Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.111
Filter
1.
mBio ; : e0031524, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953352

ABSTRACT

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.

2.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977999

ABSTRACT

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Subject(s)
Actinomycetales Infections , Bacterial Vaccines , Disease Models, Animal , Immunity, Humoral , Mice, Inbred BALB C , Rhodococcus equi , Animals , Rhodococcus equi/immunology , Rhodococcus equi/genetics , Mice , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Actinomycetales Infections/prevention & control , Actinomycetales Infections/immunology , Actinomycetales Infections/microbiology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Immunity, Cellular , Female , Lung/microbiology , Lung/immunology , Lung/pathology , Bacterial Load , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism
3.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063219

ABSTRACT

This article follows-up on our recently published work, which evaluated the impact of the addition of an alfalfa leaf-derived adsorbent in the aflatoxin B1 (AFB1)-contaminated diet in regard to the production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology of turkey poults. This paper presents complementary results on microbial community, ileal morphology, barrier function, and immunity. For this purpose, 350 1-day-old female turkey poults were randomly distributed into five groups: (1) Control, AFB1-free diet; (2) AF, AFB1-contaminated diet at 250 ng/g; (3) alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and (5) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). In general, in the AF group, the growth of opportunistic pathogens was promoted, which lead to gut dysbacteriosis, mainly influenced by Streptococcus lutetiensis. Conversely, a significant increase in beneficial bacteria (Faecalibacterium and Coprococcus catus) was promoted by the addition of the plant-based adsorbent. Moreover, the AF group had the lowest villus height and a compromised barrier function, as evidenced by a significant (p < 0.05) increase in fluorescein isothiocyanate dextran (FITC-d), but these negative effects were almost reversed by the addition of the alfalfa adsorbent. Furthermore, the AF + YCW and alfalfa + AF groups exhibited a significant increase in the cutaneous basophil hypersensitivity response compared to the rest of the experimental groups. Taken together, these results pointed out that the alfalfa counteracts the adverse effects of AFB1 in poults, facilitating the colonization of beneficial bacteria and improving the barrier function of the turkey poults.


Subject(s)
Aflatoxin B1 , Animal Feed , Ileum , Medicago sativa , Plant Leaves , Turkeys , Animals , Medicago sativa/chemistry , Turkeys/microbiology , Plant Leaves/chemistry , Ileum/drug effects , Ileum/microbiology , Ileum/pathology , Ileum/immunology , Female , Gastrointestinal Microbiome/drug effects , Adsorption
4.
J Oral Biosci ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032827

ABSTRACT

BACKGROUND: Disorders of the trigeminal nerve, a sensory nerve of the orofacial region, often lead to complications in dental practice, including neuropathic pain, allodynia, and ectopic pain. Management of these complications requires an understanding of the cytoarchitecture of the trigeminal ganglion, where the cell bodies of the trigeminal nerve are located, and the mechanisms of cell-cell interactions. HIGHLIGHTS: In the trigeminal ganglion, the ganglion, satellite, Schwann, and immune cells coexist and interact. Cell-cell interactions are complex and occur through direct contact via gap junctions or through mediators such as adenosine triphosphate, nitric oxide, peptides, and cytokines. Interactions between the nervous and immune systems within the trigeminal ganglion may have neuroprotective effects during nerve injury or may exacerbate inflammation and produce chronic pain. Under pathological conditions of the trigeminal nerve, cell-cell interactions can cause allodynia and ectopic pain. Although cell-cell interactions that occur via mediators can act at some distance, they are more effective when the cells are close together. Therefore, information on the three-dimensional topography of the trigeminal ganglion cells is essential for understanding the pathophysiology of ectopic pain. CONCLUSIONS: A three-dimensional map of the somatotopic localization of trigeminal ganglion neurons revealed that ganglion cells innervating distant orofacial regions are often apposed to each other, interacting with and potentially contributing to ectopic pain. Elucidation of the complex network of mediators and their receptors responsible for intercellular communication within the trigeminal ganglion is essential for understanding ectopic pain.

