Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.973
Filter
1.
Methods Mol Biol ; 2827: 145-153, 2024.
Article in English | MEDLINE | ID: mdl-38985267

ABSTRACT

Plant cell suspension cultures (PCSCs) are in vitro-cultured cells that can divide indefinitely in a sterile growth medium. These PCSCs can be derived from various plant tissues, such as the root, stem, leaves, or seeds, and are maintained in a suitable culture medium containing nutrients, vitamins, hormones, and other essential components necessary for their growth. PCSCs have extensive applications in biotechnology, particularly in producing pharmaceutical and chemical compounds. This chapter presents a protocol for generating cell lines from Arabidopsis thaliana root callus under different light conditions, which can be used to investigate the effects of light on plant cell growth and development. The protocol described in this chapter is a valuable tool for researchers interested in utilizing PCSCs in their studies.


Subject(s)
Arabidopsis , Cell Culture Techniques , Light , Arabidopsis/cytology , Arabidopsis/growth & development , Cell Culture Techniques/methods , Plant Roots/cytology , Plant Roots/growth & development , Culture Media/chemistry , Cells, Cultured
2.
Article in English | MEDLINE | ID: mdl-38982697

ABSTRACT

OBJECTIVE: Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells. METHODS: The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 µg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR. RESULTS: A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 µg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 µg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 µg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 µg/mL of extract (tail moments-19.536 ± 17.8), while 80 µg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 µg/mL of extract, while 80 µg/mL did not show a significant reduction. CONCLUSION: The 160 µg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.

3.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994972

ABSTRACT

Understanding tumor-host immune interactions and the mechanisms of lung cancer response to immunotherapy is crucial. Current preclinical models used to study this often fall short of capturing the complexities of human lung cancer and lead to inconclusive results. To bridge the gap, we introduce two new murine monoclonal lung cancer cell lines for use in immunocompetent orthotopic models. We demonstrate how our cell lines exhibit immunohistochemical protein expression (TTF-1, NapA, PD-L1) and common driver mutations (KRAS, p53, and p110α) seen in human lung adenocarcinoma patients, and how our orthotopic models respond to combination immunotherapy in vivo in a way that closely mirrors current clinical outcomes. These new lung adenocarcinoma cell lines provide an invaluable, clinically relevant platform for investigating the intricate dynamics between tumor and the immune system, and thus potentially contributes to a deeper understanding of immunotherapeutic approaches to lung cancer treatment.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Animals , Immunotherapy/methods , Humans , Cell Line, Tumor , Mice , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Disease Models, Animal , Female
4.
Anal Bioanal Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958703

ABSTRACT

The study of glycoproteomics presents a set of unique challenges, primarily due to the low abundance of glycopeptides and their intricate heterogeneity, which is specific to each site. Glycoproteins play a crucial role in numerous biological functions, including cell signaling, adhesion, and intercellular communication, and are increasingly recognized as vital markers in the diagnosis and study of various diseases. Consequently, a quantitative approach to glycopeptide research is essential. One effective strategy to address this need is the use of multiplex glycopeptide labeling. By harnessing the synergies of 15N metabolic labeling via the isotopic detection of amino sugars with glutamine (IDAWG) technique for glycan parts and tandem mass tag (TMT)pro labeling for peptide backbones, we have developed a method that allows for the accurate quantification and comparison of multiple samples simultaneously. The adoption of the liquid chromatography-synchronous precursor selection (LC-SPS-MS3) technique minimizes fragmentation interference, enhancing data reliability, as shown by a 97% TMT labeling efficiency. This method allows for detailed, high-throughput analysis of 32 diverse samples from 231BR cell lines, using both 14N and 15N glycopeptides at a 1:1 ratio. A key component of our methodology was the precise correction for isotope and TMTpro distortions, significantly improving quantification accuracy to less than 5% distortion. This breakthrough enhances the efficiency and accuracy of glycoproteomic studies, increasing our understanding of glycoproteins in health and disease. Its applicability to various cancer cell types sets a new standard in quantitative glycoproteomics, enabling deeper investigation into glycopeptide profiles.

