Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.806
Filter
1.
Adipocyte ; 13(1): 2376571, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38989805

ABSTRACT

Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.


Subject(s)
Adipocytes , Cell Cycle , Cell Dedifferentiation , Cell Proliferation , Animals , Adipocytes/cytology , Adipocytes/metabolism , Mice , Cells, Cultured , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
2.
J Clin Invest ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963708

ABSTRACT

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

3.
Endocrinology ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963813

ABSTRACT

Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes, however, is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation and liver necrosis/cell death. Together these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.

4.
Plant Physiol Biochem ; 214: 108879, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964088

ABSTRACT

Cell cycle progression, autophagic cell death during appressorium development, and ROS degradation at the infection site are important for the development of rice blast disease. However, the association of cell cycle, autophagy and ROS detoxification remains largely unknown in M. oryzae. Here, we identify the dual-specificity kinase MoLKH1, which serves as an important cell cycle regulator required for appressorium formation by regulating cytokinesis and cytoskeleton in M. oryzae. MoLKH1 is transcriptionally activated by H2O2 and required for H2O2-induced autophagic cell death and suppression of ROS-activated plant defense during plant invasion of M. oryzae. In addition, the Molkh1 mutant also showed several phenotypic defects, including delayed growth, abnormal conidiation, damaged cell wall integrity, impaired glycogen and lipid transport, reduced secretion of extracellular enzymes and effectors, and attenuated virulence of M. oryzae. Nuclear localization of MoLKH1 requires the nuclear localization sequence, Lammer motif, as well as the kinase active site and ATP-binding site in this protein. Site-directed mutagenesis showed that each of them plays crucial roles in fungal growth and pathogenicity of M. oryzae. In conclusion, our results demonstrate that MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity play crucial roles in development and pathogenicity of M. oryzae.

5.
Int J Biol Macromol ; : 133604, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964683

ABSTRACT

Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.

6.
Bioelectrochemistry ; 160: 108756, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959750

ABSTRACT

The impact of electromagnetic fields on human health has been investigated in recent years using various model organisms, yet the findings remain unclear. In our work, we examined the effect of less-explored, weak electromagnetic fields commonly found in the urban environments we inhabit. We studied different impacts of electromagnetic fields with a frequency of 50 Hz and a combination of 50 Hz and 150 Hz, on both yeasts (Saccharomyces cerevisiae) and human macrophages. We determined growth, survival, and protein composition (SDS-PAGE) (Saccharomyces cerevisiae) and morphology of macrophages (human monocytic cell line). In yeast, the sole observed change after 24 h of exposure was the extension of the exponential growth phase by 17 h. Conversely, macrophages exhibited morphological transformations from the anti-inflammatory to the pro-inflammatory type within just 2 h of exposure to the electromagnetic field. Our results suggest that effects of electromagnetic field largely depend on the model organism. The selection of an appropriate model organism proves essential for the study of the specific impacts of electromagnetic fields. The potential risk associated with the presence of pro-inflammatory M1 macrophages in everyday urban environments primarily arises from the continual promotion of inflammatory reactions within a healthy organism and deserves further investigation.

7.
Adv Sci (Weinh) ; : e2404937, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962935

ABSTRACT

Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.

8.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963046

ABSTRACT

Arsenic trioxide (ATO) is expected to be a chemical drug with antitumor activity against acute promyelocytic leukemia (APL), a type of acute myeloid leukemia. In Japan, its antitumor effects were confirmed in clinical trials for APL, and it has been approved in various countries around the world. However, there have been no reports on ATO's antitumor effects on radioresistant leukemia cells, which can be developed during radiotherapy and in combination with therapeutic radiation beams. The present study sought to clarify the antitumor effect of ATO on APL cells with radiation resistance and determine its efficacy when combined with ionizing radiation (IR). The radiation­resistant HL60 (Res­HL60) cell line was generated by subjecting the native cells to 4­Gy irradiation every week for 4 weeks. The half­maximal inhibitory concentration (IC50) for cell proliferation by ATO on native cell was 0.87 µM (R2=0.67), while the IC50 for cell proliferation by ATO on Res­HL60 was 2.24 µM (R2=0.91). IR exposure increased the sub­G1 and G2/M phase ratios in both cell lines. The addition of ATO resulted in a higher population of G2/M after 24 h rather than 48 h. When the rate of change in the sub­G1 phase was examined in greater detail, the sub­G1 phase in both control cells without ATO significantly increased by exposure to IR at 24 h, but only under the condition of 2 Gy irradiation, it had continued to increase at 48 h. Res­HL60 supplemented with ATO showed a higher rate of sub­G1 change at 24 h; however, 2 Gy irradiation resulted in a decrease compared with the control. There was a significant increase in the ratio of the G2/M phase in cells after incubation with ATO for 24 h, and exposure to 2 Gy irradiation caused an even greater increase. To determine whether the inhibition of cell proliferation and cell cycle disruptions is related to reactive oxygen species (ROS) activity, intracellular ROS levels were measured with a flow cytometric assay. Although the ROS levels of Res­HL60 were higher than those of native cells in the absence of irradiation, they did not change after 0.5 or 2 Gy irradiation. Furthermore, adding ATO to Res­HL60 reduced intracellular ROS levels. These findings provide important information that radioresistant leukemia cells respond differently to the antitumor effect of ATO and the combined effect of IR.


