Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39274825

ABSTRACT

A novel approach to the fabrication of thin-film supported metal oxide membranes was investigated. Nanocoatings were obtained by the condensed layer deposition of TiO2 on tubular microporous supports, applying multiple consecutive layers of TiO2/polyaniline. The surface, cross-sectional structure, and morphology of the materials were investigated by electron microscopy. Their membrane-related properties were explored by permeability measurements, rejection, and fouling analysis, using polyethylene glycol (PEG) as test molecules. The SEM images showed that TiO2 was successfully deposited on the surface, creating a layer with partial coverage of the support after each layer was deposited; consequently, the permeability of the membranes decreased gradually. Overall, the results of the flux and permeability of the membranes confirmed the coating. The transmembrane pressure (TMP) increased with each coating layer, while the rejection of the membrane showed gradual improvement.

2.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275114

ABSTRACT

Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.

3.
Water Sci Technol ; 89(10): 2783-2795, 2024 May.
Article in English | MEDLINE | ID: mdl-38822614

ABSTRACT

Photocatalytically active ceramic flat sheet membranes based on a nanostructured titanium dioxide (TiO2) coating were produced for photocatalytic water treatment. The nano-TiO2 layer was produced by a novel combination of magnetron sputtering of a thin titanium layer on silicon carbide (SiC) membranes, followed by electrochemical oxidation (anodization) and subsequent heat treatment (HT). Characterization by Raman spectra and field emission scanning electron microscopy proved the presence of a nanostructured anatase layer on the membranes. The influence of the titanium layer thickness on the TiO2 formation process and the photocatalytic properties were investigated using anodization curves, by using cyclovoltammetry measurements, and by quantifying the generated hydroxyl radicals (OH•) under UV-A irradiation in water. Promising photocatalytic activity and permeability of the nano-TiO2-coated membranes could be demonstrated. A titanium layer of at least 2 µm was necessary for significant photocatalytic effects. The membrane sample with a 10 µm Ti/TiO2 layer had the highest photocatalytic activity showing a formation rate of 1.26 × 10-6 mmol OH• s-1. Furthermore, the membranes were tested several times, and a decrease in radical formation was observed. Assuming that these can be attributed to adsorption processes of the reactants, initial experiments were carried out to reactivate the photocatalyzer.


Subject(s)
Carbon Compounds, Inorganic , Hydroxyl Radical , Membranes, Artificial , Silicon Compounds , Titanium , Water Purification , Titanium/chemistry , Hydroxyl Radical/chemistry , Water Purification/methods , Catalysis , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Electrochemical Techniques , Nanostructures/chemistry , Photochemical Processes
4.
Heliyon ; 10(10): e31169, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803918

ABSTRACT

Problem: Earthworm is a valuable source of biologically and pharmacologically active compounds, with applications in the treatment of various types of diseases; however, the main application they have been given is in the production of organic fertilizer. One of the alternatives for obtaining bioactive compounds is by means of enzymatic hydrolysis. Aim: This study proposes the optimization of the fractionation of the antioxidant enzymatic hydrolysate from Californian red worm (Eisenia fetida) protein. Methodology: For this purpose, the worms were separated and hydrolyzed using the enzyme Alcalase 2.4L for 4000s. The obtained hydrolysate was fractionated by means of a crossflow tangential ultrafiltration system, with a 3 kDa molecular weight cut-off ceramic membrane. A response surface design of the composite central factorial type was implemented to evaluate the effect of pH, transmembrane pressure, and flow factors on the response variables transmission, volume reduction factor (VRF) and permeate flow resistance. The transmissions focused on the antioxidant peptides, measured by three conventional methods such as TEAC, FRAP, ORAC, also known as TTEAC, TFRAP and TORAC, respectively. The evaluated resistances were the total resistance (Rtotal), fouling resistance (Rfouling), and gel resistance (Rgel). Result: The results showed that the three factors evaluated affect all the response variables either in their linear or quadratic terms or by some interaction. For each response variable, a mathematical model was obtained, with statistical significance and a non-significant lack of adjustment. The models obtained were used for a multi-objective optimization process in which transfers were maximized, and resistances were minimized. The efficiency of the optimum ultrafiltration process was 25 %. Conclusion: The neutral-alkaline pH is ideal for the ultrafiltration process of bioactive peptides, as it is where the highest transmissions of peptides with antioxidative capacity are found. Under optimal conditions, the 3 kDa membrane permeate was found to exhibit higher antioxidant capacity than the retentate and feed. Based on this, the fraction of less than 3 kDa emerges as a potential multifunctional ingredient, thanks to its antioxidant properties.