5.
Onco Targets Ther ; 17: 521-536, 2024.
Article in English | MEDLINE | ID: mdl-38948385

ABSTRACT

Introduction: The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods: C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results: Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 µg/mL and 64.4 ± 8 µg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 µg/mL for MCF-7 and 166.4 ± 27 µg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion: The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.

6.
Cell Biol Int ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961533

ABSTRACT

The senescence-associated protein p16INK4A acts as a limiter element in cell-cycle progression. The loss of p16INK4A function is causally related to cellular immortalization. The increase in p16INK4A levels with advancing age was demonstrated in melanocytes. However, the characteristic difference between young and senescent melanocytes affecting immortalization of melanocytes remains unclear. In this study, we generated 10 different cell lines in total from newborn (NB) and adult (AD) primary normal human epidermal melanocytes (NHEM) using four different methods, transduction of CDK4R24C and cyclin D1 (K4D), K4D with TERT (K4DT), SV40 T-antigen (SV40T), and HPV16 E6 and E7 (E6/E7) and performed whole transcriptome sequencing analysis (RNA-Seq) to elucidate the differences of genome-wide expression profiles among cell lines. The analysis data revealed distinct differences in expression pattern between cell lines from NB and AD although no distinct biological differences were detected in analyses such as comparison of cell morphology, evaluation of cell proliferation, and cell cycle profiles. This study may provide useful in vitro models to benefit the understanding of skin-related diseases.

7.
Reprod Biol ; 24(3): 100917, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970978

ABSTRACT

The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.

8.
Toxicol In Vitro ; : 105881, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906200

ABSTRACT

The immortalised human hepatocellular HepG2 cell line is commonly used for toxicology studies as an alternative to animal testing due to its characteristic liver-distinctive functions. However, little is known about the baseline metabolic changes within these cells upon toxin exposure. We have applied high-resolution 1H Nuclear Magnetic Resonance (NMR) spectroscopy to characterise the biochemical composition of HepG2 cells at baseline and post-exposure to hydrogen peroxide (H2O2). Metabolic profiles of live cells, cell extracts, and their spent media supernatants were obtained using 1H high-resolution magic angle spinning (HR-MAS) NMR and 1H NMR spectroscopic techniques. Orthogonal partial least squares discriminant analysis (O-PLS-DA) was used to characterise the metabolites that differed between the baseline and H2O2 treated groups. The results showed that H2O2 caused alterations to 10 metabolites, including acetate, glutamate, lipids, phosphocholine, and creatine in the live cells; 25 metabolites, including acetate, alanine, adenosine diphosphate (ADP), aspartate, citrate, creatine, glucose, glutamine, glutathione, and lactate in the cell extracts, and 22 metabolites, including acetate, alanine, formate, glucose, pyruvate, phenylalanine, threonine, tryptophan, tyrosine, and valine in the cell supernatants. At least 10 biochemical pathways associated with these metabolites were disrupted upon toxin exposure, including those involved in energy, lipid, and amino acid metabolism. Our findings illustrate the ability of NMR-based metabolic profiling of immortalised human cells to detect metabolic effects on central metabolism due to toxin exposure. The established data sets will enable more subtle biochemical changes in the HepG2 model cell system to be identified in future toxicity testing.

