Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Circulation ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881493

ABSTRACT

Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.

2.
Polymers (Basel) ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794622

ABSTRACT

The study of cellular structures and their properties represents big potential for their future applications in real practice. The article aims to study the effect of input parameters on the quality and manufacturability of cellular samples 3D-printed from Nylon 12 CF in synergy with testing their bending behavior. Three types of structures (Schwarz Diamond, Shoen Gyroid, and Schwarz Primitive) were selected for investigation that were made via the fused deposition modeling technique. As part of the research focused on the settings of input parameters in terms of the quality and manufacturability of the samples, input parameters such as volume fraction, temperature of the working space, filament feeding method and positioning of the sample on the printing pad were specified for the combination of the used material and 3D printer. During the experimental investigation of the bending properties of the samples, a three-point bending test was performed. The dependences of force on deflection were mathematically described and the amount of absorbed energy and ductility were evaluated. The results show that among the investigated structures, the Schwarz Diamond structure appears to be the most suitable for bending stress applications.

3.
Heliyon ; 10(4): e26001, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404873

ABSTRACT

Mass reduction of mechanical systems is a recurrent objective in engineering, which is often reached by removing material from its mechanical parts. However, this material removal leads to a decrease of mechanical performances for the parts, which must be minimized and controlled to avoid a potential system failure. To find a middle-ground between material removing and mechanical performances), material must be kept only in areas where it is necessary, for example using stress-driven material removal methods. These methods use the stress field to define the local material removal based on two local parameters: the local volume fraction vf and the structural anisotropy orientation ß. These methods may be based on different types of cellular structure patterns: lattice-based or bio-inspired. The long-term objective of this study is to improve the performance of stress-driven methods by using the most efficient pattern. For this purpose, this study investigates the influence of vf and ß on the mechanical stiffness of three planar cellular structures called Periodic Stress-Driven Material Removal (PSDMR) structures. The first, taken from the literature, is bio-inspired from bone and based on a square pattern. The second, developed in this study, is also bio-inspired from bone but based on a rectangular pattern. The third is a strut-based lattice pattern well documented in the literature for its isotropic behavior. These three patterns are compared in this study in terms of relative longitudinal stiffness, obtained through linear elastic compressive tests by finite element analysis. It is highlighted that each PSDMR pattern has a specific domain in which it performs better than the two others. In future works, these domains could be used in stress-driven material removal methods to select the most adequate pattern or a mix of them to improve the performances of parts.

4.
Clin Microbiol Infect ; 30(3): 396.e1-396.e5, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065364

ABSTRACT

OBJECTIVES: Enterococcus faecalis can adopt both a commensal and a nosocomial lifestyle, resisting numerous antibiotics. In this study, we aim to investigate the relationship between the cell wall (CW) thickness and decreased susceptibility to vancomycin (VD) in van-gene negative clinical isolates of E. faecalis (nMIC 8 = 2, nMIC 4 = 3, ST30, ST40, and ST59). METHODS: The CW thickness was assessed in VD strains and compared with vancomycin susceptible isolates of the same sequence type (ST) (Vancomycin susceptible [VS]; nMIC 2 = 5). The VD and VS strains were subjected to serial passage (evolved [ev]) with and without vancomycin selection. Subsequent measurements of CW thickness and vancomycin MICs were performed. RESULTS: The VD strains exhibited increased CW thickness when compared with ST-related VS strains (ΔCW thickness VD vs. VS ST30 25 nm, ST59 15 nm, and ST40 1 nm). Serial passages without vancomycin selection led to a decrease in CW thickness and vancomycin MIC in VD strains (ΔCW thickness VD vs. evVD ST30 22 nm, ST59 3 nm, and ST40 2 nm). Serial passages with vancomycin selection caused an increase in CW thickness and vancomycin MIC in ST-related VS strains (ΔCW thickness VS vs. evVS ST30 22 nm, ST59 16 nm, and ST40 1 nm). DISCUSSION: Adaptive changes in CW thickness were observed in response to vancomycin exposure. Increased CW thickness correlated with decreased vancomycin susceptibility, whereas decreased CW thickness correlated with increased vancomycin susceptibility. Core single nucleotide polymorphisms in the evolved mutants were mostly found in genes encoding proteins associated with the cytoplasm or the cytoplasmic membrane. The potential relevance of these adaptive changes is underlined by the observed phenotypes in clinical isolates. Our findings emphasize the importance of monitoring adaptive changes, as vancomycin-resistant enterococci infections are a growing concern.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Vancomycin/pharmacology , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Cell Wall , Gram-Positive Bacterial Infections/microbiology , Enterococcus faecium/genetics
5.
Sci Total Environ ; 912: 169288, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38110103

