Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Neuropeptides ; 107: 102451, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38936137

ABSTRACT

Central nervous system (CNS) disorders are one of the leading health problems today, accounting for a large proportion of global morbidity and mortality. Most these disorders are characterized by high levels of oxidative stress and intense inflammatory responses in degenerated neuronal tissues. While extensive research has been conducted on CNS diseases, but few breakthroughs have been made in treatment methods. To date, there are no disease-modifying drugs available for CNS treatment, underscoring the urgent need for finding effective medications. Bee venom (BV), which is produced by honeybee workers' stingers, has been a subject of interest and study across various cultures. Over the past few decades, extensive research has focused on BV and its therapeutic potentials. BV consists a variety of substances, mainly proteins and peptides like melittin and phospholipase A2 (PLA2). Research has proven that BV is effective in various medical conditions, including pain, arthritis and inflammation and CNS disorders such as Multiple sclerosis, Alzheimer's disease and Parkinson's disease. This review provides a comprehensive overview of the existing knowledge concerning the therapeutic effects of BV and its primary compounds on various CNS diseases. Additionally, we aim to shed light on the potential cellular and molecular mechanisms underlying these effects.

2.
Article in English, Chinese | MEDLINE | ID: mdl-38860393

ABSTRACT

Phosphodiesterase (PDE) hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and involve in the regulation of cellular physiological processes and neurological functions, including neuronal plasticity, synaptogenesis, synaptic transmission, memory formation and cognitive function by catalyzing the hydrolysis of intracellular cAMP and cGMP. A large number of basic and clinical studies have shown that PDE4 inhibitors block or ameliorate the occurrence and development of central nervous system (CNS) diseases by inhibiting cAMP hydrolysis, increasing cAMP content and enhancing its downstream effects. PDE4 inhibitors have long-term potentiation effect, which can enhance phosphorylation of cAMP response element binding protein (CREB) and upregulate expression of memory related Arc genes in hippocampal neurons, thereby improving cognitive impairment and Alzheimer's disease-like symptoms; and also resist the occurrence and development of Parkinson's disease by reducing the cytotoxicity induced by α-syn and increasing the effect of miR-124-3p on cell activity. Alteration of PDE4 activity is the molecular basis of psychosis and cognitive disorders, therefore it is considered as one of the therapeutic targets for schizophrenia. PDE4 inhibitors play a role in depression; Autism spectrum and Huntington's disease by inhibiting the advanced glycation end product receptor (RAGE), TLR4 and NLRP3 pathways in the hippocampus, reducing the activation of microglia and the production of interleukin-1ß, down-regulating HMGB1/RAGE signaling pathway and inhibiting inflammatory factors and Increase the nociception threshold. PDE4 inhibitors might be used in treatment of fragile X syndrome by regulating the level of cAMP and affecting the expression of fragile X mental retardation protein (FMRP). PDE4 inhibitors can also promote the differentiation of oligodendrocyte progenitor cells and enhance myelination, which has potential in the treatment of multiple sclerosis. PDE4 also related to Bipolar disorder which may be one of the therapeutic targets. At present, several PDE4 inhibitors are on clinical trials for treatment of CNS diseases. This article reviews and discusses the progress on basic researches and clinical trials of PDE4 inhibitors in CNS diseases, providing reference for the prevention and treatment of CNS diseases and the development of new drugs.

3.
J Cereb Blood Flow Metab ; : 271678X241254772, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726895

ABSTRACT

MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.

4.
Cell Mol Neurobiol ; 44(1): 46, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743119

ABSTRACT

Central nervous system (CNS) disorders represent the leading cause of disability and the second leading cause of death worldwide, and impose a substantial economic burden on society. In recent years, emerging evidence has found that beta2 -microglobulin (B2M), a subunit of major histocompatibility complex class I (MHC-I) molecules, plays a crucial role in the development and progression in certain CNS diseases. On the one hand, intracellular B2M was abnormally upregulated in brain tumors and regulated tumor microenvironments and progression. On the other hand, soluble B2M was also elevated and involved in pathological stages in CNS diseases. Targeted B2M therapy has shown promising outcomes in specific CNS diseases. In this review, we provide a comprehensive summary and discussion of recent advances in understanding the pathological processes involving B2M in CNS diseases (e.g., Alzheimer's disease, aging, stroke, HIV-related dementia, glioma, and primary central nervous system lymphoma).


