Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.511
Filter
1.
Biomater Investig Dent ; 11: 41069, 2024.
Article in English | MEDLINE | ID: mdl-39070047

ABSTRACT

Objective: This study evaluated the sealing ability of different biomaterials as intra-orifice barriers in the internal bleaching of discolored teeth with the walking bleaching technique. The release of hydroxyl ions from the bleaching materials can cause cervical root resorption, making it necessary to use intra-orifice barrier materials to prevent this issue. Materials and methods: In the current study, the high-performance liquid chromatography (HPLC) method was used to measure the released hydroxyl ions. The study included 90 single-rooted and single-canal premolars, which were divided into four groups based on the intra-orifice barrier materials used (mineral trioxide aggregate [MTA], calcium-enriched mixture [CEM], Biodentine, and MTA+PG) and the type of bleaching material (sodium perborate + water or sodium perborate + hydrogen peroxide 30%). Two control groups were also considered in this study: a positive control group, where sodium perborate and hydrogen peroxide were placed inside the pulp chamber without any intra-orifice barriers; and a negative control group, where no bleaching agent or surgical obstruction was used, and the root surface was covered with wax up to the cemento-enamel junction (CEJ) level. Results: The results showed that there was a significant difference in the concentration of hydroxyl ions released among the studied groups. The amount of hydroxyl ion released was highest in the positive control group and lowest in the CEM group. Among the intra-orifice barrier materials used, CEM cement was found to be the most appropriate material for use in the step-by-step internal bleaching method. Conclusions: The study highlights the importance of using appropriate intra-orifice barrier materials to prevent root cervical resorption in internal bleaching procedures.

2.
Int Orthop ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066904

ABSTRACT

PURPOSE: A tibial cement spacer (TCS) with spikes offers better initial stability than a conventional TCS and reduces spacer-related problems in two-stage revision total knee arthroplasty (R-TKA) for infection. We compared the clinical outcomes of two-stage revision arthroplasty for infected TKA using spiked TCS with that of conventional TCS. METHODS: This retrospective cohort study included 29 patients who underwent two-stage revision arthroplasty using an articulating cement spacer and who could be followed up for at least one year. Group S comprised 14 patients using spiked TCS, whereas Group C comprised 15 patients using conventional TCS. Demographic data, the interval from first to second stage revision, motion arc, numerical rating scale (NRS), Knee Society (KS) score, serum levels of erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), and frequency of repeating the first-stage and infection recurrence after R-TKA between the groups were analyzed. RESULTS: No significant differences were observed in the female ratio and mean age between both groups. The mean interval between the first and second stage revision was significantly shorter in Group S than in Group C. The mean motion arc was significantly larger in Group S than in Group C. The mean NRS was significantly lower in Group S than in Group C. The mean KS score in Group S was significantly higher than that in Group C. Serum ESR and CRP levels did not differ between the groups. The frequency of repeating the first stage was lower in Group S than in Group C. However, the recurrence rate after R-TKA was higher in Group S than in Group C. CONCLUSION: Compared with conventional TCS, spiked TCS shortened the period until R-TKA and improved pain and function levels. However, no significant difference existed in the rate of infection recurrence after R-TKA.

3.
Article in English | MEDLINE | ID: mdl-39066946

ABSTRACT

This study investigated the feasibility of large-scale utilizing calcareous wastes (CW) of Angoran lead and zinc mine as aggregates in mortar production with the maximum possible substitution of natural aggregates. The main goal was to produce mortar (concrete with fine aggregates as fine as sand or smaller) from Angoran mine's calcareous wastes for maintenance in its underground spaces. Compared to concrete, such mortars with better fluidity can enter narrow spaces more easily. In addition, it can be used to build various structures around the mine. Therefore, multiple samples were prepared by replacing 0% (as the control sample), 20%, 40%, 60%, 80%, and 100% of natural aggregates with CW. Subsequently, compressive strength, flexural strength, water absorption, slump, and TCLP tests were conducted on these samples. The results revealed that the mortar sample with 80% CW exhibited significantly higher compressive strength at 3, 14, 28, and 56 days compared to both the control sample and other samples. Specifically, the compressive strength of this sample reached 35.5 MPa at 56 days, representing an 18.4% increase over the control sample. This indicates that the hydration of cement and the growth of C-S-H gel were enhanced. Analysis of the workability and slump of the samples indicated that as the percentage of natural aggregate replaced by CW increased, the fluidity of the mortar slightly decreased. In addition to mechanical properties like compressive strength, environmental aspects like heavy metal stabilization are also very important. So, TCLP tests conducted on the four heavy metals lead, zinc, copper, and cadmium demonstrated that the released amounts of these elements from all the samples were below the EPA standard limits. These findings confirm the effective stabilization of heavy metals in mortar samples. A comparison of SEM images revealed that the mortar sample made with 20% CW (with minimum compressive strength) exhibited a higher presence of ettringite compared to the sample made with 80% CW (with maximum compressive strength) after 28 days.