9.
Article in English | MEDLINE | ID: mdl-38907163

ABSTRACT

The development and characterization of two novel humpback grouper (Cromileptes altivelis) fin cell lines are described in this study. The CA1F3Ex and CA1F4Tr cell lines were developed by explant and trypsinization methods, respectively, in Leibovitz's L15 (L-15) medium supplemented with 20% FBS (fetal bovine serum) and subcultured over 150 times. Cell lines exhibited high stability, as evidenced by the high revival rate (85-95%) and good attachment while seeding after one year of cryostorage. They displayed good seeding (91%) and plating efficiencies (15-25%). The optimum temperature for growth was recorded at 28˚C. Serum requirement decreased with increased passage and lowered to 2% FBS beyond 30-35 passages. However, higher serum concentration (2-20%) caused a concurrent increase in cell growth. Both the cell lines were fibroblast-type, and immunotyping results showed strong reactivity towards the fibroblast marker. Chromosome analysis of these cell lines revealed aneuploidy, and the authenticity was confirmed by mitochondrial Cytochrome C Oxidase Subunit I (COI) genotyping analysis. Cell cycle studies were performed utilizing the flow cytometric technique. CA1F3Ex and CA1F4Tr cell lines showed high transfection efficiency with pEGFP-N1 plasmid using Lipofectamine and cytotoxicity towards heavy metals (Hg and Cd) was also studied. Hence, these continuous cell lines could be employed as in vitro models for aquatic toxicological and genetic manipulation studies.

10.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891124

ABSTRACT

Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100ß), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.


Subject(s)
Melanoma , Mouth Mucosa , Mouth Neoplasms , Animals , Dogs , Melanoma/pathology , Melanoma/genetics , Melanoma/veterinary , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/veterinary , Cell Line, Tumor , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Mice , Mice, Inbred BALB C , Disease Models, Animal , Mice, Nude
11.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892296

ABSTRACT

As we move into the era of precision medicine, the growing relevance of genetic alterations to prostate cancer (PCa) development and treatment demonstrates the importance of characterizing preclinical models at the genomic level. Our study investigated the genomic characterization of eight PCa cell lines to understand which models are clinically relevant. We designed a custom AmpliSeq DNA gene panel that encompassed key molecular pathways targeting AR signaling, apoptosis, DNA damage repair, and PI3K/AKT/PTEN, in addition to tumor suppressor genes. We examined the relationship between cell line genomic alterations and therapeutic response. In addition, using DepMap's Celligner tool, we identified which preclinical models are most representative of specific prostate cancer patient populations on cBioPortal. These data will help investigators understand the genetic differences in preclinical models of PCa and determine which ones are relevant for use in their translational research.


Subject(s)
Genomics , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Genomics/methods , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , DNA Repair
12.
Front Vet Sci ; 11: 1392728, 2024.
Article in English | MEDLINE | ID: mdl-38840628

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is the most common malignant liver tumor in dogs. Although surgical resection is a major treatment option for canine HCC, there are no distinct strategies for unresectable tumor subtypes or adjuvant chemotherapy for tumors with positive margins. We aimed to establish and characterize novel HCC cell lines from canine patients. Methods: The cellular morphology, general growth features and tumorigenicity of the established cell lines were evaluated. We also examined the sensitivity of the cell lines to multi-target tyrosine kinase inhibitors (TKIs). Results: We established novel canine HCC cell lines from hepatic tumors and an additional kidney tumor of six canine patients. All cell lines showed colony forming and migratory ability. KU-cHCC-001 and KU-cHCC-001-Kidney, two cell lines exhibiting high epithelial-mesenchymal transition characteristics, showed tumorigenicity in xenografted mice. Toceranib, a veterinary TKI that targets vascular endothelial growth factor (VEGFR)/platelet-derived growth factor receptor (PDGFR)/c-kit, effectively inhibited the mitogen-activated protein kinase pathway and induced apoptosis. The established canine HCC cell lines showed greater sensitivity to toceranib than to sorafenib, a first-line treatment for human HCC targeting RAF/VEGFR/PDGFR. Sorafenib showed improved anti-tumor effects when co-treated with SCH772984, an extracellular signal-regulated kinase inhibitor. Conclusion: Our study suggests new therapeutic strategies for canine HCC, and these cell lines are valuable research materials for understanding HCC tumor biology in both humans and dogs.