5.
Vaccine ; : 126132, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034219

ABSTRACT

Healthcare workers (HCWs) are recommended to receive at least three spike-antigen exposures to generate basic immunity and to mediate herd protection of vulnerable patients. So far, less attention has been put on the cellular immune response induced by homologous (three BTN162b2mRNA doses) or heterologous (mRNA-1273 as third dose building on two BTN162bmRNA doses) and the immunological impact of breakthrough infections (BTIs). Therefore, in 356 vaccinated HCWs with or without BTIs the Anti-SARS-CoV-2-Spike-IgG concentrations and avidities and B- and T-cell-reactivity against SARS-CoV-2-Spike-S1- and Nucleocapsid-antigens were assessed with Interferon-gamma-ELISpot and by flow-cytometry. HCWs who had hybrid immunity due to BTIs exhibited strong T-cell-reactivity against the Spike-S1-antigen. A lasso regression model revealed a significant reduction in T-cell immune responses among smokers (p < 0.0001), with less significant impact observed for age, sex, heterologous vaccination, body-mass-index, Anti-Nucleocapsid T-cell reactivity, days since last COVID-19-immunization, and Anti-SARS-CoV-2-Spike-IgG. Although subgroup analysis revealed higher Anti-SARS-CoV-2-Spike-IgG after heterologous vaccination, similar cellular reactivity and percentages of Spike-reactive T- and B-cells were found between homologous and heterologous vaccination. Anti-SARS-CoV-2-Spike-IgG concentrations and avidity significantly correlated with activated T-cells. CD4 + and CD8 + responses correlated with each other. A strong long-term cellular immune response should be considered as baseline for recommendations of booster doses in HCWs with prioritization of smokers. HCWs presented significant T-cellular reactivity towards Spike-S1-antigen with particularly strong responses in hybrid immunized HCWs who had BTIs. HCWs without BTI presented similar percentages of Spike-specific B- and T-cells between homologous or heterologous vaccination indicating similar immunogenicity for both mRNA vaccines, BNT162b2mRNA and mRNA-1273.

6.
Int Immunopharmacol ; 138: 112593, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38972210

ABSTRACT

In lab settings, inbred mouse strains like BALB/c, C57BL/6J, and C57BL/6N are commonly used. Research in immunology and infectious diseases indicates that their Th1 and Th2 immune responses differ. However, the specific differences in the immune response to the vaccination still require investigation. In this study, ovalbumin (OVA) was used as an antigen and CpG-enriched recombinant plasmid (pUC18-CpG) as an adjuvant for immunisation. The level of serum-specific antibody IgG was detected by indirect ELISA. At 35dpi, serum cytokine levels were measured using MILLIPLEX®. T lymphocyte clusters from mouse spleen were examined using flow cytometry to investigate the immunological effects of the CPG-OVA vaccine on three different types of mice. The results showed that pUC18-CpG as an adjuvant could successfully enhance the immune response. BALB/c had the highest level of IgG antibody. In the OVA-only group, the CD4+/CD8+ ratio of the three types of mice was generally increased, and the BALB/c group had the highest ratio. After inoculation with CpG-OVA, the CD4+/CD8+ ratio of the three types of mice was lower than that of the OVA-only group, and C57BL/6J was the lowest. Compared with the CpG-OVA group of the three kinds of mice, the levels of Th2 cytokines IL-6 and IL-10 in BALB/c were increased compared with C57BL/6J and C57BL/6N. After OVA, the six cytokines secreted in C57BL/6J were higher than those in the C57BL/6N OVA group. Therefore, C57 is a better model for examining the function of the vaccine in cellular immunity, whereas BALB/c mice are more prone to humoral immunity. In addition to highlighting the CpG plasmid's ability to successfully activate the immune response of Th1 and Th2, as well as the expression of IgG in vivo and promote T cell immune typing, this study provides valuable insights into immunology and the selection of mouse models for infectious diseases, providing a valuable resource for designing more effective vaccines in the future.