ABSTRACT

Cadmium contamination poses severe environmental and health threats, necessitating effective mitigation strategies. Rice husk biochar (BC) and nanoparticle (NP) treatments are emerging strategies with limited research on their synergistic benefits. This study assesses BC, silicon NPs (nSi), and iron NPs (nFe) modifications (B-nSi, B-nFe, and B-nSi-nFe) to reduce Cd-bioavailability in soil and its toxicity in maize, not reported before. Characterization of amendments validated, nSi and nFe attachment to BC, forming new mineral crystals to adsorb Cd. We found that B-nSi-nFe induced Cd-immobilization in soil by the formation of Cd-ligand complexes with the effective retention of NPs within microporous structure of BC. B-nSi-nFe increased soil pH by 0.76 units while reducing bioavailable Cd by 49 %, than Ck-Cd. Resultantly, B-nSi-nFe reduced Cd concentrations in roots and shoots by 51 % and 75 %, respectively. Moreover, the application of B-nSi-nFe significantly enhanced plant biomass, antioxidant activities, and upregulated the expression of antioxidant genes [ZmAPX (3.28 FC), ZmCAT (3.20 FC), ZmPOD (2.58 FC), ZmSOD (3.08 FC), ZmGSH (3.17 FC), and ZmMDHAR (3.80 FC)] while downregulating Cd transporter genes [ZmNramp5 (3.65 FC), ZmHMA2 (2.92 FC), and ZmHMA3 (3.40 FC)] compared to Ck-Cd. Additionally, confocal microscopy confirmed the efficacy of B-nSi-nFe in maintaining cell integrity due to reduced oxidative stress. SEM and TEM observations revealed alleviation of Cd toxicity to stomata, guard cells, and ultracellular structures with B-nSi-nFe treatment. Overall, this study demonstrated the potential of B-nSi-nFe for reducing Cd mobility in soil-plant system, mitigating Cd-toxicity in plants and improving enzymatic activities in soil.


Subject(s)
Nanoparticles , Oryza , Soil Pollutants , Iron/metabolism , Cadmium/analysis , Zea mays/metabolism , Silicon , Antioxidants/metabolism , Charcoal/chemistry , Soil/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Oryza/chemistry , Soil Pollutants/analysis
6.
Front Microbiol ; 14: 1304081, 2023.
Article in English | MEDLINE | ID: mdl-38075889

ABSTRACT

Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.

7.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006148

ABSTRACT

Water, alcohols, diols, and glycerol are low-cost blowing agents that can be used to create the desired silicone foam structures. Although their combined use can be beneficial, it remains unclear how it affects the physical properties of the resulting materials. We conducted a comparative study of these hydroxyl-bearing blowing agents in fumed silica- and mica-filled polymer composite systems for simultaneous blowing and crosslinking to obtain a low-density, uniform porosity and superior mechanical properties. The foams were optimized for a uniform open-pore structure with densities ranging from 75 to 150 kg‧m-3. Varying the diol chain length (Cn) from one to seven carbons can alter the foam density and structure, thereby enhancing the foam tensile strength while maintaining a low density. Replacing 10 mol% of water with 1,4-butanediol decreased the density by 26%, while increasing the specific strength by 5%. By combining glycerol and water blowing, the resulting foams exhibited a 30% lower apparent density than their water-blown analogs. The results further showed that Cn > 4 alkane chain diols had an odd-even effect on the apparent density and cell wall thickness. All foamable compositions had viscosities of approximately 7000 cSt and curing times below 2 min, allowing for quick dispensing and sufficient time for the foam to cure in semi-industrial volumes.