4.
Article in English | MEDLINE | ID: mdl-39067854

ABSTRACT

Allergic contact dermatitis is characterized by its appearance of red, raised and infiltrated, scaling or scabbed skin and intense pruritus, and distinguished from irritant contact dermatitis by its specific immune process and histopathology. Many contact allergens are low molecular weight chemicals including metals such as nickel, cobalt, and chromium, preservatives, and adhesives. When such materials are used internally in biomedical devices, they are similarly capable of causing sensitization and an inflammatory response. Sometimes the reaction remains internal, and presents as swelling, pain, stiffness, decreased range of motion, and internal itching around the implant. Such reactions may, in some cases, also extend to include a localized or, rarely, systemic contact dermatitis indicative of the same process. This review will present an overview of reported skin and local internal reactions to orthopedic implants, which are the largest category of implanted internal metal devices. Immune reactions to smaller categories of medical appliances include cardiac devices and vascular stents, neuromodulation devices, diabetic appliances, Nuss bar surgery for pectus excavatum, and dental and spinal implants. We will review the available diagnostic tools, the consensus on interpretation, and reported strategies for treatment.

5.
J Orthop Surg Res ; 19(1): 440, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068450

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate the clinical efficacy of injectable cemented hollow pedicle screw (CICPS) in the treatment of osteoporotic lumbar degenerative diseases through a large sample long-term follow-up study. Additionally, we aim to explore the risk factors affecting interbody fusion. METHODS: A total of 98 patients who underwent CICPS for transforaminal lumbar interbody fusion (TLIF) for osteoporotic lumbar degenerative disease from March 2011 to September 2017 were analyzed. X-ray and electronic computed tomography (CT) imaging data were collected during preoperative, postoperative, and follow-up periods. The data included changes in intervertebral space height (ΔH), screw failure, cement leakage (CL), and intervertebral fusion. The patients were divided into two groups based on their fusion status one year after surgery: satisfied group A and dissatisfied group B. Surgical data such as operation time, intraoperative bleeding volume and surgical complications were recorded, and visual analog scale (VAS) and Oswestry disability index (ODI) were used to evaluate the improvement of lumbar and leg pain. RESULTS: The mean follow-up time was 101.29 months (ranging from 70 to 128 months). A total of 320 CICPS were used, with 26 screws (8.13%) leaking, 3 screws (0.94%) experiencing cement augmentation failure, and 1 screw (0.31%) becoming loose and breaking. The remaining screws were not loose or pulled out. Female gender, decreased bone density, and CL were identified as risk factors affecting interbody fusion (P < 0.05). Early realization of interbody fusion can effectively prevent the loss of intervertebral space height (P < 0.05) and maintain the surgical treatment effect. Both VAS and ODI scores showed significant improvement during the follow-up period (P < 0.05). Binary logistic regression analysis revealed that decreased bone density and cement leakage were risk factors for prolonged interbody fusion. CONCLUSIONS: The results of long-term follow-up indicate that PMMA enhanced CICPS has unique advantages in achieving good clinical efficacy in the treatment of osteoporosis lumbar degenerative diseases. Attention should be paid to identify female gender, severe osteoporosis, and CL as risk factors affecting interbody fusion.