Subject(s)
Adjuvants, Immunologic , Cytokines , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Animals , Female , Mice , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Cytokines/metabolism , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunoglobulin G/blood , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Ovalbumin , Th2 Cells/immunology
7.
Emerg Microbes Infect ; 13(1): 2380822, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39008280

ABSTRACT

Melioidosis is a tropical infection caused by the intracellular pathogen Burkholderia pseudomallei, an underreported and emerging global threat. As melioidosis-associated mortality is frequently high despite antibiotics, novel management strategies are critically needed. Therefore, we sought to determine whether functional changes in the host innate and adaptive immune responses are induced during acute melioidosis and are associated with outcome. Using a unique whole blood stimulation assay developed for use in resource-limited settings, we examined induced cellular functional and phenotypic changes in a cohort of patients with bacteremic melioidosis prospectively enrolled within 24 h of positive blood culture and followed for 28 days. Compared to healthy controls, melioidosis survivors generated an IL-17 response mediated by Th17 cells and terminally-differentiated effector memory CD8+ T cells (P < .05, both), persisting to 28 days after enrolment. Furthermore, melioidosis survivors developed polyfunctional cytokine production in CD8+ T cells (P < .01). Conversely, a reduction in CCR6+ CD4+ T cells was associated with higher mortality, even after adjustments for severity of illness (P = 0.004). Acute melioidosis was also associated with a profound acute impairment in monocyte function as stimulated cytokine responses were reduced in classical, intermediate and non-classical monocytes. Impaired monocyte cytokine function improved by 28-days after enrolment. These data suggest that IL-17 mediated cellular responses may be contributors to host defense during acute melioidosis, and that innate immune function may be impaired. These insights could provide novel targets for the development of therapies and vaccine targets in this frequently lethal disease.


Subject(s)
Burkholderia pseudomallei , CD8-Positive T-Lymphocytes , Melioidosis , Th17 Cells , Melioidosis/immunology , Melioidosis/mortality , Melioidosis/microbiology , Humans , Male , Female , Burkholderia pseudomallei/immunology , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Th17 Cells/immunology , Aged , Adult , Immunity, Cellular , Interleukin-17/immunology , CD4-Positive T-Lymphocytes/immunology , Cytokines/blood , Cytokines/immunology , Prospective Studies
8.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063193

ABSTRACT

Cytokine storm is usually described as one of the main reasons behind COVID-associated mortality. Cytokines are essential protein molecules engaged in immune responses; they play a critical role in protection against infections. However, they also contribute to inflammatory reactions and tissue damage, becoming a double-edged sword in the context of COVID-19. Recent studies have suggested various cytokines and chemokines that play a crucial role in the immune response to SARS-CoV-2 infection. One such cytokine is interleukin 27 (IL-27), which has been found to be elevated in the blood plasma of patients with COVID-19. Within this study, we will explore the role of IL-27 in immune responses and analyze both the existing literature and our own prior research findings on this cytokine in the context of COVID-19. It affects a wide variety of immune cells. Regardless of the pathological process it is involved in, IL-27 is critical for upholding the necessary balance between tissue damage and cytotoxicity against infectious agents and/or tumors. In COVID-19, it is involved in multiple processes, including antiviral cytotoxicity via CD8+ cells, IgG subclass switching, and even the activation of Tregs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , Humans , SARS-CoV-2/immunology , Cytokine Release Syndrome/immunology , CD8-Positive T-Lymphocytes/immunology , Interleukin-27/metabolism , T-Lymphocytes, Regulatory/immunology , Interleukins/immunology , Interleukins/metabolism
10.
Int Immunopharmacol ; 139: 112673, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018686

ABSTRACT

This prospective, randomized, controlled clinical trial assessed the therapeutic effects of major ozone autohemotherapy (O3-MAH) in patients with post-acute sequelae of COVID-19 (PASC). Seventy-three eligible participants were randomly assigned to an O3-MAH plus conventional therapy group (n = 35) or a conventional therapy alone group (n = 38). Symptom score, pulmonary function, 6-minute walk distance (6MWD), and hematological, biochemical, and immunological parameters were evaluated before and after the interventions. Both groups demonstrated improvements in various parameters post-intervention, but efficacy was greater in the O3-MAH group than the conventional treatment group; with intervention effectiveness defined as a ≥ 50 % reduction in symptom score, 25 of 35 patients (71 %) responded to O3-MAH, while 17/38 patients (45 %) responded to conventional treatment alone (P = 0.0325). Significant improvements in symptom scores (P = 0.0478), tidal volume (P = 0.0374), predicted 6MWD (P = 0.0032), and coagulation and inflammatory indicators were noted in the O3-MAH group compared with the conventional treatment group. O3-MAH was more likely to be effective in patients with elevated CRP levels. Furthermore, O3-MAH markedly improved cellular immunity, and this improvement became more pronounced with extended treatment duration. In summary, combining O3-MAH with conventional treatment was more effective than conventional therapy alone in improving symptoms, pulmonary function, inflammation, coagulation, and cellular immunity in patients with PASC. Further research is now warranted to validate these findings and individualize the regimen.

