subject(s)
Cyclin-Dependent Kinase 5/chemistry , Multiprotein Complexes/chemistry , PPAR gamma/chemistry , Protein Conformation , Animals , Binding Sites/genetics , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Humans , Ligands , Models, Molecular , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphorylation , Protein Binding
2.
Front Cell Neurosci ; 11: 372, 2017.
Article in English | MEDLINE | ID: mdl-29225566

ABSTRACT

Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

SELECTION OF CITATIONS
SEARCH DETAIL