5.
Membranes (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38668108

ABSTRACT

In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.

6.
Glob Chall ; 8(2): 2300151, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356683

ABSTRACT

Ceramic membranes are taking center stage for separation technologies in water treatment. Among them, ceramic nanofiltration membranes are at the forefront of membrane technologies. The desalination of seawater using ceramic nanofiltration membranes is a potential application toward increasing the global water supply and tackling water scarcity. However, while the high fabrication cost poses a challenge to their large-scale applications, high-value separation applications can help to offset the overall cost. In this regard, ceramic nanofiltration membranes can also be explored as a viable option for high-value lithium extraction from the waste seawater brine. In order to determine the potential of nanofiltration ceramic membranes for desalination and lithium recovery from seawater, the current efficiency of salt rejection across various operation parameters must be thoroughly evaluated. Specifically, the interactions between the Donnan exclusion, steric exclusion, zeta potential, and salt concentration play an important role in determining the salt rejection efficiency. Several strategies are then proposed to guide ceramic nanofiltration membranes toward potentially practical applications regarding desalination and lithium recovery.

7.
Membranes (Basel) ; 14(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392660

ABSTRACT

In this study, the hybrid biological ion exchange (BIEX) resin and gravity-driven membrane (GDM) process was employed for the treatment of coloured and turbid river water. The primary objective was to investigate the impact of both physical and chemical cleaning methods on ceramic and polymeric membranes in terms of their stabilised flux, flux recovery after physical/chemical cleaning, and permeate quality. To address these objectives, two types of MF and UF membranes were utilised (M1 = polymeric MF, M2 = polymeric UF, M3 = ceramic UF, and M4 = lab-made ceramic MF). Throughout the extended operation, the resin functioned initially in the primary ion exchange (IEX) region (NOM displacement with pre-charged chloride) and progressed to a secondary IEX stage (NOM displacement with bicarbonate and sulphate), while membrane flux remained stable. Subsequently, physical cleaning involved air/water backwash with two different flows and pressures, and chemical cleaning utilised NaOH at concentrations of 20 and 40 mM, as well as NaOCl at concentrations of 250 and 500 mg Cl2/L. These processes were carried out to assess flux recovery and identify fouling reversibility. The results indicate an endpoint of 1728 bed volumes (BVs) for the primary IEX region, while the secondary IEX continued up to 6528 BV. At the end of the operation, DOC and UVA254 removal in the effluent of the BIEX columns were 68% and 81%, respectively, compared to influent water. This was followed by 30% and 57% DOC and UVA254 removal using M4 (ceramic MF). The stabilised flux remained approximately 3.8-5.2 LMH both before and after the cleaning process, suggesting that membrane materials do not play a pivotal role. The mean stabilised flux of polymeric membranes increased after cleaning, whereas that of the ceramics decreased. Enhanced air-water backwash flow and pressure resulted in an increased removal of hydraulic reversible fouling, which was identified as the dominant fouling type. Ceramic membranes exhibited a higher removal of reversible hydraulic fouling than polymeric membranes. Chemical cleaning had a low impact on flux recovery; therefore, we recommend solely employing physical cleaning.