11.
J Biosci Bioeng ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890051

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are physically and chemically stable inorganic nanomaterials that have been attracting much attention as carriers for drug delivery systems in the field of nanomedicine. In the present study, we investigated the potential of MSN vaccines that incorporate antigen peptides for use in cancer immunotherapy. In vitro experiments demonstrated that fluorescently labeled MSNs accumulated in a line of mouse dendritic cells (DC2.4 cells), where the particles localized to the cytosol. These observations could suggest that MSNs have potential for use in delivering the loaded molecules into antigen-presenting cells, thereby stimulating the host acquired immune system. In vivo experiments demonstrated prolonged survival in mice implanted with ovalbumin (OVA)-expressing lymphoma cells (E.G7-OVA cells) following subcutaneous inoculation with MSNs incorporating OVA antigen peptides. Furthermore, OVA-specific immunoglobulin G antibodies and cytotoxic T lymphocytes were detected in the serum and the spleen cells, respectively, of mice inoculated with an MSN-OVA vaccine, indicating the induction of antigen-specific responses in both the humoral and cellular immune systems. These results suggested that the MSN therapies incorporating antigen peptides may serve as novel vaccines for cancer immunotherapy.

12.
Int J Cancer ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38922877

ABSTRACT

At the end of 2022, a huge tide of SARS-CoV-2 infection mainly Omicron BA.4/5 developed in China. Multiple myeloma (MM) patients suffered cancer deterioration and mortality from COVID-19, yet profound analyses of Omicron variants-induced immunity function are scarce. We presented a longitudinal study in 218 MM patients and 73 healthy controls (HCs), reporting the prognostic factors and dynamic humoral and cellular immune responses. Neutralizing antibody and interferon γ ELISpot assay of SARS-CoV-2 was tested at three time points: 2-4, 8-10, and 14-16 weeks after infections. Our data showed older age, active MM, relapsed/refractory MM (R/RMM), immunotherapy, comorbidity, and non-vaccination were risk factors associated with hospitalization. Severe humoral immunity impairment within 2-4 weeks was especially seen in patients with unvaccinated, older age, immunotherapy, R/RMM and comorbidities, while T-cell response was relatively intact. Although antibodies of Omicron variants reached positive levels in MM patients at 8-10 weeks, half lost effective antibody protection at 14-16 weeks. However, most seronegative patients (76.2% at 2-4 weeks, 83.3% at 8-10 weeks) could develop effective T-cell response. Notably, the inactivated wild-type vaccinated patients exhibited weaker humoral and cellular immunity only at 2-4 weeks, escalating to similar levels as those in HCs later. Our findings indicate impairment of humoral immunity at acute-phase after infection is the major factor correlated with hospitalization. One-month suspension of immune therapy is suggested to prevent serious infection. These results confirm the value of inactivated vaccine, but indicate the need for additional booster at 14-16 weeks after infection for high-risk MM population.

13.
Vaccines (Basel) ; 12(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38932313

ABSTRACT

Assessment of the immune response to influenza vaccines should include an assessment of both humoral and cell-mediated immunity. However, there is a lack of consensus regarding the timing of immunological assessment of humoral and cell-mediated immunity after vaccination. Therefore, we investigated the timing of immunological assessments after vaccination using markers of humoral and cell-mediated immunity. In the 2018/2019 influenza season, blood was collected from 29 healthy adults before and after vaccination with a quadrivalent inactivated influenza vaccine, and we performed serial measurements of humoral immunity (hemagglutination inhibition [HAI] and neutralizing antibody [NT]) and cell-mediated immunity (interferon-gamma [IFN-γ]). The HAI and NT titers before and after vaccination were strongly correlated, but no correlation was observed between the markers of cell-mediated and humoral immunity. The geometric mean titer and geometric mean concentration of humoral and cellular immune markers increased within 2 weeks after vaccination and had already declined by 8 weeks. This study suggests that the optimal time to assess the immune response is 2 weeks after vaccination. Appropriately timed immunological assessments can help ensure that vaccination is effective.