Subject(s)
Arsenic Trioxide , Arsenicals , Cell Proliferation , Leukemia, Promyelocytic, Acute , Oxides , Radiation, Ionizing , Humans , Arsenic Trioxide/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/radiotherapy , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , HL-60 Cells , Arsenicals/pharmacology , Oxides/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation Tolerance/drug effects , Antineoplastic Agents/pharmacology , Reactive Oxygen Species/metabolism
9.
Cell Oncol (Dordr) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954215

ABSTRACT

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is a prevalent tumor in the gastrointestinal tract, but our understanding of the molecular mechanisms underlying ESCC remains incomplete. Existing studies indicate that SUMO specific peptidase 1 (SENP1) plays a crucial role in the development and progression of various malignant tumors through diverse molecular mechanisms. However, the functional mechanism and clinical implications of SENP1 in the progression of ESCC remain unclear. METHODS: Bulk RNA-Sequencing (RNA-seq) was used to compare potential genes in the esophageal tissues of mice with ESCC to the control group. The up-regulated SENP1 was selected. The protein level of SENP1 in ESCC patient samples was analyzed by immunohistochemistry and western blot. The potential prognostic value of SENP1 on overall survival of ESCC patients was examined using tissue microarray analysis and the Kaplan-Meier method. The biological function was confirmed through in vitro and in vivo knockdown approaches of SENP1. The role of SENP1 in cell cycle progression and apoptosis of ESCC cells was analyzed by flow cytometry and western blot. The downstream signaling pathways regulated by SENP1 were investigated via using RNA-Seq. SENP1-associated proteins were identified through immunoprecipitation. Overexpression of Sirtuin 6 (SIRT6) wildtype and mutant was performed to investigate the regulatory role of SENP1 in ESCC progression in vitro. RESULTS: Our study discovered that SENP1 was upregulated in ESCC tissues and served as a novel prognostic factor. Moreover, SENP1 enhanced cell proliferation and migration of ESCC cell lines in vitro, as well as promoted tumor growth in vivo. Thymidine kinase 1 (TK1), Geminin (GMNN), cyclin dependent kinase 1(CDK1), and cyclin A2 (CCNA2) were identified as downstream genes of SENP1. Mechanistically, SENP1 deSUMOylated SIRT6 and subsequently inhibited SIRT6-mediated histone 3 lysine 56 (H3K56) deacetylation on those downstream genes. SIRT6 SUMOylation mutant (4KR) rescued the growth inhibition upon SENP1 depletion. CONCLUSIONS: SENP1 promotes the malignant progression of ESCC by inhibiting the deacetylase activity of SIRT6 pathway through deSUMOylation. Our findings suggest that SENP1 may serve as a valuable biomarker for prognosis and a target for therapeutic intervention in ESCC.

10.
Nat Prod Res ; : 1-10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956986

ABSTRACT

Red wine is rich in anthocyanins and procyanidins which possess multiple health-promoting properties. However, the synergistically anticancer effects of them on gastric cancer cells still undefined. The results showed that combination of malvidin-3-O-(6-O-coumaroyl)-glucoside-5-O-glucoside (M35GC) and procyanidin C1 could effectively inhibited the viability of MKN-28 cells with the lowest IC50 value. Mechanistically, M35GC and procyanidin C1 significantly induced cell apoptosis by reducing the ratio of Bcl-2/Bax, blocked cell cycle in G0/G1 phase by decreasing CDK4 protein and decreased glucose consumption and lactate production during aerobic glycolysis through suppressing the expression of HK2 protein in MKN-28 cells. In conclusion, induction of cell apoptosis and cell cycle arrest, as well as the inhibition of HK2 protein that participates in the glycolytic pathway and the suppression of aerobic glycolysis by M35GC and procyanidin C1 contributed to the anti-cancer effects in gastric cancer.