Subject(s)
Central Nervous System Diseases , beta 2-Microglobulin , Humans , beta 2-Microglobulin/metabolism , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology , Animals
5.
J Nanobiotechnology ; 22(1): 280, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783302

ABSTRACT

Central nervous system (CNS) diseases encompass spinal cord injuries, brain tumors, neurodegenerative diseases, and ischemic strokes. Recently, there has been a growing global recognition of CNS disorders as a leading cause of disability and death in humans and the second most common cause of death worldwide. The global burdens and treatment challenges posed by CNS disorders are particularly significant in the context of a rapidly expanding global population and aging demographics. The blood-brain barrier (BBB) presents a challenge for effective drug delivery in CNS disorders, as conventional drugs often have limited penetration into the brain. Advances in biomimetic membrane nanomaterials technology have shown promise in enhancing drug delivery for various CNS disorders, leveraging properties such as natural biological surfaces, high biocompatibility and biosafety. This review discusses recent developments in biomimetic membrane materials, summarizes the types and preparation methods of these materials, analyzes their applications in treating CNS injuries, and provides insights into the future prospects and limitations of biomimetic membrane materials.


Subject(s)
Biomimetic Materials , Blood-Brain Barrier , Central Nervous System Diseases , Drug Delivery Systems , Biomimetic Materials/chemistry , Humans , Central Nervous System Diseases/drug therapy , Blood-Brain Barrier/metabolism , Animals , Drug Delivery Systems/methods , Nanostructures/chemistry , Nanostructures/therapeutic use , Membranes, Artificial
6.
J Physiol Sci ; 74(Suppl 1): 31, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816814

ABSTRACT

The joint workshop between U.S. and Japanese researchers, supported by The U.S.-Japan Brain Research Cooperative Program, convened in January 2023 at Keio University Mita campus in Tokyo, Japan. The workshop had a threefold objective. Firstly, it aimed to facilitate robust exchanges between U.S. and Japanese researchers engaged in Neurovascular Unit (NVU) research, enhancing the global network of scholars in the field. Secondly, it aimed to encourage the initiation of collaborative research projects, fostering interdisciplinary efforts and synergistic advancements in understanding the brain vascular physiology and central nervous system. Lastly, the workshop emphasized the nurturing of young researchers, recognizing their pivotal role in shaping the future of NVU research. Throughout the workshop, participants discussed fundamental aspects of the NVU, exploring its complex connections and vital functions. By sharing their expertise and insights, the workshop attendees sought to uncover novel approaches to mitigate the burden of neurological diseases for individuals worldwide. This report provides a summary of the presentations and discussions held during the workshop, showcasing the collective efforts and progress made by the participants.


Subject(s)
Brain , Humans , Japan , United States , Brain/physiology , Biomedical Research
7.
Neurohospitalist ; 14(2): 224-225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38666281
8.
Eur J Neurol ; 31(7): e16284, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506182