14.
Vaccines (Basel) ; 12(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932376

ABSTRACT

This study focuses on the development and characterization of an intranasal vaccine platform using adjuvanted nanoparticulate delivery of swine influenza A virus (SwIAV). The vaccine employed whole inactivated H1N2 SwIAV as an antigen and STING-agonist ADU-S100 as an adjuvant, with both surface adsorbed or encapsulated in mannose-chitosan nanoparticles (mChit-NPs). Optimization of mChit-NPs included evaluating size, zeta potential, and cytotoxicity, with a 1:9 mass ratio of antigen to NP demonstrating high loading efficacy and non-cytotoxic properties suitable for intranasal vaccination. In a heterologous H1N1 pig challenge trial, the mChit-NP intranasal vaccine induced cross-reactive sIgA antibodies in the respiratory tract, surpassing those of a commercial SwIAV vaccine. The encapsulated mChit-NP vaccine induced high virus-specific neutralizing antibody and robust cellular immune responses, while the adsorbed vaccine elicited specific high IgG and hemagglutinin inhibition antibodies. Importantly, both the mChit-NP vaccines reduced challenge heterologous viral replication in the nasal cavity higher than commercial swine influenza vaccine. In summary, a novel intranasal mChit-NP vaccine platform activated both the arms of the immune system and is a significant advancement in swine influenza vaccine design, demonstrating its potential effectiveness for pig immunization.

15.
Vaccines (Basel) ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932414

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of infants and older people. There is an urgent need for safe and effective vaccines against RSV infection. In this study, we analyzed the effects of the immune response and protection with the RSV recombinant G protein extracellular domain (Gecto) combined with various adjuvants as novel subunit vaccines in mice. All groups receiving RSV Gecto combined with adjuvants exhibited robust humoral and cellular immunity compared to those receiving an adjuvant alone or inactivated RSV vaccine. The greatest effect was observed in mice receiving Gecto combined with a CpG ODN + Alum salt adjuvant, resulting in the highest production of neutralizing antibodies against both RSV A and B subtypes, G-specific IgG and IFN-γ production in splenocytes, and interleukin-2 and interferon-γ expression in CD4+ T cells. Significant humoral and cellular immune responses were observed in mice immunized with Gecto combined with AddaS03™ or cyclosporin A adjuvants. The vaccine containing the AddaS03™ adjuvant showed significantly high expression of interleukin-4 in CD4+ T cells. Cross-protection against a challenge with either RSV A or B subtypes was observed in the Gecto plus adjuvant groups, resulting in a significant decrease in viral load and reduced pathological damage in the mouse lungs. These findings offer valuable insights into the development and application of recombinant RSV G-subunit vaccines with adjuvants.

16.
Children (Basel) ; 11(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38929315

ABSTRACT

Background: an accurate assessment of the immunity against SARS-CoV-2 can facilitate a better understanding and management of not only the recent coronavirus but similar pathogens as well. Objective: the aim of this study was to evaluate T-cell immunity with reference to antibody titers in a group of pediatric patients with autoimmune arthritides utilizing the widely known Interferon-γ Release Assay (IGRA). Materials and Methods: This study was conducted in the cohort of 55 children suffering from Juvenile Idiopathic Arthritis (JIA). This research analyzed the SARS-CoV-2 T-cell response measured by a specific quantitative IGRA, followed by a serological ELISA test measuring the presence and quantity of IgG, IgM, and IgA antibodies in serum. Results: The cellular response to SARS-CoV-2 measured by the IGRA test significantly correlated with the antibody titers, IgA (p < 0.00003, R = 0.537), IgG (p < 0.0001, R = 0.668), and IgG nucleocapsid protein (NCP) (p < 0.003, R = 0.0399), with no correlation with IgM levels. The antibody levels in patients receiving biological agents were significantly lower compared to the rest of the cohort (p = 0.0369), while traditional disease-modifying antirheumatic drugs had no such effect. Limitations: the main limitation of the research is the small sample size, mostly due to the specific cohort of patients and the lack of a healthy control. Conclusions: IGRA appears to be a viable tool in the accurate evaluation of T-cell responses to SARS-CoV-2, and serodiagnostics alone is not always sufficient in the assessment of immune responses.