11.
J Gene Med ; 26(7): e3713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949075

ABSTRACT

BACKGROUND: The present study aimed to identify dysregulated genes, molecular pathways, and regulatory mechanisms in human papillomavirus (HPV)-associated cervical cancers. We have investigated the disease-associated genes along with the Gene Ontology, survival prognosis, transcription factors and the microRNA (miRNA) that are involved in cervical carcinogenesis, enabling a deeper comprehension of cervical cancer linked to HPV. METHODS: We used 10 publicly accessible Gene Expression Omnibus (GEO) datasets to examine the patterns of gene expression in cervical cancer. Differentially expressed genes (DEGs), which showed a clear distinction between cervical cancer and healthy tissue samples, were analyzed using the GEO2R tool. Additional bioinformatic techniques were used to carry out pathway analysis and functional enrichment, as well as to analyze the connection between altered gene expression and HPV infection. RESULTS: In total, 48 DEGs were identified to be differentially expressed in cervical cancer tissues in comparison to healthy tissues. Among DEGs, CCND1, CCNA2 and SPP1 were the key dysregulated genes involved in HPV-associated cervical cancer. The five common miRNAs that were identified against these genes are miR-7-5p, miR-16-5p, miR-124-3p, miR-10b-5p and miR-27a-3p. The hub-DEGs targeted by miRNA hsa-miR-27a-3p are controlled by the common transcription factor SP1. CONCLUSIONS: The present study has identified DEGs involved in HPV-associated cervical cancer progression and the various molecular pathways and transcription factors regulating them. These findings have led to a better understanding of cervical cancer resulting in the development and identification of possible therapeutic and intervention targets, respectively.


Subject(s)
Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , Papillomavirus Infections , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Humans , MicroRNAs/genetics , Female , Computational Biology/methods , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Gene Ontology , Biomarkers, Tumor/genetics , Prognosis , Databases, Genetic , Signal Transduction/genetics
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1117-1125, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977341

ABSTRACT

OBJECTIVE: To investigate the mechanism by which CDHR2 overexpression inhibits breast cancer cell growth and cell cycle pragression via the PI3K/Akt signaling pathway. METHODS: Bioinformatic analysis was performed to investigate CDHR2 expression in breast cancer and its correlation with survival outcomes of the patients. Immunohistochemistry was used to examine CDHR2 expressions in surgical specimens of tumor and adjacent tissues from 10 patients with breast cancer. CDHR2 expression levels were also detected in 5 breast cancer cell lines and a normal human mammary epithelial cell line using qRT-PCR and Western blotting. Breast cancer cell lines MDA-MB-231 and MCF7 with low CDHR2 expression were transfected with a CDHR2-overexpressing plasmid, and the changes in cell proliferation and cell cycle were evaluated using CCK-8 assay, EdU assay, and cell cycle assay; the changes in expressions of PI3K/Akt signaling pathway and cell cycle pathway proteins were detected with Western blotting. RESULTS: Bioinformatic analysis showed low CDHR2 expression level in both breast cancer and adjacent tissues without significant difference between them (P > 0.05), but breast cancer patients with a high expression of CDHR2 had a more favorable prognosis. Immunohistochemistry, qRT-PCR and Western blotting showed that the expression of CDHR2 was significantly down-regulated in breast cancer tissues and breast cancer cells (P < 0.01), and its overexpression strongly inhibited cell proliferation, caused cell cycle arrest, and significantly inhibited PI3K and Akt phosphorylation and the expression of cyclin D1. CONCLUSION: Overexpression of CDHR2 inhibits proliferation and causes cell cycle arrest in breast cancer cells possibly by inhibiting the PI3K/Akt signaling pathway.


Subject(s)
Breast Neoplasms , Cell Proliferation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Female , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Cycle , MCF-7 Cells
13.
J Cancer ; 15(13): 4232-4243, 2024.
Article in English | MEDLINE | ID: mdl-38947387