8.
Cells ; 12(17)2023 08 28.
Article in English | MEDLINE | ID: mdl-37681888

ABSTRACT

Camillo Golgi was an esteemed Italian physician and biologist who made major advances in malaria research between the late 19th and early 20th centuries. His groundbreaking contributions in histology, especially through the development of the Golgi staining technique, revolutionized our understanding of cell structures-including Plasmodium parasites-through visualization. Golgi staining also allowed researchers to observe its complex life cycle while documenting it. His careful observations of malaria led to the identification and characterization of its various stages, both asexual forms within human red blood cells, as well as sexual forms carried by mosquito vectors. Golgi's research highlighted the key role mosquitoes play in malaria transmission. He demonstrated the presence of Plasmodium sporozoites within the salivary glands of infected mosquitoes, providing insight into its life cycle and the dynamics of parasite transmission. His comprehensive approach contributed significantly to our understanding of malaria as a systemic illness, leading to subsequent research efforts within this field. The Golgi Protein complex is often located within the cis-Golgi of blood parasite life cycles and mosquito stages, indicating its possible role in optimizing asexual development during blood stages. Furthermore, its expression can be conditionally repressed or its gene can be inactivated to optimize this potential role in improving its functionality for optimizing sexual development during blood stages. Camillo Golgi remains one of the leading lights of malaria research today. His innovative staining techniques, detailed observations, and insightful interpretations have laid the groundwork for subsequent discoveries and advancements in malaria studies. By deciphering intricate parasite life cycle interactions with hosts, his work has provided invaluable insights into malaria biology, pathogenesis, and epidemiology.


Subject(s)
Culicidae , Malaria , Male , Humans , Animals , Golgi Apparatus , Health Personnel , Histological Techniques
9.
Cell Mol Life Sci ; 80(8): 198, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418047

ABSTRACT

Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.


Subject(s)
Eukaryota , Eukaryotic Cells , Animals , Humans , Plants , Fungi , Signal Transduction , Mammals
10.
Materials (Basel) ; 16(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37297280

ABSTRACT

In our research, our goal was to develop a characterization method that can be universally applied to periodic cell structures. Our work involved the accurate tuning of the stiffness properties of cellular structure components that can significantly reduce the number of revision surgeries. Up to date porous, cellular structures provide the best possible osseointegration, while stress shielding and micromovements at the bone-implant interface can be reduced by implants with elastic properties equivalent to bone tissue. Furthermore, it is possible to store a drug inside implants with a cellular structure, for which we have also prepared a viable model. In the literature, there is currently no established uniform stiffness sizing procedure for periodic cellular structures but also no uniform designation to identify the structures. A uniform marking system for cellular structures was proposed. We developed a multi-step exact stiffness design and validation methodology. The method consists of a combination of FE (Finite Element) simulations and mechanical compression tests with fine strain measurement, which are finally used to accurately set the stiffness of components. We succeeded in reducing the stiffness of test specimens designed by us to a level equivalent to that of bone (7-30 GPa), and all of this was also validated with FE simulation.

11.
Entropy (Basel) ; 25(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37238521

ABSTRACT

Cone photoreceptor cells are wavelength-sensitive neurons in the retinas of vertebrate eyes and are responsible for color vision. The spatial distribution of these nerve cells is commonly referred to as the cone photoreceptor mosaic. By applying the principle of maximum entropy, we demonstrate the universality of retinal cone mosaics in vertebrate eyes by examining various species, namely, rodent, dog, monkey, human, fish, and bird. We introduce a parameter called retinal temperature, which is conserved across the retinas of vertebrates. The virial equation of state for two-dimensional cellular networks, known as Lemaître's law, is also obtained as a special case of our formalism. We investigate the behavior of several artificially generated networks and the natural one of the retina concerning this universal, topological law.