17.
Microorganisms ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930438

ABSTRACT

The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 µg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.

18.
Vet Sci ; 11(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38922021

ABSTRACT

The continuously evolving PRRSV has been plaguing pig farms worldwide for over 30 years, with conventional vaccines suffering from insufficient protection and biosecurity risks. To address these challenges, we identified 10 PRRSV-specific CTL epitopes through enzyme-linked immunospot assay (ELISPOT) and constructed a multi-epitope peptide (PTE) by linking them in tandem. This PTE was then fused with a modified porcine Fc molecule to create the recombinant protein pFc-PTE. Our findings indicate that pFc-PTE effectively stimulates PRRSV-infected specific splenic lymphocytes to secrete high levels of interferon-gamma (IFN-γ) and is predicted to be non-toxic and non-allergenic. Compared to PTE alone, pFc-PTE not only induced a comparable cellular immune response in mice but also extended the duration of the immune response to at least 10 weeks post-immunization. Additionally, pFc-PTE predominantly induced a Th1 immune response, suggesting its potential advantage in enhancing cellular immunity. Consequently, pFc-PTE holds promise as a novel, safe, and potent candidate vaccine for PRRSV and may also provide new perspectives for vaccine design against other viral diseases.

19.
Biochemistry (Mosc) ; 89(5): 872-882, 2024 May.
Article in English | MEDLINE | ID: mdl-38880648

ABSTRACT

The pandemic of a new coronavirus infection that has lasted for more than 3 years, is still accompanied by frequent mutations in the S protein of SARS-CoV-2 and emergence of new virus variants causing new disease outbreak. Of all coronaviral proteins, the S and N proteins are the most immunogenic. The aim of this study was to compare the features of the humoral and T-cell immune responses to the SARS-CoV-2 S and N proteins in people with different histories of interaction with this virus. The study included 27 individuals who had COVID-19 once, 23 people who were vaccinated twice with the Sputnik V vaccine and did not have COVID-19, 22 people who had COVID-19 and were vaccinated twice with Sputnik V 6-12 months after the disease, and 25 people who had COVID-19 twice. The level of antibodies was determined by the enzyme immunoassay, and the cellular immunity was assessed by the expression of CD107a on CD8high lymphocytes after recognition of SARS-CoV-2 antigens. It was shown that the humoral immune response to the N protein was formed mainly by short-lived plasma cells synthesizing IgG antibodies of all four subclasses with a gradual switch from IgG3 to IgG1. The response to the S protein was formed by short-lived plasma cells at the beginning of the response (IgG1 and IgG3 subclasses) and then by long-lived plasma cells (IgG1 subclass). The dynamics of antibody level synthesized by the short-lived plasma cells was described by the Fisher equation, while changes in the level of antibodies synthesized by the long-lived plasma cells were described by the Erlang equation. The level of antibodies in the groups with the hybrid immunity exceeded that in the group with the post-vaccination immunity; the highest antibody content was observed in the group with the breakthrough immunity. The cellular immunity to the S and N proteins differed depending on the mode of immune response induction (vaccination or disease). Importantly, the response of heterologous CD8+ T cell to the N proteins of other coronaviruses may be involved in the immune defense against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , Coronavirus Nucleocapsid Proteins , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Male , Middle Aged , Female , Adult , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , COVID-19 Vaccines/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Phosphoproteins/immunology , CD8-Positive T-Lymphocytes/immunology , Aged
20.
ACS Nano ; 18(26): 16878-16894, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38899978

ABSTRACT

Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , Calcium , Hepatitis B Surface Antigens , Silicon , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Silicon/chemistry , Mice , Hepatitis B Surface Antigens/immunology , Hepatitis B Surface Antigens/chemistry , Calcium/chemistry , Aluminum Hydroxide/chemistry , Aluminum Hydroxide/pharmacology , Mice, Inbred C57BL , Female , Vaccines/immunology , Vaccines/chemistry , Dendritic Cells/immunology , Dendritic Cells/drug effects , Nanoparticles/chemistry , Humans , Aluminum Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...