ABSTRACT

Although fangchinoline has been widely used as an adjunct therapy for a variety of inflammatory and cancerous diseases, its mechanism of action on tumor cells remains unclear. Fangchinoline derivative LYY-35 reduced the number of A549 cells, deformed cell morphology and increased cell debris. Cell viability was significantly reduced, while the same concentration of LYY-35 had little effect on BEAS-2B viability of normal lung epithelial cells. In addition, LYY-35 can also reduce the migration, proliferation and invasion ability of A549 cells. Levels of ß-catenin, ZO-1 and ZEB-1 proteins, biomarkers of cell adhesion and epithelial mesenchymal transformation, were significantly reduced. The levels of superoxide dismutase and lactate dehydrogenase decreased gradually, while the levels of glutathione, malondialdehyde and intracellular and extracellular ROS increased significantly. At the same time, LYY-35 induced increased apoptosis, increased expression of Bax, cleaved caspase3, cleaved PARP1, and decreased expression of Bcl-xl, which blocked the cell cycle to G0/G1 phase. The expressions of cell cycle checkpoint proteins Cyclin B1, Cyclin E1, CDK6, PCNA and PICH were significantly decreased. With the increase of LYY-35 concentration, the trailing phenomenon was more obvious in single cell gel electrophoresis. DNA damage repair proteins: BLM, BRCA-1 and PARP-1 expression decreased gradually.LYY-35 can inhibit the proliferation of non-small cell lung cancer A549 cells, block cell cycle, promote apoptosis, increase ROS production, cause DNA damage and interfere with DNA replication. LYY-35 is promising for the treatment of non-small cell lung cancer in the future.

14.
Sci Rep ; 14(1): 15479, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969743

ABSTRACT

Most organisms possess three biological oscillators, circadian clock, cell cycle, and redox rhythm, which are autonomous but interact each other. However, whether their interactions and autonomy are beneficial for organisms remains unclear. Here, we modeled a coupled oscillator system where each oscillator affected the phase of the other oscillators. We found that multiple types of coupling prevent a high H2O2 level in cells at M phase. Consequently, we hypothesized a high H2O2 sensitivity at the M phase and found that moderate coupling reduced cell damage due to oxidative stress by generating appropriate phase relationships between three rhythms, whereas strong coupling resulted in an elevated cell damage by increasing the average H2O2 level and disrupted the cell cycle. Furthermore, the multicellularity model revealed that phase variations among cells confer flexibility in synchronization with environments at the expense of adaptability to the optimal environment. Thus, both autonomy and synchrony among the oscillators are important for coordinating their phase relationships to minimize oxidative stress, and couplings balance them depending on environments.


Subject(s)
Cell Cycle , Circadian Rhythm , Hydrogen Peroxide , Models, Biological , Oxidation-Reduction , Oxidative Stress , Hydrogen Peroxide/metabolism , Circadian Rhythm/physiology , Circadian Clocks/physiology , Animals
15.
Redox Rep ; 29(1): 2371173, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38972297

ABSTRACT

Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.


Subject(s)
Cell Cycle , Oxidation-Reduction , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Cell Proliferation , Signal Transduction , DNA Damage , Animals
16.
Plant Sci ; : 112183, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972549

ABSTRACT

The normal progression of mitotic cycles and synchronized development within female reproductive organs are pivotal for sexual reproduction in plants. Nevertheless, our understanding of the genetic regulation governing mitotic cycles during the haploid phase of higher plants remains limited. In this study, we characterized RNA HELICASE 32 (RH32), which plays an essential role in female gametogenesis in Arabidopsis. The rh32 heterozygous mutant was semi-sterile, whereas the homozygous mutant was nonviable. The rh32 mutant allele could be transmitted through the male gametophyte, but not the female gametophyte. Phenotypic analysis revealed impaired mitotic progression, synchronization, and cell specification in rh32 female gametophytes, causing the arrest of embryo sacs. In the delayed pollination test, none of the retarded embryo sacs developed into functional female gametophytes, and the vast majority of rh32 female gametophytes were defective in the formation of the large central vacuole. RH32 is strongly expressed in the embryo sac. Knock-down of RH32 resulted in the accumulation of unprocessed 18S pre-rRNA, implying that RH32 is involved in ribosome synthesis. Based on these findings, we propose that RH32 plays a role in ribosome synthesis, which is critical for multiple processes in female gametophyte development.

17.
Biol Pharm Bull ; 47(7): 1255-1264, 2024.
Article in English | MEDLINE | ID: mdl-38972750

ABSTRACT

Traditional Chinese Medicine, known for its minimal side effects and significant clinical efficacy, has attracted considerable interest for its potential in cancer therapy. In particular, Inula helenium L. has demonstrated effectiveness in inhibiting a variety of cancers. This study focuses on alantolactone (ALT), a prominent compound from Inula helenium L., recognized for its anti-cancer capabilities across multiple cancer types. The primary objective of this study is to examine the influence of ALT on the proliferation, apoptosis, cell cycle, and tumor growth of cervical cancer (CC) cells, along with its associated signaling pathways. To determine protein expression alterations, Western blot analysis was conducted. Furthermore, an in vivo model was created by subcutaneously injecting HeLa cells into nude mice to assess the impact of ALT on cervical cancer. Our research thoroughly investigates the anti-tumor potential of ALT in the context of CC. ALT was found to inhibit cell proliferation and induce apoptosis in SiHa and HeLa cell lines, particularly targeting ataxia-telangiectasia mutated (ATM) proteins associated with DNA damage. The suppression of DNA damage and apoptosis induction when ATM was inhibited underscores the crucial role of the ATM/cell cycle checkpoint kinase 2 (CHK2) axis in ALT's anti-tumor effects. In vivo studies with a xenograft mouse model further validated ALT's effectiveness in reducing CC tumor growth and promoting apoptosis. This study offers new insights into how ALT combats CC, highlighting its promise as an effective anti-cervical cancer agent and providing hope for improved treatment outcomes for CC patients.