Subject(s)
Bone Cements , Lumbar Vertebrae , Osteoporosis , Pedicle Screws , Spinal Fusion , Humans , Female , Male , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Follow-Up Studies , Aged , Osteoporosis/surgery , Osteoporosis/complications , Middle Aged , Spinal Fusion/methods , Spinal Fusion/instrumentation , Intervertebral Disc Degeneration/surgery , Intervertebral Disc Degeneration/diagnostic imaging , Treatment Outcome , Time Factors , Injections , Retrospective Studies
6.
Materials (Basel) ; 17(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39063703

ABSTRACT

This study aimed to obtain and characterize a mortar with perlite aggregate and thermal-treated materials that could substitute for Portland cement. First, the thermally treated materials were obtained by calcinating old Portland cement (OC-tt) and concrete demolition waste (CC-tt) at 550 °C, for 3 h. Second, plastic mortars with a perlite: cement volume ratio of 3:1 were prepared and tested for water absorption, mechanical strength, and thermal conductivity. The microstructure was also analyzed. Portland cement (R) was partially substituted with 10%, 30%, and 50% OC-tt. Thermal-treated materials negatively influenced the compressive and flexural strengths at 7 and 28 days. With an increase in the substitution percentage to 50%, the decrease in the compressive strength was 40% for OC-tt and 62.5% for CC-tt. The presence of 10% OC-tt/CC-tt positively influenced the water absorption. The thermal conductivity of the tested mortars was in the range of 0.37-0.48 W/m·K. SEM analysis shows the expanded perlite pores remained unbroken.

7.
Materials (Basel) ; 17(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39063720

ABSTRACT

The aim of this study was to experimentally investigate the process of chloride binding and its sulfate-induced release in cementitious materials. The cementitious materials were replaced with hardened cement paste particles (HCPs) with water-to-cement ratios (w/c) of 0.35 and 0.45. A long-term immersion experiment of HCPs in 0.1 M sodium chloride solution was performed to investigate its chloride-binding capacity, and then it was immersed in sodium sulfate solutions with concentrations of 0.1 and 0.5 M to explore the release of chloride binding induced by sulfates. Silver nitrate titration and quantitative X-ray diffraction (QXRD) were used to measure the concentration of free chlorides in the solutions and the content of bound chlorides in HCPs, respectively. The results show that there is a higher chloride-binding capacity in HCPs with a w/c ratio of 0.45 compared to 0.35, and the content of chemically bound chlorides is associated with the formation and decomposition of Friedel's and Kuzel's salts in HCPs. The presence of sulfates can easily result in the release of bound chlorides in Friedel's salt, but it cannot cause a complete release of bound chlorides in Kuzel's salt. Physically bound chlorides are more easily released by sulfates than chemically bound chlorides, and a high w/c ratio or sulfate concentration can increase the release rate of bound chlorides in HCPs.

8.
Materials (Basel) ; 17(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063758

ABSTRACT

We investigated the impact of CaCO3 addition on the density and compressive strength of calcium aluminate cement (CAC)-based cementitious materials in binder jetting additive manufacturing (BJAM). To confirm the formation of a uniform powder bed, we examined the powder flowability and powder bed density for CaCO3 contents ranging from 0 to 20 wt.%. Specifically, powders with avalanche angles between 40.1-45.6° formed a uniform powder bed density with a standard deviation within 1%. Thus, a 3D printing specimen (green body) fabricated via BJAM exhibited dimensional accuracy of less than 1% across the entire plane. Additionally, we measured the hydration characteristics of CAC and the changes in compressive strength over 30 days with the addition of CaCO3. The results indicate that the addition of CaCO3 to CAC-based cementitious materials forms multimodal powders that enhance the density of both the powder bed and the green body. Furthermore, CaCO3 promotes the formation of highly crystalline monocarbonate (C4AcH11) and stable hydrate (C3AH6), effectively inhibiting the conversion of CAC and showing compressive strengths of up to 5.2 MPa. These findings suggest a strong potential for expanding the use of BJAM across various applications, including complex casting molds, cores, catalyst supports, and functional architectural interiors.