ABSTRACT

OBJECTIVE: This study was undertaken to provide a comprehensive review of neuroimaging characteristics and corresponding clinical phenotypes of autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A), a rare but severe neuroinflammatory disorder, to facilitate early diagnosis and appropriate treatment. METHODS: A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis)-conforming systematic review and meta-analysis was performed on all available data from January 2016 to June 2023. Clinical and neuroimaging phenotypes were extracted for both adult and paediatric forms. RESULTS: A total of 93 studies with 681 cases (55% males; median age = 46, range = 1-103 years) were included. Of these, 13 studies with a total of 535 cases were eligible for the meta-analysis. Clinically, GFAP-A was often preceded by a viral prodromal state (45% of cases) and manifested as meningitis, encephalitis, and/or myelitis. The most common symptoms were headache, fever, and movement disturbances. Coexisting autoantibodies (45%) and neoplasms (18%) were relatively frequent. Corticosteroid treatment resulted in partial/complete remission in a majority of cases (83%). Neuroimaging often revealed T2/fluid-attenuated inversion recovery (FLAIR) hyperintensities (74%) as well as perivascular (45%) and/or leptomeningeal (30%) enhancement. Spinal cord abnormalities were also frequent (49%), most commonly manifesting as longitudinally extensive myelitis. There were 88 paediatric cases; they had less prominent neuroimaging findings with lower frequencies of both T2/FLAIR hyperintensities (38%) and contrast enhancement (19%). CONCLUSIONS: This systematic review and meta-analysis provide high-level evidence for clinical and imaging phenotypes of GFAP-A, which will benefit the identification and clinical workup of suspected cases. Differential diagnostic cues to distinguish GFAP-A from common clinical and imaging mimics are provided as well as suitable magnetic resonance imaging protocol recommendations.


Subject(s)
Glial Fibrillary Acidic Protein , Neuroimaging , Humans , Astrocytes/pathology , Autoantibodies/blood , Autoimmune Diseases of the Nervous System/diagnostic imaging , Autoimmune Diseases of the Nervous System/immunology , Glial Fibrillary Acidic Protein/immunology , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/immunology , Phenotype
9.
Heliyon ; 10(4): e26377, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434086

ABSTRACT

Background: Short-chain fatty acids (SCFAs) are thought to play a key role in the microbe-gut-brain axis and involve in the pathogenesis of a variety of neurological diseases. This study aimed to identify research hotspots and evolution trends in SCFAs in central nervous diseases (CNS) and examine current research trends. Methods: The bibliometric analysis was performed using CiteSpace, and the results were visualized via network maps. Results: From 2002 to 2022, 480 publications in the database met the criteria. On the country level, China produced the highest number of publications, while the United States had the highest centrality. On the institutional level, University College Cork contributed to the most publications, and John F. Cryan from this university was the key researcher with considerable academic influence. The article, the role of short-chain fatty acids in microbiota-gut-brain, written by Boushra Dalile et al., in 2019 was the most cited article. Furthermore, the journal Nutrients had the maximum number of publications, while Plos One was the most cited journal. "Gut microbiome", "SCFAs", and "central nervous system" were the three most frequent keywords. Among them, SCFAs had the highest centrality. "Animal model" was the keyword with the highest burst strength, with the latest burst keywords being "social behavior", "pathogenesis", and "insulin sensitive". In addition, the research topics on SCFAs in CNS diseases from 2002 to 2022 mainly focused on following aspects: SCFAs plays a key role in microbe-gut-brain crosstalk; The classification and definition of SCFAs in the field of CNS; Several CNS diseases that are closely related to SCFAs research; Mechanism and translational studies of SCFAs in the CNS diseases. And the hotspots over the past 5 years have gradually increased the attention to the therapeutic potential of SCFAs in the CNS diseases. Conclusion: The research of SCFAs in CNS diseases is attracting growing attention. However, there is a lack of cooperation between countries and institutions, and additional measures are required to promote cooperation. The current evidence for an association between SCFAs and CNS diseases is preliminary and more work is needed to pinpoint the precise mechanism. Moreover, large-scale clinical trials are needed in the future to define the therapeutic potential of SCFAs in CNS diseases.