12.
Sensors (Basel) ; 23(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37112184

ABSTRACT

Leaf optical properties can be used to identify environmental conditions, the effect of light intensities, plant hormone levels, pigment concentrations, and cellular structures. However, the reflectance factors can affect the accuracy of predictions for chlorophyll and carotenoid concentrations. In this study, we tested the hypothesis that technology using two hyperspectral sensors for both reflectance and absorbance data would result in more accurate predictions of absorbance spectra. Our findings indicated that the green/yellow regions (500-600 nm) had a greater impact on photosynthetic pigment predictions, while the blue (440-485 nm) and red (626-700 nm) regions had a minor impact. Strong correlations were found between absorbance (R2 = 0.87 and 0.91) and reflectance (R2 = 0.80 and 0.78) for chlorophyll and carotenoids, respectively. Carotenoids showed particularly high and significant correlation coefficients using the partial least squares regression (PLSR) method (R2C = 0.91, R2cv = 0.85, and R2P = 0.90) when associated with hyperspectral absorbance data. Our hypothesis was supported, and these results demonstrate the effectiveness of using two hyperspectral sensors for optical leaf profile analysis and predicting the concentration of photosynthetic pigments using multivariate statistical methods. This method for two sensors is more efficient and shows better results compared to traditional single sensor techniques for measuring chloroplast changes and pigment phenotyping in plants.


Subject(s)
Carotenoids , Chlorophyll , Chlorophyll/analysis , Carotenoids/analysis , Photosynthesis , Least-Squares Analysis , Plants/metabolism , Plant Leaves/chemistry
13.
Adv Colloid Interface Sci ; 314: 102880, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36965225

ABSTRACT

Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.


Subject(s)
Microscopy , Nanotechnology , Microscopy/methods , Nanomedicine , Organelles , Biocompatible Materials
14.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36902991

ABSTRACT

An ongoing growth of the available materials dedicated to additive manufacturing (AM) significantly extends the possibilities of their usage in many applications. A very good example is 20MnCr5 steel which is very popular in conventional manufacturing technologies and shows good processability in AM processes. This research takes into account the process parameter selection and torsional strength analysis of AM cellular structures. The conducted research revealed a significant tendency for between-layer cracking which is strictly dependent on the layered structure of the material. Additionally, the highest torsional strength was registered for specimens with a honeycomb structure. To determine the best-obtained properties, in the case of the samples with cellular structures, a torque-to-mass coefficient was introduced. It indicated the best properties of honeycomb structures, which have about 10% smaller torque-to-mass coefficient values than monolithic structures (PM samples).

15.
ChemistryOpen ; 12(5): e202200113, 2023 05.
Article in English | MEDLINE | ID: mdl-35880657

ABSTRACT

Understanding biological mechanisms operating in cells is one of the major goals of biology. Since heterogeneity is the fundamental property of cellular systems, single cell measurements can provide more accurate information about the composition, dynamics, and regulatory circuits of cells than population-averaged assays. Electrochemiluminescence (ECL), the light emission triggered by electrochemical reactions, is an emerging approach for single cell analysis. Numerous analytes, ranging from small biomolecules such as glucose and cholesterol, proteins and nucleic acids to subcellular structures, have been determined in single cells by ECL, which yields new insights into cellular functions. This review aims to provide an overview of research progress on ECL principles and systems for single cell analysis in recent years. The ECL reaction mechanisms are briefly introduced, and then the advances and representative works in ECL single cell analysis are summarized. Finally, outlooks and challenges in this field are addressed.


Subject(s)
Electrochemical Techniques , Single-Cell Analysis , Luminescent Measurements/methods , Photometry/methods
17.
J Mech Behav Biomed Mater ; 136: 105447, 2022 12.
Article in English | MEDLINE | ID: mdl-36272224