9.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063843

ABSTRACT

The problem of loss of strength caused by the conversion reaction with calcium aluminate cements (CAC) is well known. It has been shown that the addition of ground granulated blast furnace slag (GGBS) to CAC inhibits the conversion process. Different slags can have a different chemical and mineralogical composition depending on their origin and production process, which can significantly influence their reactivity. This work investigated the extent to which the R3 test, developed for Portland cement and based on isothermal calorimetry and/or bound water, was used to predict the reactivity of ground granulated blast furnace slag in a CAC. Mortars and cement pastes with a 30% replacement of slag were tested to evaluate their compressive strength and microstructure. The results show that slags with higher reactivity due to their hydraulic properties lead to a lower compressive strength loss within the first 6 h, a higher strength loss after 24 h due to stratlingite formation and a lower strength loss after 28 days due to pozzolanic reaction and stratlingite formation. The results also confirm that the R3 test was used as a rapid method to predict the effects of slag on the compressive strength of CAC.

10.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063850

ABSTRACT

The physicochemical properties of steel slag were investigated using SEM and IR, and it was found that free calcium oxide and free magnesium oxide in steel slag produce calcium hydroxide when in contact with water, leading to volume expansion. Thus, the expansion rate of steel slag itself was first investigated, and it was found that the volume expansion of steel slag was more obvious in seven days after water immersion. Then, the cement dosages of 5% and 6% of the steel slag expansion rate and cement-stabilized gravel volume changes between the intrinsic link were further explored after the study found that the cement bonding effect can be partially inhibited due to the volume of expansion caused by the steel slag, so it can be seen that increasing the dosage of cement can reduce the volume expansion of steel slag cement-stabilized gravel with the same dosage of steel slag. Finally, a prediction model of the expansion rate of steel slag cement-stabilized gravel based on the BP (back propagation) neural network was established, which was verified to be a reliable basis for predicting the expansion rate of steel slag cement-stabilized aggregates and improving the accuracy of the proportioning design.

11.
Materials (Basel) ; 17(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063872

ABSTRACT

Bone defects are commonly addressed with bone graft substitutes; however, surgical procedures, particularly for open and complex fractures, may pose a risk of infection. As such, a course of antibiotics combined with a drug carrier is often administered to mitigate potential exacerbations. This study involved the preparation and modification of emulsified (Em) crosslinking-gelatin (gel) microspheres (m-Em) to reduce their toxicity. The antibiotic gentamicin was impregnated into gel microspheres (m-EmG), which were incorporated into calcium phosphate bone cement (CPC). The study investigated the effects of m-EmG@CPC on antibacterial activity, mechanical properties, biocompatibility, and proliferation and mineralization of mouse progenitor osteoblasts (D1 cells). The average size of the gel microspheres ranged from 22.5 to 16.1 µm, with no significant difference between the groups (p > 0.05). Most of the oil content within the microspheres was transferred through modification, resulting in reduced cytotoxicity. Furthermore, antibiotic-impregnated m-EmG did not compromise the intrinsic properties of the microspheres and exhibited remarkably antibacterial effects. After combining with CPC (m-EmG@CPC), the microspheres did not significantly hinder the CPC reaction and produced the main product, hydroxyapatite (HA). However, the compressive strength of the largest microsphere content of 0.5 wt.% m-EmG in CPC decreased significantly from 59.8 MPa of CPC alone to 38.7 MPa of 0.5m-EmG@CPC (p < 0.05). The 0.5m-EmG@CPC composite was effective against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in drug release and antibacterial tests. Compared with m-EmG alone, the 0.5m-EmG@CPC composite showed no toxicity to mouse fibroblast cells (L929). Additionally, the proliferation and mineralization of mouse osteoblastic osteoprogenitor cells (D1 cells) did not have a negative impact on the 0.5m-EmG@CPC composite over time in culture compared with CPC alone. Results suggest that the newly developed antibacterial 0.5m-EmG@CPC composite bone cement did not negatively affect the performance of osteoprogenitor cells and could be a new option for bone graft replacement in surgeries.