13.
Biomolecules ; 14(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927055

ABSTRACT

Paclitaxel (PTX) is a chemotherapeutic agent affecting microtubule polymerization. The efficacy of PTX depends on the type of tumor, and its improvement would be beneficial in patients' treatment. Therefore, we tested the effect of slow sulfide donor GYY4137 on paclitaxel sensitivity in two different breast cancer cell lines, MDA-MB-231, derived from a triple negative cell line, and JIMT1, which overexpresses HER2 and is resistant to trastuzumab. In JIMT1 and MDA-MB-231 cells, we compared IC50 and some metabolic (apoptosis induction, lactate/pyruvate conversion, production of reactive oxygen species, etc.), morphologic (changes in cytoskeleton), and functional (migration, angiogenesis) parameters for PTX and PTX/GYY4137, aiming to determine the mechanism of the sensitization of PTX. We observed improved sensitivity to paclitaxel in the presence of GYY4137 in both cell lines, but also some differences in apoptosis induction and pyruvate/lactate conversion between these cells. In MDA-MB-231 cells, GYY4137 increased apoptosis without affecting the IP3R1 protein, changing the morphology of the cytoskeleton. A mechanism of PTX sensitization by GYY4137 in JIMT1 cells is distinct from MDA-MB-231, and remains to be further elucidated. We suggest different mechanisms of action for H2S on the paclitaxel treatment of MDA-MB-231 and JIMT1 breast cancer cell lines.


Subject(s)
Apoptosis , Breast Neoplasms , Morpholines , Organothiophosphorus Compounds , Paclitaxel , Paclitaxel/pharmacology , Humans , Organothiophosphorus Compounds/pharmacology , Morpholines/pharmacology , Cell Line, Tumor , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Sulfides/pharmacology , Reactive Oxygen Species/metabolism , Drug Resistance, Neoplasm/drug effects
14.
Article in English | MEDLINE | ID: mdl-38918975

ABSTRACT

Cancer is one of the most complicated and prevalent diseases in the world, and its incidence is growing worldwide. Natural products containing pharmacological activity are widely used in the pharmaceutical industry, especially in anticancer drugs, due to their diverse structures and distinctive functional groups that inspire new drug results by means of synthetic chemistry. Terrestrial medicinal plants have traditionally been the primary source for developing natural products (NPs). However, over the past thirty years, marine organisms such as invertebrates, plants, algae, and bacteria have revealed many new pharmaceutical compounds known as marine NPs. This field constantly evolves as a discipline in molecular targeted drug discovery, incorporating advanced screening tools that have revolutionised and become integral to modern antitumor research. This review discusses recent studies on new natural anticancer alkaloids obtained from marine organisms. The paper illustrates the structure and origin of marine alkaloids and demonstrates the cytotoxic action of new alkaloids from several structural families and their synthetic analogs. The most recent findings about the potential or development of some of them as novel medications, together with the status of our understanding of their current mechanisms of action, are also compiled.

15.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928326

ABSTRACT

Diagnostic markers are desperately needed for the early detection of pancreatic ductal adenocarcinoma (PDA). We describe sets of markers expressed in temporal order in mouse models during pancreatitis, PDA initiation and progression. Cell type specificity and the differential expression of PDA markers were identified by screening single cell (sc) RNAseq from tumor samples of a mouse model for PDA (KIC) at early and late stages of PDA progression compared to that of a normal pancreas. Candidate genes were identified from three sources: (1) an unsupervised screening of the genes preferentially expressed in mouse PDA tumors; (2) signaling pathways that drive PDA, including the Ras pathway, calcium signaling, and known cancer genes, or genes encoding proteins that were identified by differential mass spectrometry (MS) of mouse tumors and conditioned media from human cancer cell lines; and (3) genes whose expression is associated with poor or better prognoses (PAAD, oncolnc.org). The developmental progression of PDA was detected in the temporal order of gene expression in the cancer cells of the KIC mice. The earliest diagnostic markers were expressed in epithelial cancer cells in early-stage, but not late-stage, PDA tumors. Other early markers were expressed in the epithelium of both early- and late-state PDA tumors. Markers that were expressed somewhat later were first elevated in the epithelial cancer cells of the late-stage tumors, then in both epithelial and mesenchymal cells, or only in mesenchymal cells. Stromal markers were differentially expressed in early- and/or late-stage PDA neoplasia in fibroblast and hematopoietic cells (lymphocytes and/or macrophages) or broadly expressed in cancer and many stromal cell types. Pancreatitis is a risk factor for PDA in humans. Mouse models of pancreatitis, including caerulein treatment and the acinar-specific homozygous deletion of differentiation transcription factors (dTFs), were screened for the early expression of all PDA markers identified in the KIC neoplasia. Prognostic markers associated with a more rapid decline were identified and showed differential and cell-type-specific expression in PDA, predominately in late-stage epithelial and/or mesenchymal cancer cells. Select markers were validated by immunohistochemistry in mouse and human samples of a normal pancreas and those with early- and late-stage PDA. In total, we present 2165 individual diagnostic and prognostic markers for disease progression to be tested in humans from pancreatitis to late-stage PDA.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology , Pancreatitis/metabolism , Pancreatitis/genetics , Pancreatitis/pathology , Pancreatitis/diagnosis , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Humans , Prognosis , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Cell Line, Tumor , Disease Progression
16.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928073