ABSTRACT

Fused deposition modelling (FDM) is an additive manufacturing technology used to create functional and complex geometries directly from computer-generated models. This technique can be utilised to generate cellular structures with controllable pore size, pore shape, and porosity. Cellular structures are fundamental in orthopaedics scaffolds because of its low elastic modulus, high compressive strength, and adequate cell accommodation spaces. This paper aims at investigating and optimising the FDM additive manufacturing process parameters of polylactic Acid (PLA) for two lattice structures namely Schoen Gyroid and Schwarz Primitive. The effect of additive manufacturing critical process parameters including layer height, flow rate, and print speed on the geometrical accuracy and compressive strength of the specimens were analysed. In addition, other parameters that have minimal effect on the geometrical accuracy of the printed parts were discussed. A Full Factorial Analysis (FFA) using Minitab software was undertaken to identify the perfect combination of printing parameters to provide the most geometrically accurate structure. In this study, samples of the Schoen Gyroid and the Schwarz Primitive lattices and a solid control cylinder were 3D printed using the ideal printing combination to assess the manufacturability, the geometrical accuracy, and the mechanical behaviour of both designs. It was found that the optimised FDM process parameters for the studied cellular structures were a layer height of 0.16 mm, a printing speed of 50 mm/s and a flow rate of 90%. As a result of using these parameters, the solid, Schoen Gyroid and Schwarz Primitive specimens demonstrated elastic moduli values of 951 MPa, 264 MPa, and 221 MPa, respectively. In addition, the Schoen Gyroid and the Schwarz Primitive have reached their stress limits at around 8.68 MPa and 7.06 MPa, respectively. It was noticed that the Schoen Gyroid structure exhibited ∼ 18% higher compressive strength and ∼ 16% higher elastic modulus compared to the Schwarz Primitive structure for the same volume fraction of porosity, overall dimensions, and the manufacturing process parameters. Although both structures revealed mechanical properties that fall within the range of the human trabecular bone, but Schoen Gyroid exhibited improved structural integrity performance that is evident by its post-yield behaviour.


Subject(s)
Polyesters , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Polyesters/chemistry , Cancellous Bone , Porosity
18.
Polymers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297905

ABSTRACT

In this research, a three-dimensional auxetic configuration based on a known re-entrant cell is proposed. The 3D auxetic cell is configured from a new design parameter that produces an internal rotation angle to its re-entrant elements to study elastic properties in its three orthogonal directions. Through a topological analysis using Timoshenko beam theory, the bending of its re-entrant struts is modeled as a function of the new design parameter to manipulate Poisson's ratio and Young's modulus. Experimental samples were fabricated using a fused filament fabrication system using ABS and subsequently tested under quasi-static compression and bending tests. Additionally, an orthotropy factor is applied that allows for measuring the deviation between the mechanical properties of each structure. The experimental results validate the theoretical design and show that this new unit cell can transmit an orthotropic mechanical behavior to the macrostructure. In addition, the proposed structure can provide a different bending stiffness behavior in up to three working directions, which allows the application under different conditions of external forces, such as a prosthetic ankle.

19.
J Appl Crystallogr ; 55(Pt 4): 860-869, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974726

ABSTRACT

In the present work, electron backscatter diffraction was used to determine the microscopic dislocation structures generated during creep (with tests interrupted at the steady state) in pure 99.8% aluminium. This material was investigated at two different stress levels, corresponding to the power-law and power-law breakdown regimes. The results show that the formation of subgrain cellular structures occurs independently of the crystallographic orientation. However, the density of these cellular structures strongly depends on the grain crystallographic orientation with respect to the tensile axis direction, with 〈111〉 grains exhibiting the highest densities at both stress levels. It is proposed that this behaviour is due to the influence of intergranular stresses, which is different in 〈111〉 and 〈001〉 grains.

20.
Materials (Basel) ; 15(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35806609

ABSTRACT

This paper presents a hybrid level set method (HLSM) to design novelty functionally graded structures (FGSs) with complex macroscopic graded patterns. The hybrid level set function (HLSF) is constructed to parametrically model the macro unit cells by introducing the affine concept of convex optimization theory. The global weight coefficients on macro unit cell nodes and the local weight coefficients within the macro unit cell are defined as master and slave design variables, respectively. The local design variables are interpolated by the global design variables to guarantee the C0 continuity of neighboring unit cells. A HLSM-based topology optimization model for the FGSs is established to maximize structural stiffness. The optimization model is solved by the optimality criteria (OC) algorithm. Two typical FGSs design problems are investigated, including thin-walled stiffened structures (TWSSs) and functionally graded cellular structures (FGCSs). In addition, additively manufactured FGCSs with different core layers are tested for bending performance. Numerical examples show that the HLSM is effective for designing FGSs like TWSSs and FGCSs. The bending tests prove that FGSs designed using HLSM are have a high performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...