12.
Materials (Basel) ; 17(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063911

ABSTRACT

Polycarboxylate superplasticizers BMC-L and BMC-S were utilized as modifiers in the formulation of novel cement-based grouting materials. Indoor tests were conducted on 32 groups of cement slurries, varying by water-cement ratio (0.5:1 and 0.6:1) and modifier content (0, 2‱, 4‱, 6‱, 8‱, 10‱, 12‱, and 14‱), to test their density, funnel viscosity, water separation rate, and stone rate. Four groups of slurry modified with BMC-L were selected as the preferred slurry, and the apparent viscosity test, uniaxial, and triaxial compression test of the slurry stone body were conducted. The study investigated the influence of BMC-L on various properties of the slurry, including its apparent viscosity, uniaxial compressive strength, stress-strain relationships, shear strength parameters, and elastic modulus. Ultimately, the pore structure and phase composition of the slurry stone body were detected by Nuclear Magnetic Resonance (NMR) and X-ray Diffraction (XRD), and the impact of BMC-L on slurry performance was examined from a microstructural perspective. Results indicate that the two polycarboxylate superplasticizers exert minimal influence on the density and water separation rate of the slurry. Within the effective incorporation range of the polycarboxylate superplasticizer, increasing the dosage correlates with a decrease in both the stone rate and viscosity of the slurry. BMC-L significantly enhances the mechanical properties of the slurry stone body by promoting more complete cement hydration and reducing porosity. The uniaxial compressive strength of slurry stone body with a 6 ‱ BMC-L dosage reached 29.7 MPa after 7 days and 38.5 MPa after 28 days of curing, representing increases of 118.4% and 64%, respectively, compared to masonry with 0 BMC-L dosage. The shear strength parameters and elastic modulus of the slurry stone body also showed corresponding increases.

13.
Medicina (Kaunas) ; 60(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064584

ABSTRACT

Background and Objectives: Osteoporosis renders the use of traditional interbody cages potentially dangerous given the high risk of damage in the bone-implant interface. Instead, injected cement spacers can be applied as interbody devices; however, this technique has been mainly used in cervical spine surgery. This study aimed at investigating the biomechanical behavior of cement spacers versus traditional cages in lumbar spine surgery. Materials and Methods: Destructive monotonic axial compression testing was performed on 20 human cadaveric low-density lumbar segments from elderly donors (14 f/6 m, 70.3 ± 12.0 y) treated with either injected cement spacers (n = 10) or traditional cages (n = 10) without posterior instrumentation. Stiffness, failure load and displacement were compared. The effects of bone density, vertebral geometry and spacer contact area were evaluated. Results: Cement spacers demonstrated higher stiffness, significantly smaller displacement (p < 0.001) and a similar failure load compared to traditional cages. In the cage group, stiffness and failure load depended strongly on bone density and vertebral height, whereas failure displacement depended on vertebral anterior height. No such correlations were identified with cement spacers. Conclusions: Cement spacers used in lumbar interbody stabilization provided similar compression strength, significantly smaller failure displacement and a stiffer construct than traditional cages that provided benefits mainly for large and strong vertebrae. Cement stabilization was less sensitive to density and could be more beneficial also for segments with smaller and less dense vertebrae. In contrast to the injection of cement spacers, the optimal insertion of cages into the irregular intervertebral space is challenging and risks damaging bone. Further studies are required to corroborate these findings and the treatment selection thresholds.


Subject(s)
Bone Cements , Cadaver , Lumbar Vertebrae , Humans , Lumbar Vertebrae/surgery , Lumbar Vertebrae/physiology , Biomechanical Phenomena , Bone Cements/therapeutic use , Male , Aged , Female , Middle Aged , Aged, 80 and over , Bone Density , Compressive Strength , Weight-Bearing/physiology , Osteoporosis
14.
Polymers (Basel) ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065287