10.
Ageing Res Rev ; 95: 102242, 2024 03.
Article in English | MEDLINE | ID: mdl-38387517

ABSTRACT

Diseases of the central nervous system (CNS), including stroke, brain tumors, and neurodegenerative diseases, have a serious impact on human health worldwide, especially in elderly patients. The brain, which is one of the body's most metabolically dynamic organs, lacks fuel stores and therefore requires a continuous supply of energy substrates. Metabolic abnormalities are closely associated with the pathogenesis of CNS disorders. Post-translational modifications (PTMs) are essential regulatory mechanisms that affect the functions of almost all proteins. Succinylation, a broad-spectrum dynamic PTM, primarily occurs in mitochondria and plays a crucial regulatory role in various diseases. In addition to directly affecting various metabolic cycle pathways, succinylation serves as an efficient and rapid biological regulatory mechanism that establishes a connection between metabolism and proteins, thereby influencing cellular functions in CNS diseases. This review offers a comprehensive analysis of succinylation and its implications in the pathological mechanisms of CNS diseases. The objective is to outline novel strategies and targets for the prevention and treatment of CNS conditions.


Subject(s)
Central Nervous System Diseases , Lysine , Humans , Aged , Lysine/metabolism , Proteins/metabolism , Protein Processing, Post-Translational , Central Nervous System Diseases/therapy , Metabolic Networks and Pathways
11.
Adv Med Sci ; 69(1): 113-124, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38403160

ABSTRACT

PURPOSE: Human endogenous retroviruses (HERVs) are ubiquitous genomic sequences. Normally dormant HERVs, undergo reactivation by environmental factors. This deregulation of HERVs' transcriptional equilibrium correlates with medical conditions such as multiple sclerosis (MS). Here we sought to explore whether exposing the U-87 MG astrocytoma cells to traumatic injury deregulates the expression of HERV-W family member ERVW-1 encoding syncytin-1. We also examined the expression of FURIN gene that is crucial in syncytin-1 synthesis. MATERIAL AND METHODS: Scratch assay was used as a model of cells injury in U-87 MG cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and migration assay using Boyden chamber were used. Phorbol 12-myristate 13-acetate (PMA) and small interfering RNA (siRNA) were used for cell stimulation and gene expression inhibition, respectively. RESULTS: Results revealed reduced ERVW-1 expression in cells exposed to injury (p â€‹< â€‹0.05) while GFAP gene - a marker of active astrocytes, was upregulated (p â€‹< â€‹0.01). These findings were confirmed by both WB and RT-qPCR. Expression of FURIN gene was not altered after injury, but cell stimulation by PMA strongly increased FURIN expression, simultaneously downregulating ERVW-1 (p â€‹< â€‹0.01). SiRNA-mediated expression inhibition of ERVW-1 and FURIN influenced the mRNA level for SLC1A5 (ASCT2) - primary syncytin-1 receptor, that was significantly lower. FURIN inhibition by siRNA caused strong upregulation of ERVW-1 expression (p â€‹< â€‹0.01). CONCLUSION: Results showed that mechanical impact affects the expression of endogenous retroviruses in U-87 MG astrocytoma cells by scratch assay. Regulation of FURIN, a crucial enzyme in ERVW-1 turnover may support the therapy of some neurological conditions.


Subject(s)
Astrocytoma , Endogenous Retroviruses , Furin , RNA, Small Interfering , Tetradecanoylphorbol Acetate , Humans , Furin/metabolism , Furin/genetics , Endogenous Retroviruses/genetics , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytoma/pathology , Astrocytoma/virology , Tetradecanoylphorbol Acetate/pharmacology , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Gene Silencing , Wound Healing/drug effects , Gene Products, env/metabolism , Gene Products, env/genetics , Cell Line, Tumor , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement
12.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 61-71, 2024.
Article in English | MEDLINE | ID: mdl-38417853