8.
Materials (Basel) ; 17(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399074

ABSTRACT

In the present work, we studied the impact of excess Na addition on the structure of the standard NASICON ion conductor along with Na ion transport mechanisms. In this sense, NASICON ceramic membranes (NZSP) were prepared by a simple chemical synthesis method, the solid state reaction (SSR), using an excess of 5% Na (Na3.15Zr2Si2PO12) and an excess of 10% Na (Na3.3Zr2Si2PO12), in order to improve the conduction properties of the ceramic membrane. The characterization of the NZSP nanoparticles was performed by measuring the particle size by dynamic light scattering (DLS), the morphology of the NASICON samples pre-sintered at 1100 °C was analyzed by the SEM method (scanning electron microscope), and X-ray diffraction (XRD) analysis was used to investigate the crystal structure of samples, while the surface area was measured using the BET technique. The electrical properties (i.e., ionic conductivity) were evaluated by impedance spectroscopic methods at room temperature (RT). Following the experiments for NASICON membranes without Na excess, with 5% Na excess, and with 10% Na excess synthesized at different pressing forces and sintering temperatures, it was found that membranes with a 10% Na excess, sintered at 1175 °C for 10 h, presented a good ionic conductivity (4.72 × 10-4 S/cm).

9.
J Colloid Interface Sci ; 652(Pt A): 1074-1084, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37647716

ABSTRACT

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of ß-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the ß-lactoglobulin adsorption and its effect on the premix membrane emulsification of ß-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed ß-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of ß-lactoglobulin) and the treatment of the silica surface (hydrophilization). The ß-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of ß-lactoglobulin. Although the conformation of the adsorbed ß-lactoglobulin layer varies with membrane treatment and the solvent properties, the ß-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after ß-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.


Subject(s)
Lactoglobulins , Water , Adsorption , Lactoglobulins/chemistry , Emulsions/chemistry , Solvents , Water/chemistry
10.
Membranes (Basel) ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37504993

ABSTRACT

The adhesion enhancement of a graphene oxide (GO) layer on porous ceramic substrates is a crucial step towards developing a high-performance membrane for many applications. In this work, we have achieved the chemical anchoring of GO layers on custom-made macroporous disks, fabricated in the lab by pressing α-Al2O3 powder. To this end, three different linkers, polydopamine (PDA), 3-Glycidoxypropyltrimethoxysilane (GPTMS) and (3-Aminopropyl) triethoxysilane (APTMS), were elaborated for their capacity to tightly bind the GO laminate on the ceramic membrane surface. The same procedure was replicated on cylindrical porous commercial ZrO2 substrates because of their potentiality for applications on a large scale. The gas permeance properties of the membranes were studied using helium at 25 °C as a probe molecule and further scrutinized in conjunction with water permeance results. Measurements with helium at 25 °C were chosen to avoid gas adsorption and surface diffusion mechanisms. This approach allowed us to draw conclusions on the deposition morphology of the GO sheets on the ceramic support, the mode of chemical bonding with the linker and the stability of the deposited GO laminate. Specifically, considering that He permeance is mostly affected by the pore structural characteristics, an estimation was initially made of the relative change in the pore size of the developed membranes compared to the bare substrate. This was achieved by interpreting the results via the Knudsen equation, which describes the gas permeance as being analogous to the third power of the pore radius. Subsequently, the calculated relative change in the pore size was inserted into the Hagen-Poiseuille equation to predict the respective water permeance ratio of the GO membranes to the bare substrate. The reason that the experimental water permeance values may deviate from the predicted ones is related to the different surface chemistry, i.e., the hydrophilicity or hydrophobicity that the composite membranes acquire after the chemical modification. Various characterization techniques were applied to study the morphological and physicochemical properties of the materials, like FESEM, XRD, DLS and Contact Angle.

11.
Materials (Basel) ; 16(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512402

ABSTRACT

Single-phase tungsten-doped lanthanum molybdenum oxide (La2MoWO9) ceramic powders were synthesized using the complex polymerization technique. Porous ceramic pellets were obtained by thermally removing graphite, which served as a pore former. The porous pellets were then impregnated with molten eutectic lithium-sodium-potassium carbonates. The energy dispersive X-ray analysis and scanning electron microscopy (FEG-SEM) images of the external and fracture surfaces of the La2MoWO9-(Li,Na,K)2CO3 composite dual-phase membrane revealed the percolation of the carbonate mixture through the pores. Electrochemical impedance spectroscopy measurements conducted at temperatures below and above the melting point of the eutectic carbonate composition demonstrated the contributions of oxygen and carbonate ions to the ionic conductivity of the dual membrane. The electrical conductivity of the carbonate ions within the membrane was continuously monitored for over 1300 h with negligible degradation, implying that the membrane could be used for long-term monitoring of CO2 without aging effects. A comparison of FEG-SEM images taken before and after this endurance test suggested minimal fouling, indicating that the membrane could potentially replace similar zirconia- and ceria-based composite membranes.