Subject(s)
Apoptosis , Ataxia Telangiectasia Mutated Proteins , Checkpoint Kinase 2 , DNA Damage , Lactones , Mice, Nude , Sesquiterpenes, Eudesmane , Signal Transduction , Uterine Cervical Neoplasms , Humans , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Apoptosis/drug effects , Female , Checkpoint Kinase 2/metabolism , DNA Damage/drug effects , Signal Transduction/drug effects , Sesquiterpenes, Eudesmane/pharmacology , Sesquiterpenes, Eudesmane/therapeutic use , Lactones/pharmacology , Lactones/therapeutic use , HeLa Cells , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Inula/chemistry
18.
Cell Biochem Funct ; 42(5): e4090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973147

ABSTRACT

Cellular therapy is considered a better option for the treatment of degenerative disorders. Different cell types are being used for tissue regeneration. Despite extensive research in this field, several issues remain to be addressed concerning cell transplantation. One of these issues is the survival and homing of administered cells in the injured tissue, which depends on the ability of these cells to adhere. To enhance cell adherence and survival, Rap1 GTPase was activated in mesenchymal stem cells (MSCs) as well as in cardiomyocytes (CMs) by using 8-pCPT-2'-O-Me-cAMP, and the effect on gene expression dynamics was determined through quantitative reverse transcriptase-polymerase chain reaction analysis. Pharmacological activation of MSCs and CMs resulted in the upregulation of connexin-43 and cell adhesion genes, which increased the cell adhesion ability of MSCs and CMs, and increased the fusion of MSCs with neonatal CMs. Treating stem cells with a pharmacological agent that activates Rap1a before transplantation can enhance their fusion with CMs and increase cellular regeneration.


Subject(s)
Mesenchymal Stem Cells , Myocytes, Cardiac , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Animals , Cell Adhesion/drug effects , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cell Fusion , Cells, Cultured , Rats , Animals, Newborn , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics
19.
Tissue Cell ; 89: 102460, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981184

ABSTRACT

The present study aimed to assess the effects of simulated microgravity (SMG) on 3T3 cell proliferation and the expression of cell cycle regulators. 3T3 cells were induced to SMG by Gravite® for 8 days, while the control group was treated with 1G condition. The result showed that the SMG condition causes a decrease in proliferative activity in 3T3 cells. In the SMG group, the expression of cell cycle-related proteins was lower than the control on day 3. However, these proteins were upregulated in 3T3 cells of the SMG group on day 5, suggesting that these cells were rescued from the arrest and retrieved a higher proliferation. A down-regulation of cell cycle-related proteins was observed in 3T3 cells of both SMG and control groups on day 7. In conclusion, SMG results in the attenuation of cell proliferation during the initial exposure to SMG, but the cells will adapt to this condition and retrieve normal proliferation by increasing the expression of cell cycle regulators.

20.
Article in English | MEDLINE | ID: mdl-38982692

ABSTRACT

In eukaryotic cells, primases are the key polymerase during DNA replication and DNA damage repair, which includes primase subunit 1 (PRIM1) and primase subunit 2 (PRIM2). Recent studies reported that the aberrant expression and activity of PRIM enzymes are closely associated with the carcinogenesis and development of various cancers. PRIM1 is overexpressed in hepatocellular carcinoma, breast cancer, and other cancers, while PRIM2 is highly expressed in lung cancer, gastrointestinal cancer, and other cancers. Further studies revealed that the knockdown of PRIM1 promoted the apoptosis of liver cancer cells, while Dihydroartemisinin (DHA) can inhibit PRIM2 expression, suppress lung cancer cell proliferation, and result in ferroptosis. The present review summarized the recent advancements in the research of the aberrant expression of PRIM1 and PRIM2 and their activity in DNA replication, DNA damage repair, and carcinogenesis. Furthermore, the strategies targeting PRIM1 or/and PRIM2 become potential therapeutic approaches in cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...