ABSTRACT

This study aimed to experimentally investigate the compressive strength and air voids of cement pastes with varying dosages of Superabsorbent Polymer (SAP) and water-to-cement (w/c) ratios. Cement pastes were prepared using three different w/c ratios of 0.4, 0.5, and 0.6, along with different dosages of SAP ranging from 0.2% to 0.5% by weight of cement. Additionally, SAP was introduced in two forms: dry and wet. After casting the cubes, two distinct curing conditions were employed: curing at a temperature of 20 °C with a Relative Humidity (RH) of 60% (Curing 1), and water curing (Curing 2). The results revealed that the addition of SAP increased early strength when subjected to Curing 1, followed by a decrease in later strength. On the other hand, samples with SAP and water curing exhibited higher strength compared to those without SAP, especially with w/c ratios of 0.4 and 0.5. However, at a w/c ratio of 0.6, nearly all samples showed a reduction in strength compared to those without SAP. Furthermore, air void analysis was performed on all samples cured for 28 days using an image analysis technique. The samples containing wet SAP resulted in a higher total air content compared to the samples with dry SAP. Additionally, the incorporation of wet SAP in cement paste led to lower specific surface areas and a higher spacing factor than the samples with dry SAP. These findings suggest that the clumping of wet SAP particles during presoaking resulted in coarser air voids compared to the samples containing dry SAP.

15.
J Funct Biomater ; 15(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39057320

ABSTRACT

The purpose of this finite element analysis (FEA) was to evaluate the stress distribution within the prosthetic components and bone in relation to varying cement thicknesses (from 20 to 60 µm) utilized to attach a zirconia crown on a conometric cap. The study focused on two types of implants (Cyroth and TAC, AoN Implants, Grisignano di Zocco, Italy) featuring a Morse cone connection. Detailed three-dimensional (3D) models were developed to represent the bone structure (cortical and trabecular) and the prosthetic components, including the crown, cement, cap, abutment, and the implant. Both implants were placed 1.5 mm subcrestally and subjected to a 200 N load at a 45° inclination on the crown. The results indicated that an increase in cement thickness led to a reduction in von Mises stress on the cortical bone for both Cyroth and TAC implants, while the decrease in stress on the trabecular bone (apical zone) was relatively less pronounced. However, the TAC implant exhibited a higher stress field in the apical area compared to the Cyroth implant. In summary, this study investigated the influence of cement thickness on stress transmission across prosthetic components and peri-implant tissues through FEA analysis, emphasizing that the 60 µm cement layer demonstrated higher stress values approaching the material strength limit.

16.
J Contemp Dent Pract ; 25(4): 346-353, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38956850

ABSTRACT

AIM: The aim of the study was to compare and evaluate the microleakage of fiber-reinforced glass ionomer cement (GIC) and conventional glass ionomer cement restorations immersed in three different beverages. MATERIALS AND METHODS: A total of 96 human exfoliating deciduous molars were selected which were cleaned and disinfected. Standardized Class V cavity preparations were done and buccal surface were restored with experimental fiber-reinforced glass ionomer cement (Exp-FRGIC), lingual surface were restored with Type II conventional GIC. They were divided into four groups according to the test beverage. The samples were subjected to various immersion regimes and evaluated for microleakage under stereomicroscope. RESULTS: Intragroup comparison for (Exp-FRGIC) showed significant microleakage when immersed in fresh fruit juice at high immersion whereas intragroup comparison in conventional GIC, showed highest microleakage with soft drink. Intergroup comparison of (Exp-FRGIC) in high immersion regime, showed more microleakage with specimen immersed in soft drink followed by fresh fruit juice. CONCLUSION: It can thus be concluded that the three beverages used in the study affected the microleakage of both restorative materials significantly. CLINICAL SIGNIFICANCE: Increasing usage of fruit juices in the pediatric diet has a definite impact on the progression of caries and it directly or indirectly affects the quality of restorations placed in the oral cavity. How to cite this article: George MA, Chandak SA, Khekade SH, et al. Comparative Evaluation of Microleakage of Fiber-reinforced Glass Ionomer Cement and Conventional Glass Ionomer Cement Restorations Immersed in Three Different Beverages: In Vitro Study. J Contemp Dent Pract 2024;25(4):346-353.