12.
Eur J Pharm Sci ; 188: 106511, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37385303

ABSTRACT

Transepithelial electrical resistance (TEER) measures electrical resistance across epithelial tissue barriers involving confluent layer(s) of cells. TEER values act as a prerequisite for determining the barrier integrity of cells, which play a key role in evaluating the transport of drugs, materials or chemicals of interest across an epithelial barrier. The measurements can be performed non-invasively by measuring ohmic resistance across a defined area. Thus, the TEER values are reported in Ω·cm2. In vitro epithelial models are typically assembled on semi-permeable inserts providing two-chamber compartments, and the majority of the studies use inserts with polyethylene terephthalate (PET) membranes. Recently, new inserts with different membrane types and properties have been introduced. However, the TEER values presented so far did not allow a direct comparison. This study presents the characterization of selected epithelial tissues, i.e., lung, retina, and intestine, grown on an ultra-thin ceramic microporous permeable insert (SiMPLI) and PET membranes with different properties, i.e., thickness, material, and pore numbers. We verified the epithelial cell growth on both inserts via phase-contrast and confocal laser scanning microscope imaging. Barrier characteristics were assessed by TEER measurements and also by evaluating the permeability of fluorescein isothiocyanate through cell layers. The findings indicated that background TEER value calculations and the available surface area for cell growth must be thoroughly assessed when new inserts are introduced, as the values cannot be directly compared without re-calculations. Finally, we proposed electrical circuit models highlighting the contributors to TEER recordings on PET and SiMPLI insert membranes. This study paves the way for making the ohmic-based evaluation of epithelial tissues' permeability independent of the material and geometry of the insert membrane used for cell growth.


Subject(s)
Epithelial Cells , Lung , Electric Impedance , Epithelium , Fluorescein
13.
Materials (Basel) ; 16(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37109989

ABSTRACT

Membrane distillation is an emerging separation technology with a high separation factor in water desalination. Ceramic membranes are increasingly used in membrane distillation because of high thermal and chemical stabilities. Coal fly ash is a promising ceramic membrane material with low thermal conductivity. In this study, three hydrophobic coal-fly-ash-based ceramic membranes were prepared for saline water desalination. The performances of different membranes in membrane distillation were compared. The effects of membrane pore size on permeate flux and salt rejection were researched. The coal-fly-ash-based membrane showed both a higher permeate flux and a higher salt rejection than the alumina membrane. As a result, using coal fly ash as the material for membrane fabrication can effectively increase the performance when applied to MD. Increasing the membrane pore size improved the permeate flux, but reduced the salt rejection. When the mean pore size increased from 0.15 µm to 1.57 µm, the water flux rose from 5.15 L·m-2·h-1 to 19.72 L·m-2·h-1, but the initial salt rejection was reduced from 99.95% to 99.87%. The hydrophobic coal-fly-ash-based membrane with a mean pore size of 0.18 µm exhibited a water flux of 9.54 L·m-2·h-1 and a salt rejection of higher than 98.36% in membrane distillation.