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays fundamental roles in neuronal survival and synaptic plasticity. Its upregulation in the brain can effectively prevent and treat central nervous system (CNS) diseases, including depression, Alzheimer's disease (AD), and Parkinson's disease (PD). BDNF is synthesized in various peripheral tissues as well as in the brain and can be transported from peripheral circulation into the brain through the blood-brain barrier. Therefore, foods that upregulate BDNF in peripheral tissues may be beneficial in preventing and treating these CNS diseases. Previously, we revealed that treatment with Chinpi (Citrus unshiu peel) and Citrus natsudaidai increased BDNF levels in the human renal adenocarcinoma cell line ACHN. Here, we evaluated the effects of 21 citrus cultivars on BDNF production in ACHN cells by measuring BDNF levels in the cell culture medium. We found that treatment with peels and pulps of 13 citrus varieties increased BDNF levels in ACHN cells. Treatment with Aurantium, Acrumen, and their hybrids citrus varieties showed a potent BDNF-upregulating effect but not with varieties belonging to Limonellus, Citrophorum, and Cephalocitrus. In addition, treatment with some of those Acrumen and its hybrid citrus species resulted in elevated levels of BDNF transcripts in ACHN cells. These results suggest that peels of many citrus cultivars contain ingredients with a potential BDNF-upregulating ability, which may be novel drug seeds for treating depression, AD, and PD. Furthermore, many citrus cultivars could be used as BDNF-upregulating foods.


Subject(s)
Alzheimer Disease , Citrus , Humans , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Up-Regulation , Alzheimer Disease/metabolism , Brain/metabolism
13.
Adv Sci (Weinh) ; 11(16): e2308677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419366

ABSTRACT

Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.


Subject(s)
Blood-Brain Barrier , Central Nervous System Diseases , Drug Delivery Systems , Medicine, Chinese Traditional , Humans , Medicine, Chinese Traditional/methods , Central Nervous System Diseases/therapy , Central Nervous System Diseases/drug therapy , Drug Delivery Systems/methods , Blood-Brain Barrier/metabolism , Animals , Drugs, Chinese Herbal/therapeutic use , Nanoparticles/therapeutic use
14.
Neurohospitalist ; 14(1): 87-94, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235024

ABSTRACT

Susac Syndrome was first described as an inflammatory microangiopathy of the brain and retina. Since then, multiple articles have been published in attempts to improve the understanding of this rare disease. Clinically Susac Syndrome is known to present with triad of encephalopathy, sensorineural hearing loss and branch of retinal artery occlusion (BRAO), along with characteristic "snowball" or "spoke" appearing white matter lesions of the corpus callosum. It has been characterized by vast heterogeneity in terms of its presenting symptoms, severity, and clinical course. Although subset of patients present with severe forms of Susac Syndrome and can develop prominent residual neurologic deficits, it has been reported to be mostly non-life-threatening and only few fatal cases have been described in the literature. Based on the available case reports with fatal outcome, mortality has been related to the systemic complications either during acute disease flare or during chronic-progressive phase. We describe a case of fulminant Susac Syndrome complicated by the sudden and rapid progression of diffuse cerebral edema leading to brain herniation and ultimate brain death, in order to increase awareness of this rare and catastrophic complication.

15.
Neurohospitalist ; 14(1): 106-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235035

ABSTRACT

A previously healthy 21-year-old Caucasian female G1P0 at 32 weeks gestation presented to the ED for an episode of syncope. She also complained of headaches, neck pain, and blurry vision. Physical examination revealed a healthy pregnant female. Neurological examination demonstrated Grade III papilledema but was otherwise unremarkable. CT brain revealed hydrocephalus and intraventricular hemorrhage of unclear etiology MRI of the head was negative for a mass lesion. MRA/MRV of the head was negative, ruling out cavernous sinus thrombosis. Lumbar puncture was bloody but negative for infection. Infectious workup, including HSV, toxoplasmosis, and neurocysticercosis, was negative. An intraventricular drain was placed for hydrocephalus. While in the hospital, she developed sudden left-sided weakness, prompting an emergency C-section. Further workup with CT angio of the brain and neck revealed an arteriovenous malformation (AVM) involving the anterior spinal artery and adjacent venous plexus. Digital subtraction angiography showed a C2-3 pial AVM with a partially thrombosed nidal aneurysm. She was transferred to an outside hospital for embolization. Embolization obliterated the aneurysm, but residual flow remained in the AVM. Blood products are visible on sagittal MRI after embolization. At hospital discharge, her left-sided weakness had resolved, and her neurological examination was normal. The hydrocephalus had resolved.