Subject(s)
Dental Leakage , Dental Restoration, Permanent , Glass Ionomer Cements , Glass Ionomer Cements/chemistry , Humans , Dental Restoration, Permanent/methods , In Vitro Techniques , Beverages , Materials Testing , Fruit and Vegetable Juices , Molar , Tooth, Deciduous
17.
Data Brief ; 54: 110258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962196

ABSTRACT

The data provided is primary data related to cement production collected from the six different cement plants in India. This serves as the inventory for conducting material flow analysis, supply chain forecasting, and life cycle assessment of cement and concrete systems. The dataset is given in three data sheets with information relevant to the steps followed in line with the life cycle assessment (LCA) methodology, i.e., inventory, characterization factors and impacts (here, carbon footprint and energy consumed). The data includes the amounts of raw materials (type and source), the electricity (source and amount) used in the clinker and other products produced, such as OPC (Ordinary Portland Cement), PPC (Portland Pozzolana Cement), PSC (Portland Slag Cement) and GGBS (Ground Granulated Blast Furnace Slag). The data is presented (in Sheet A and C) for the relevant functional unit, i.e., one tonne of material produced in each plant. Sheet B gives one of its kind data related to electricity produced (1 kWh) in the thermal power plant associated with the cement plant, also called as captive power plant. As the cement production process contributes to 8% of the anthropogenic CO2 emissions, it is important to understand the environmental impacts associated with it, and primary data generated are essential for assessing the impacts and to modify the processes with higher contribution to reduce the impacts. This dataset can, therefore, serve as a basis to collect the data from similar plants in any part of the world and benchmarking.

18.
Aust Endod J ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963183

ABSTRACT

This systematic review aimed to compare the histological response of inflamed pulpodentinal complex to the hydraulic calcium silicate cements in experimental animal models of pulpitis. Articles that evaluated the histological response of inflamed pulp to mineral trioxide aggregate (MTA) in comparison with other restorative materials were selected and analysed in detail. The risk of bias assessment was conducted using SYRCLE's RoB tool. The GRADEpro tool was used to determine the overall quality of evidence. Out of the 2947 retrieved articles from databases, five articles fulfilled the inclusion criteria. MTA induced significantly more hard tissue formation compared to calcium hydroxide. The use of pulp-capping material containing fluocinolone acetonide and ASP/PLGA-ASP/ACP/PLLA-PLGA composite membrane was comparable. This systematic review could not demonstrate enhanced efficiency of capping materials compared to MTA. Future well-conducted animal studies are warranted for demonstrating the hard tissue formation abilities of pulp-capping materials with convenient inflammatory conditions.

19.
World Neurosurg ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964458

ABSTRACT

OBJECTIVE: We aimed to preliminarily explore the efficacy and safety of unilateral biportal endoscopy (UBE) for the treatment of epidural cement leaks. We report a patient who underwent epidural cement leakage removal and achieved endoscopic spinal decompression. METHODS: A 67-year-old female patient underwent biportal endoscopic paraspinal decompression following percutaneous vertebroplasty for an osteoporotic fracture that resulted in neurologic impairment due to epidural cement leakage. A transforaminal biportal endoscopic surgery was performed to remove the leaked cement, and the left L1 and bilateral L2 nerves were decompressed. RESULTS: The patient's postoperative clinical course was uneventful. CONCLUSIONS: A paraspinal approach that avoids a posterior approach reduces the need to remove stabilizing facet bone, is truly minimally invasive and does not involve an instrumented fusion, maybe a helpful addition in the minimally invasive spine surgeon's armamentarium.

20.
Sci Rep ; 14(1): 14970, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38951632

ABSTRACT

In the field of hydrate formation cementing, the method of developing the low hydration exothermic cement systems cannot effectively solve the problem of hydrate dissociation caused by the hydration heat release of cement. Therefore, we proposed a new approach to address this issue by employing cement additives that can effectively delay the dissociation of hydrate. In our previous work, we designed a novel hydrate dissociation inhibitor, PVCap/dmapma, however, its applicability with cement slurry remains unverified. In this study, we established a more realistic model of oilwell cement gel based on experimental data. Additionally, we investigated the potential effects of PVCap/dmapma on the microstructure and mechanical properties of cement gel through molecular simulations. The results suggest that PVCap/dmapma has no negative effect on the performance of cement slurry compared to Lecithin. By adding PVCap/dmapma to cement slurry, the problem of cementing in hydrate formations is expected to be solved.

SELECTION OF CITATIONS
SEARCH DETAIL
...