14.
J Dairy Sci ; 106(5): 3137-3154, 2023 May.
Article in English | MEDLINE | ID: mdl-36907765

ABSTRACT

Micellar casein concentrate (MCC) is a high protein ingredient that is typically produced using 3 stages of microfiltration with a 3× concentration factor and diafiltration. Acid curd is an acid protein concentrate, which can be obtained by precipitating the casein at pH 4.6 (isoelectric point) using starter cultures or direct acids without the use of rennet. Process cheese product (PCP) is a dairy food prepared by blending dairy ingredients with nondairy ingredients and then heating the mixture to get a product with an extended shelf-life. Emulsifying salts are critical for the desired functional characteristics of PCP because of their role in calcium sequestration and pH adjustment. The objectives of this study were to develop a process to produce a novel cultured micellar casein concentrate ingredient (cMCC; culture-based acid curd) and to produce PCP without emulsifying salts using different combinations of protein from cMCC and MCC in the formulations (2.0:1.0, 1.9:1.1, and 1.8:1.2). Skim milk was pasteurized at 76°C for 16 s and then microfiltered in 3 microfiltration stages using graded permeability ceramic membranes to produce liquid MCC (11.15% total protein; TPr and 14.06% total solids; TS). Part of the liquid MCC was spray dried to produce MCC powder (75.77% TPr and 97.84% TS). The rest of the MCC was used to produce cMCC (86.9% TPr and 96.4% TS). Three PCP treatments were formulated with different ratios of cMCC:MCC, including 2.0:1.0, 1.9:1.1, and 1.8:1.2 on the protein basis. The composition of PCP was targeted to 19.0% protein, 45.0% moisture, 30.0% fat, and 2.4% salt. This trial was repeated 3 times using different batches of cMCC and MCC powders. All PCP were evaluated for their final functional properties. No significant differences were detected in the composition of PCP made with different ratios of cMCC and MCC except for the pH. The pH was expected to increase slightly with elevating the MCC amount in the PCP formulations. The end apparent viscosity was significantly higher in 2.0:1.0 formulation (4,305 cP) compared with 1.9:1.1 (2,408 cP) and 1.8:1.2 (2,499 cP). The hardness ranged from 407 to 512 g with no significant differences within the formulations. However, the melting temperature showed significant differences with 2.0:1.0 having the highest melting temperature (54.0°C), whereas 1.9:1.1 and 1.8:1.2 showed 43.0 and 42.0°C melting temperature, respectively. The melting diameter (38.8 to 43.9 mm) and melt area (1,183.9 to 1,538.6 mm2) did not show any differences in different PCP formulations. The PCP made with a 2.0:1.0 ratio of protein from cMCC and MCC showed better functional properties compared with other formulations.


Subject(s)
Caseins , Cheese , Animals , Caseins/chemistry , Micelles , Cheese/analysis , Salts , Milk/chemistry , Food Handling , Milk Proteins/analysis
15.
Membranes (Basel) ; 13(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36837679

ABSTRACT

Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m-2 h-1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.

16.
Membranes (Basel) ; 13(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36837749

ABSTRACT

An experimental setup for the evaluation of permeation of gaseous species with the possibility of simultaneously collecting electrochemical impedance spectroscopy data in disk-shaped ceramic membranes was designed and assembled. It consists of an alumina sample holder with thermocouple tips and platinum electrodes located close to both sides of the sample. Water-cooled inlet and outlet gas connections allowed for the insertion of the sample chamber into a programmable split tubular furnace. Gas permeation through a ceramic membrane can be monitored with mass flow controllers, a mass spectrometer, and an electrochemical impedance analyzer. For testing and data validation, ceramic composite membranes were prepared with the infiltration of molten eutectic compositions of alkali salts (lithium, sodium, and potassium carbonates) into porous gadolinia-doped ceria. Values of the alkali salt melting points and the permeation rates of carbon dioxide, in agreement with reported data, were successfully collected.