ABSTRACT

The Cystic Fibrosis Conductance Transmembrane Regulator gene encodes for the CFTR ion channel, which is responsible for the transport of chloride and bicarbonate across the plasma membrane. Mutations in the gene result in impaired ion transport, subsequently leading to perturbed secretion in all exocrine glands and, therefore, the multi-organ disease cystic fibrosis (CF). In recent years, several studies have reported on CFTR expression in immune cells as demonstrated by immunofluorescence, flow cytometry, and immunoblotting. However, these data are mainly restricted to single-cell populations and show significant variation depending on the methodology used. Here, we investigated CFTR transcription and protein expression using standardized protocols in a comprehensive panel of immune cells. Methods: We applied a high-resolution Western blot protocol using a combination of highly specific monoclonal CFTR antibodies that have been optimized for the detection of CFTR in epithelial cells and healthy primary immune cell subpopulations sorted by flow cytometry and used immortalized cell lines as controls. The specificity of CFTR protein detection was controlled by peptide competition and enzymatic Peptide-N-Glycosidase-F (PNGase) digest. CFTR transcripts were analyzed using quantitative real-time PCR and normalized to the level of epithelial T84 cells as a reference. Results: CFTR mRNA expression could be shown for primary CD4+ T cells, NK cells, as well as differentiated THP-1 and Jurkat T cells. In contrast, we failed to detect CFTR transcripts for CD14+ monocytes and undifferentiated THP-1 cells, as well as for B cells and CD8+ T cells. Prominent immunoreactive bands were detectable by immunoblotting with the combination of four CFTR antibodies targeting different epitopes of the CFTR protein. However, in biosamples of non-epithelial origin, these CFTR-like protein bands could be unmasked as false positives through peptide competition or PNGase digest, meaning that the observed mRNA transcripts were not necessarily translated into CFTR proteins, which could be detected via immunoblotting. Our results confirm that mRNA expression in immune cells is many times lower than in that cells of epithelial origin. The immunoreactive signals in immune cells turned out to be false positives, and may be provoked by the presence of a high-affinity protein with a similar epitope. Non-specific binding (e.g., Fab-interaction with glycosyl branches) might also contribute to false positive signals. Our findings highlight the necessity of accurate controls, such as CFTR-negative cells, as well as peptide competition and glycolytic digest in order to identify genuine CFTR protein by immunoblotting. Our data suggest, furthermore, that CFTR protein expression data from techniques such as histology, for which the absence of a molecular weight or other independent control prevents the unmasking of false positive immunoreactive signals, must be interpreted carefully as well.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Leukocytes, Mononuclear , RNA, Messenger , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Leukocytes, Mononuclear/metabolism , Blotting, Western , Real-Time Polymerase Chain Reaction/methods , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Killer Cells, Natural/metabolism , Flow Cytometry/methods , CD4-Positive T-Lymphocytes/metabolism
17.
Methods Mol Biol ; 2810: 147-159, 2024.
Article in English | MEDLINE | ID: mdl-38926278

ABSTRACT

Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome, the transgene is stably maintained, and long-term producing cells are established. Here, we describe the current state of the art and give details for lab-scale production of lentiviral vectors as well as for infection and titration of the viral vectors.


