Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675528

ABSTRACT

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Glioblastoma , S-Adenosylmethionine , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , S-Adenosylmethionine/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , DNA Repair/drug effects , Aurora Kinase B/metabolism , Aurora Kinase B/antagonists & inhibitors , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Rad51 Recombinase/metabolism , Cell Cycle Checkpoints/drug effects , Mitosis/drug effects
2.
Vet Res Commun ; 48(1): 563-568, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37597087

ABSTRACT

Canine histiocytic sarcoma is an aggressive cancer, with a high rate of metastasis. Thus, novel therapeutic approaches are needed. Synthetic analogues of curcumin have elicited potent anti-cancer activity in multiple in vitro and in vivo models of human cancer. Furthermore, the compound 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71) has recently exhibited potent cell cycle arrest and apoptotic induction in a canine osteosarcoma cell line. To determine its potency in canine histiocytic sarcoma cells, cell viability of DH82 and Nike cells was measured using the sulforhodamine B assay. Flow cytometry was then used to analyse both cell cycle distribution and apoptosis. Of the five curcumin analogues examined, RL71, had the highest potency with EC50 values of 0.66 ± 0.057 µM and 0.79 ± 0.13 µM in the DH82 and Nike cell lines, respectively. Furthermore, RL71 at the 1x EC50 concentration increased G2/M cell cycle arrest 2-fold, and at the 2x EC50 concentration increased the number of apoptotic cells 4-fold. These findings are consistent with previous work using RL71 in both canine and human cancer cell lines. Future research should be directed on time-dependent changes, and mechanistic investigation in greater detail to elucidate RL71 mechanisms of action.


Subject(s)
Antineoplastic Agents , Curcumin , Dog Diseases , Histiocytic Sarcoma , Animals , Dogs , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Histiocytic Sarcoma/drug therapy , Histiocytic Sarcoma/veterinary , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dog Diseases/drug therapy
3.
Phytomedicine ; 123: 155198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006806

ABSTRACT

BACKGROUND AND PURPOSE: Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS: To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS: Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -ß3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION: This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.


Subject(s)
Berberine/analogs & derivatives , Stomach Neoplasms , Humans , Mice , Animals , Stomach Neoplasms/genetics , Cell Proliferation , Cell Line, Tumor , Receptors, GABA/metabolism , Tumor Suppressor Protein p53 , Molecular Docking Simulation , G2 Phase Cell Cycle Checkpoints , Apoptosis
4.
Acta Pharm Sin B ; 11(9): 2670-2684, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589388

ABSTRACT

Lung cancers are the leading cause of cancer deaths worldwide and pose a grave threat to human life and health. Non-small cell lung cancer (NSCLC) is the most frequent malignancy occupying 80% of all lung cancer subtypes. Except for other mutations (e.g., KRAS G12V/D ) that are also vital for the occurrence, KRAS G12C gene mutation is a significant driving force of NSCLC, with a prevalence of approximately 14% of all NSCLC patients. However, there are only a few therapeutic drugs targeting KRASG12C mutations currently. Here, we synthesized hydrocarbon-stapled peptide 3 that was much shorter and more stable with modest KRASG12C binding affinity and the same anti-tumor effect based on the α-helical peptide mimic SAH-SOS1A. The stapled peptide 3 effectively induced G2/M arrest and apoptosis, inhibiting cell growth in KRAS-mutated lung cancer cells via disrupting the KRAS-mediated RAF/MEK/ERK signaling, which was verified from the perspective of genomics and proteomics. Peptide 3 also exhibited strong anti-trypsin and anti-chymotrypsin abilities, as well as good plasma stability and human liver microsomal metabolic stability. Overall, peptide 3 retains the equivalent anti-tumor activity of SAH-SOS1A but with improved stability and affinity, superior to SAH-SOS1A. Our work offers a structural optimization approach of KRASG12C peptide inhibitors for cancer therapy.

5.
Eur J Med Chem ; 210: 112951, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33109400

ABSTRACT

Four series of new 3-nitro naphthalimides derivatives, 4(4a‒4f), 5(5a‒5i), 6(6a‒6e) and 7 (7a‒7j), were designed and synthesized as antitumor agents. Methyl thiazolyl tetrazolium (MTT) screening assay results revealed that some compounds displayed effective in vitro antiproliferative activity on SMMC-7721, T24, SKOV-3, A549 and MGC-803 cancer cell lines in comparison with 5-fluorouracil (5-FU), mitonafide and amonafide. Nude mouse xenotransplantation model assay results indicated that compounds 6b and 7b exhibited good in vivo antiproliferative activity in MGC-803 xenografts in comparison with amonafide and cisplatin, suggesting that compounds 6b and 7b could be good candidates for antitumor agents. Gel electrophoresis assay indicated that DNA and Topo I were the potential targets of compounds 6b and 7b, and comet assay confirmed that compounds 6b and 7b could induce DNA damage, while the further study showed that the 6b- and 7b-induced DNA damage was accompanied by the upregulation of p-ATM, P-Chk2, Cdc25A and p-H2AX. Cell cycle arrest studies demonstrated that compounds 6b and 7b arrested the cell cycle at the S phase, accompanied by the upregulation of the expression levels of the antioncogene p21 and the down-regulation of the expression levels of cyclin E. Apoptosis assays indicated that compounds 6b and 7b caused the apoptosis of tumor cells along with the upregulation of the expression of Bax, caspase-3, caspase-9 and PARP and the downregulation of Bcl-2. These mechanistic studies suggested that compounds 6b and 7b exerted their antitumor activity by targeting to DNA, thereby inducing DNA damage and Topo I inhibition, and consequently causing S stage arrest and the induction of apoptosis.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA Damage/drug effects , Naphthalimides/chemistry , Naphthalimides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/genetics , Cell Proliferation/drug effects , Drug Design , Humans , Mice, Nude , Naphthalimides/chemical synthesis , Neoplasms/drug therapy , Neoplasms/genetics
6.
Acta Pharmaceutica Sinica B ; (6): 2670-2684, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-888879