16.
Mol Biol Rep ; 51(1): 159, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252346

ABSTRACT

BACKGROUND: Due to the global increase in aging populations and changes in modern lifestyles, the prevalence of neurodegenerative diseases, cerebrovascular disorders, neuropsychiatrcic conditions, and related ailments is rising, placing an increasing burden on the global public health system. MATERIALS AND METHODS: All studies on tetramethylpyrazine (TMP) and its derivatives were obtained from reputable sources such as PubMed, Elsevier, Library Genesis, and Google Scholar. Comprehensive data on TMP and its derivatives was meticulously compiled. RESULTS: This comprehensive analysis explains the neuroprotective effects demonstrated by TMP and its derivatives in diseases of the central nervous system. These compounds exert their influence on various targets and signaling pathways, playing crucial roles in the development of various central nervous system diseases. Their multifaceted mechanisms include inhibiting oxidative damage, inflammation, cell apoptosis, calcium overload, glutamate excitotoxicity, and acetylcholinesterase activity. CONCLUSION: This review provides a brief summary of the most recent advancements in research on TMP and its derivatives in the context of central nervous system diseases. It involves synthesizing analogs of TMP and evaluating their effectiveness in models of central nervous system diseases. The ultimate goal is to facilitate the practical application of TMP and its derivatives in the future treatment of central nervous system diseases.


Subject(s)
Central Nervous System Diseases , Neuroprotection , Humans , Acetylcholinesterase , Central Nervous System Diseases/drug therapy , Pyrazines/pharmacology , Pyrazines/therapeutic use
17.
Eur J Med Res ; 29(1): 15, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173021

ABSTRACT

Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long-standing challenge for clinical research due to the presence of the blood-brain barrier. Specific proteins and RNAs in brain-derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased knowledge of EVs will facilitate their clinical translation in CNS diseases.


Subject(s)
Central Nervous System Diseases , Extracellular Vesicles , Humans , Brain , Extracellular Vesicles/metabolism , Blood-Brain Barrier , Biomarkers/metabolism , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/therapy , Central Nervous System Diseases/metabolism
18.
Int J Stem Cells ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38185531

ABSTRACT

Despite enormous efforts, no effective medication has been found to significantly halt or even slow the progression of neurological diseases, such as acquired (e.g., traumatic brain injury, spinal cord injury, etc.) and chronic (e.g., Parkinson's disease, Alzheimer's disease, etc.) central nervous system disorders. So, researchers are looking for alternative therapeutic modalities to manage the disease's symptoms and stop it from worsening. Concerning disease-modifying capabilities, stem cell therapy has emerged as an expanding domain. Among different types of stem cells, human endometrial regenerative cells have excellent regenerative properties, making them suitable for regenerative medicine. They have the potential for self-renewal and differentiation into three types of stem cells: epithelial stem cells, endothelial side population stem cells, and mesenchymal stem cells (MSCs). ERCs can be isolated from endometrial biopsy and menstrual blood samples. However, there is no comprehensive evidence on the effects of ERCs on neurological disorders. Hence, we initially explore the traits of these specific stem cells in this analysis, followed by an emphasis on their therapeutic potential in treating neurological disorders.

19.
Mol Neurobiol ; 61(3): 1605-1626, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37736794

ABSTRACT

The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.


Subject(s)
Anemia , Brain Injuries , COVID-19 , Ferroptosis , Humans , Autophagy
20.
Arch Med Res ; 55(1): 102916, 2024 01.
Article in English | MEDLINE | ID: mdl-38039802

ABSTRACT

Clavulanic acid (CLAV) is a non-antibiotic ß-lactam that has been used since the late 1970s as a ß-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that ß-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.


Subject(s)
Anti-Bacterial Agents , beta-Lactams , Clavulanic Acid/therapeutic use , Clavulanic Acid/metabolism , Clavulanic Acid/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactams/metabolism , beta-Lactams/pharmacology , Nucleus Accumbens/metabolism , Glutamates/metabolism , Glutamates/pharmacology , Excitatory Amino Acid Transporter 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...