17.
Heliyon ; 8(11): e11543, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36387485

ABSTRACT

In this study, a higher concentration of (reactive dyestuff and salt) mixed water was used to verify the feasibility of separation by membrane techniques. The commercial nano filtration ceramic membrane (MWCO 200 Da) has been used in cross flow mode for separation of dyes and salts from highly concentrated mixed water solution. NF ceramic membrane presents good permeability (pure water flux 54.15 Lm-2 h-1, TMP 8 bar), 8% dye rejection and reduced salt rejection of NaCl (<8%) and Na2SO4 (<25%). Consequently, the operation parameters (TMP, temperature) and solution environment (solution pH, salt concentration and dye concentration) have been intensively evaluated for separation efficiency in the NF ceramic membrane process. Significantly, the NF ceramic membrane has performed less rejection to chloride ions than sulphate ions due to the Donnan effect. Solution pH, concentration of salt and dye concentration have shown significant effects on ceramic membrane separation performance. In addition, pollutant removals were achieved with noteworthy values for the chemical oxygen demand for permeate solution also color difference between concentrate and permeate. In conclusion, the strong rejection of dyes by the NF ceramic membranes proves that it can be suitable alternatives for textile wastewater treatment process.

18.
Membranes (Basel) ; 12(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36295698

ABSTRACT

This paper shows which morphological characterization method is most appropriate to simulating membrane performance in sweeping gas membrane distillation in the case of multilayer hydrophobized ceramic membranes. As a case study, capillary four-layer hydrophobic carbon-based titania membranes arranged in bundles in a shell-and-tube configuration were tested with NaCl-water solutions using air as sweeping gas, operating at temperatures from 40 to 110 °C and at pressures up to 5.3 bar. Contrary to what is generally performed for polymeric membranes and also suggested by other authors for ceramic membranes, the mass transfer across the membrane should be simulated using the corresponding values of the mean pore diameter and the porosity-tortuosity ratio of each layer and measured by the layer-by-layer (LBL) method. Comparison of the modeling results with experimental data highlights that the use of parameters averaged over the entire membrane leads to an overestimation by a factor of two to eight of the modeled fluxes, with respect to the experimental values. In contrast, the agreement between the modeled fluxes and the experimental values is very interesting when the LBL parameters are used, with a discrepancy on the order of +/-30%. Finally, the model has been used to investigate the role of operative parameters on process performances. Process efficiency should be the optimal balance between the concomitant effects of temperature and velocity of the liquid phase and pressure and velocity of the gas phase.

19.
Membranes (Basel) ; 12(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36295739

ABSTRACT

There is a global need for optimizing the use of water that has resulted from increased demand due to industrial development, population growth, climate change and the pollution of natural water resources. One of the solutions is to use reclaimed water in industrial applications that do not require water of potable quality, such as cooling water. However, for cooling water, (treated) wastewater's hardness is too high, apart from having a high load of suspended solids and organic matter. Therefore, a combination of softening with ceramic micro-filtration was proposed for treating wastewater treatment effluent containing fouling agents for potential use in industrial cooling systems. The effectiveness of the softening process on model-treated wastewater with calcium hydroxide in the presence of phosphate and sodium alginate was first evaluated using jar tests. Furthermore, membrane fouling was studied when filtering the softened water. The results showed that the inhibition of calcium carbonate precipitation occurred when inorganic substances, such as phosphate and organic compounds, were present in the water. The fouling of the membranes due to sodium alginate in water was only slightly negatively affected when combined with softening and phosphate. Therefore, this combination of treatments could be potentially helpful for the post-treatment of secondary effluent for cooling systems.

20.
Membranes (Basel) ; 12(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35877926

ABSTRACT

The aim of the present work is the recycling treatment of tubular α-Al2O3-supported ceramic membranes with a Pd/Ag selective layer, employed in hydrogen production with integrated CO2 capture. A nitric acid leaching treatment was investigated, and recovered ceramic supports were characterized, demonstrating their suitability for the production of novel efficient membranes. The main objective was the metal dissolution that preserved the support integrity in order to allow the recovered membrane to be suitable for a new deposition of the selective layer. The conditions that obtained a satisfactory dissolution rate of the Pd/Ag layer while avoiding the support to be damaged are as follows: nitric acid 3 M, 60 °C and 3.5 h of reaction time. The efficiency of the recovered supports was determined by nitrogen permeance and surface roughness analysis, and the economic figures were analysed to evaluate the convenience of the regeneration process and the advantage of a recycled membrane over a new membrane. The experimentation carried out demonstrates the proposed process feasibility both in terms of recycling and economic results.

SELECTION OF CITATIONS
SEARCH DETAIL