Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Microorganisms ; 10(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35208782

ABSTRACT

Facing the crucial issue of high cost in cellulase production from commercial celluloses, inexpensive lignocellulosic materials from agricultural wastes have been attractive. Therefore, several studies have focused on increasing the efficiency of cellulase production by potential microorganisms capable of secreting a high and diversified amount of enzymes using agricultural waste as valuable substrates. Especially, extremophilic bacteria play an important role in biorefinery due to their high value catalytic enzymes that are active even under harsh environmental conditions. Therefore, in this study, we aim to investigate the ability to produce cellulase from coconut-mesocarp of the potential bacterial strain FW2 that was isolated from kitchen food waste in South Korea. This strain was tolerant in a wide range of temperature (-6-75 °C, pH range (4.5-12)) and at high salt concentration up to 35% NaCl. The molecular weight of the purified cellulase produced from strain FW2 was estimated to be 55 kDa. Optimal conditions for the enzyme activity using commercial substrates were found to be 40-50 °C, pH 7.0-7.5, and 0-10% NaCl observed in 920 U/mL of CMCase, 1300 U/mL of Avicelase, and 150 U/mL of FPase. It was achieved in 650 U/mL, 720 U/mL, and 140 U/mL of CMCase, Avicelase, and FPase using coconut-mesocarp, respectively. The results revealed that enzyme production by strain FW2 may have significant commercial values for industry, argo-waste treatment, and other potential applications.

2.
Electron. j. biotechnol ; 48: 29-35, nov. 2020. ilus, tab, graf
Article in English | LILACS | ID: biblio-1254696

ABSTRACT

BACKGROUND: Cellulose as a potential feed resource hinders its utilization because of its complex structure, and cellulase is the key to its biological effective utilization. Animal endogenous probiotics are more susceptible to colonization in the intestinal tract, and their digestive enzymes are more conducive to the digestion and absorption of feed in young animals. Min pigs are potential sources of cellulase probiotics because of the high proportion of dietary fiber in their feed. In this study, the cellulolytic bacteria in the feces of Min pigs were isolated and screened. The characteristics of enzymes and cellulase production were studied, which provided a theoretical basis for the rational utilization of cellulase and high-fiber food in animal production. RESULTS: In our study, 10 strains of cellulase producing strains were isolated from Min pig manure, among which the M2 strain had the best enzyme producing ability and was identified as Bacillus velezensis. The optimum production conditions of cellulase from strain M2 were: 2% inoculum, the temperature of 35°C, the pH of 5.0, and the liquid loading volume of 50 mL. The optimum temperature, pH and time for the reaction of cellulase produced by strain M2 were 55°C, 4.5 and 5 min, respectively. CONCLUSIONS: Min pigs can be used as a source of cellulase producing strains. The M2 strain isolated from feces was identified as Bacillus velezensis. The cellulase from M2 strain had a good activity and the potential to be used as feed additive for piglets.


Subject(s)
Animals , Swine, Miniature , Bacteria/enzymology , Cellulase/biosynthesis , Bacillus , Dietary Fiber , Probiotics , Digestion , Feces , Animal Feed
3.
J Genet Eng Biotechnol ; 15(1): 77-85, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30647644

ABSTRACT

Cellulase producing bacteria were isolated from both soil and ward poultry, using CMC (carboxymethylcellulose) agar medium and screened by iodine method. Cellulase activity of the isolated bacteria was determined by DNS (dinitrosalicylic) acid method. The highly cellulolytic isolates (BTN7A, BTN7B, BMS4 and SA5) were identified on the basis of Gram staining, morphological cultural characteristics, and biochemical tests. They were also identified with 16S rDNA analysis. The phylogenetic analysis of their 16S rDNA sequence data showed that BTN7B has 99% similarity with Anoxybacillus flavithermus, BMS4 has 99% similarity with Bacillus megaterium, SA5 has 99% homology with Bacillus amyloliquefaciens and BTN7A was 99% similar with Bacillus subtilis. Cellulase production by these strains was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, different volumes of media, aeration rate and carbon source. The cellulase specific activity was calculated in each case. In conclusion four highly cellulolytic bacterial strains were isolated and identified and the optimum conditions for each one for cellulase production were determined. These strains could be used for converting plant waste to more useful compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...