ABSTRACT

Lung cancers are the leading cause of cancer deaths worldwide and pose a grave threat to human life and health. Non-small cell lung cancer (NSCLC) is the most frequent malignancy occupying 80% of all lung cancer subtypes. Except for other mutations (

7.
Bioorg Med Chem Lett ; 30(8): 127051, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32111436

ABSTRACT

A series of 3-nitro-naphthalimides 1(1a-1h) were designed and synthesized as antitumor agents. MTT assay results showed that all these compounds exhibited obvious antiproliferative activity against SKOV3, HepG2, A549, T-24 and SMMC-7721 cancer cell lines, while compound 1a displayed the best antiproliferative activity against HepG2 and T-24 cell lines in comparison with mitonafide, with IC50 of 9.2 ± 1.8 and 4.133 ± 0.9 µM, respectively. In vivo antiproliferative activity assay results showed that compound 1a exhibited good antiproliferative activity in the HepG2 and T-24 models, compared with mitonafide. Action mechanism results showed that compound 1a could induced the damage of DNA and the inhibition topo I, accompanying by inducing the G2-stage arresting and the apoptosis of T-24 cancer cells through up-regulating expression levels of cyclin B1, cdc 2-pTy, Wee1, γH2AX, p21, Bax and cytochrome c and down-regulating expression of Bcl-2.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Naphthalimides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Mice , Molecular Structure , Naphthalimides/chemistry , Structure-Activity Relationship
8.
Eur J Med Chem ; 185: 111844, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31706640

ABSTRACT

Lung cancer is one of the most malignant tumors with the highest morbidity and mortality. Most of them are non-small cell lung cancer (NSCLC). KRASG12C gene mutation is an important driving factor for NSCLC. However, the development of high-affinity inhibitors targeting KRASG12C mutants remains a daunting challenge. Here, we report the design and development of a series of hydrocarbon-stapled peptides containing d-amino acids to mimic the alpha helix of SOS1. D-hydrocarbon-stapled peptides maintain good alpha helix structure and bind to KRASG12C with high affinity. Subsequent anti-proliferation experiments indicated that D-hydrocarbon-stapled peptide 5 inhibited the proliferation of NSCLC H358 cells carrying KRASG12C. However, it showed no significant anti-proliferative effect on KRASG12S-positive A549 cells, suggesting that peptide 5 selectively inhibits KRASG12C-driven tumor cells. D-hydrocarbon-stapled peptide 5 could also cause the cell cycle of H358 cells to arrest in the G2/M phase and induce apoptosis. No significant cell arrest and apoptosis were observed in A549 cells treated by peptide 5. In summary, the introduction of d-amino acids could improve the affinity and cell selectivity of hydrocarbon peptides. We hope that peptides containing D-form amino acids can provide strategies for further optimization of the KRASG12C/SOS1 inhibitor.


Subject(s)
Amino Acids/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Peptides/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , SOS1 Protein/antagonists & inhibitors , A549 Cells , Amino Acids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Structure-Activity Relationship
9.
Nutrients ; 10(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453545

ABSTRACT

Rosmarinic acid (RA), a main phenolic compound contained in rosemary which is used as tea, oil, medicine and so on, has been known to present anti-inflammatory, anti-oxidant and anti-cancer effects. Histone deacetylases (HDACs) are enzymes that play important roles in gene expression by removing the acetyl group from histone. The aberrant expression of HDAC in human tumors is related with the onset of human cancer. Especially, HDAC2, which belongs to HDAC class I composed of HDAC 1, 2, 3 and 8, has been reported to be highly expressed in prostate cancer (PCa) where it downregulates the expression of p53, resulting in an inhibition of apoptosis. The purpose of this study is to investigate the effect of RA in comparison with suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor used as an anti-cancer agent, on survival and apoptosis of PCa cell lines, PC-3 and DU145, and the expression of HDAC. RA decreased the cell proliferation in cell viability assay, and inhibited the colony formation and tumor spheroid formation. Additionally, RA induced early- and late-stage apoptosis of PC-3 and DU145 cells in Annexin V assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively. In western blot analysis, RA inhibited the expression of HDAC2, as SAHA did. Proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E1 were downregulated by RA, whereas p21 was upregulated. In addition, RA modulated the protein expression of intrinsic mitochondrial apoptotic pathway-related genes, such as Bax, Bcl-2, caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1) (cleaved) via the upregulation of p53 derived from HDAC2 downregulation, leading to the increased apoptosis of PC-3 and DU145 cells. Taken together, treatment of RA to PCa cell lines inhibits the cell survival and induces cell apoptosis, and it can be used as a novel therapeutic agent toward PCa.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cinnamates/analysis , Depsides/analysis , Histone Deacetylase 2/metabolism , Rosmarinus/chemistry , Annexin A5 , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin E/genetics , Cyclin E/metabolism , DNA Fragmentation/drug effects , Gene Expression Regulation , Histone Deacetylase 2/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , In Situ Nick-End Labeling , Male , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction , Teas, Herbal , Teas, Medicinal , Vorinostat/analysis , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...