Subject(s)
Genetic Vectors , Lentivirus , Transduction, Genetic , Transduction, Genetic/methods , Lentivirus/genetics , Genetic Vectors/genetics , Humans , Transgenes , Gene Expression , Cell Line , HEK293 Cells , Transfection/methods
18.
Environ Res ; 259: 119445, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942259

ABSTRACT

In present investigation, Carica papaya leaf extract has been employed as a bio-reductant agent in order to synthesize ecologically sustainable bio-coupled gold nanoparticles. The formation of gold nanoparticles was confirmed based on colour change of solution and its surface plasmon resonance peak measured using UV-Vis Spectrophotometer (UV-Vis). The Morphology and size of nanoparticles were determined using transmission electron microscope (SEM/TEM), and its crystalline structure by X-ray diffraction studies. Surface area was determined via BET isotherm analysis. The elemental composition of Au nanoparticles was developed using the technique of energy dispersive spectroscopy (EDS). Furthermore, FTIR analysis delineated the presence of functional groups present in the samples of the synthesized AuNPs. Thus, the efficiency of bio coupled Au nanoparticles in photo catalytically decomposing methylene blue was examined under the influence of visible light., the lethal MB colorant had been reduced to 95 % Within 90 min. And also 60% TOC removal was recorded after 5 min of degradation reaction, which increased to 99% after 90 min. Furthermore, cytotoxic experiments on Michigan Cancer Foundations-7 (MCF-7) cell lines showed that Au nanoparticles are effective anticancer agents with an IC50 of 87.2 g/mL on the top of the present work revealed the eco-safety and affordable production of Au nanoparticles from Carica papaya leaf extract, which displayed photocatalytic debasement of organic pollutants and cyto-toxicity effects was investigated.

19.
Drug Dev Res ; 85(5): e22227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943497

ABSTRACT

Biobanks of human biosamples and cell lines are indispensable for biomedical research on human health and disease and for drug development projects. Many human cell line biobanks worldwide hold collections of lymphoblastoid cell lines (LCLs), representing thousands of affected and control donors from diverse ethnic/ancestry groups. In recent years, induced human pluripotent stem cells (iPSCs) and differentiated human cells derived from these iPSCs have become indispensable for applied biomedical research. Establishing iPSCs remains a laborious and costly step towards generating differentiated human cells. To address this research need, several non-profit and commercial biobanks have established iPSC collections for distribution to researchers, thereby serving as a resource for generating differentiated human cells. The most common starting materials for generation of iPSCs are a skin biopsy for harvesting fibroblasts, or a blood sample for collection of peripheral blood mononuclear cells. However untapped resources include the large established collections of biobanked human LCLs which can be reprogrammed to iPSCs using a variety of published protocols including the use of non-integrating episomal vectors. Many biobanks curate LCLs from diverse ethnic/ancestry populations, an aspect largely absent in most established iPSC biobanks which tend to primarily reflect populations from developed countries. Here, we call upon researchers across the breadth of iPSC research to tap the unique resource of existing and diverse human LCL collections for establishing biobanked iPSC panels that better represent the varied human ethnic (and hence genomic) diversity, thereby benefiting precision medicine and drug development research on a global scale.


Subject(s)
Biological Specimen Banks , Biomedical Research , Ethnicity , Induced Pluripotent Stem Cells , Racial Groups , Humans , Cell Line , Induced Pluripotent Stem Cells/cytology
20.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891817

ABSTRACT

(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies.


Subject(s)
Apoptosis , Indazoles , Phthalazines , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Radiation-Sensitizing Agents , Squamous Cell Carcinoma of Head and Neck , Humans , Phthalazines/pharmacology , Indazoles/pharmacology , Piperidines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Apoptosis/drug effects , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...