Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000586

ABSTRACT

Visceral adipose tissue (VAT) dysfunction has been recently recognized as a potential contributor to the development of Alzheimer's disease (AD). This study aimed to explore the relationship between VAT metabolism and cerebral glucose metabolism in patients with cognitive impairment. This cross-sectional prospective study included 54 patients who underwent 18F-fluorodeoxyglucose (18F-FDG) brain and torso positron emission tomography/computed tomography (PET/CT), and neuropsychological evaluations. VAT metabolism was measured by 18F-FDG torso PET/CT, and cerebral glucose metabolism was measured using 18F-FDG brain PET/CT. A voxel-based analysis revealed that the high-VAT-metabolism group exhibited a significantly lower cerebral glucose metabolism in AD-signature regions such as the parietal and temporal cortices. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that VAT metabolism was negatively associated with cerebral glucose metabolism in AD-signature regions. In addition, higher VAT metabolism was correlated with poorer outcomes on cognitive assessments, including the Korean Boston Naming Test, Rey Complex Figure Test immediate recall, and the Controlled Oral Word Association Test. In conclusion, our study revealed significant relationships among VAT metabolism, cerebral glucose metabolism, and cognitive function. This suggests that VAT dysfunction actively contributes to the neurodegenerative processes characteristic of AD, making VAT dysfunction targeting a novel AD therapy approach.


Subject(s)
Brain , Cognitive Dysfunction , Fluorodeoxyglucose F18 , Glucose , Intra-Abdominal Fat , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/diagnostic imaging , Glucose/metabolism , Aged , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/diagnostic imaging , Fluorodeoxyglucose F18/metabolism , Cross-Sectional Studies , Brain/metabolism , Brain/diagnostic imaging , Middle Aged , Prospective Studies , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Neuropsychological Tests
2.
J Neuroradiol ; 51(5): 101211, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908545

ABSTRACT

BACKGROUND AND PURPOSE: To determine the effect of mild chronic traumatic brain injury (cTBI) on cerebral blood flow and metabolism. METHODS: 62 cTBI and 40 healthy controls (HCs) with no prior history of cTBI underwent both pulsed arterial spin labeling functional magnetic resonance imaging (PASL-fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) scanning via a Siemens mMR (simultaneous PET/MRI) scanner. 30 participants also took part in a series of neuropsychological clinical measures (NCMs). Images were processed using statistical parametric mapping software relevant to each modality to generate relative cerebral blood flow (rCBF) and glucose metabolic standardized uptake value ratio (gSUVR) grey matter maps. A voxel-wise two-sample T-test and two-tailed gaussian random field correction for multiple comparisons was performed. RESULTS: cTBI patients showed a significant increase in rCBF and gSUVR in the right thalamus as well as a decrease in bilateral occipital lobes and calcarine sulci. An inverse relationship between rCBF and gSUVR was found in the left frontal lobe, the left precuneus and regions in the right temporal lobe. Within those regions rCBF values correlated with 9 distinct NCMs and gSUVR with 3. CONCLUSION: Simultaneous PASL-fMRI and FDG-PET can identify functional changes in a mild cTBI population. Within this population FDG-PET identified more regions of functional disturbance than ASL fMRI and NCMs are shown to correlate with rCBF and glucose metabolism (gSUVR) in various brain regions. As a result, both imaging modalities contribute to understanding the underlying pathophysiology and clinical course of mild chronic traumatic brain injury.

3.
Sci Rep ; 14(1): 14574, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38914735

ABSTRACT

Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.


Subject(s)
Aging , Cerebrovascular Circulation , Glucose , Insulin Resistance , Humans , Aged , Adult , Cerebrovascular Circulation/physiology , Male , Female , Aging/metabolism , Aged, 80 and over , Glucose/metabolism , Young Adult , Magnetic Resonance Imaging , Brain/metabolism , Brain/blood supply , Brain/diagnostic imaging , Positron-Emission Tomography
4.
J Neurol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861034

ABSTRACT

OBJECTIVE: Half of ALS patients are cognitively and/or behaviourally impaired. As cognition/behaviour and cerebral glucose metabolism can be correlated by means of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET), we aimed to utilise FDG-PET, first, to replicate group-level differences in glucose metabolism between non-demented ALS patients separated into non-impaired (ALSni), cognitively impaired (ALSci), behaviourally impaired (ALSbi), and cognitively and behaviourally impaired (ALScbi) groups; second, to investigate glucose metabolism and performance in various cognitive domains; and third, to examine the impact of partial volume effects correction (PVEC) of the FDG-PET data on the results. METHODS: We analysed neuropsychological, clinical, and imaging data from 67 ALS patients (30 ALSni, 21 ALSci, 5 ALSbi, and 11 ALScbi). Cognition was assessed with the Edinburgh Cognitive and Behavioural ALS Screen, and two social cognition tests. FDG-PET and structural MRI scans were acquired for each patient. Voxel-based statistical analyses were undertaken on grey matter volume (GMV) and non-corrected vs. PVE-corrected FDG-PET scans. RESULTS: ALSci and ALScbi had lower cognitive scores than ALSni. In contrast to both ALSni and ALSci, ALScbi showed widespread hypometabolism in the superior- and middle-frontal gyri in addition to the right temporal pole. Correlations were observed between the GMV, the FDG-PET signal, and various cognitive scores. The FDG-PET results were largely unaffected by PVEC. INTERPRETATION: Our study identified widespread differences in hypometabolism in the ALScbi-ni but not in the ALSci-ni group comparison, raising the possibility that cerebral metabolism may be more closely related to the presence of behavioural changes than to mild cognitive deficits.

5.
Neurorehabil Neural Repair ; 38(6): 437-446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659366

ABSTRACT

BACKGROUND AND OBJECTIVE: Homonymous hemianopia caused by cerebrovascular disease may improve over time. This study investigated whether functional neuroimaging can predict the prognosis of hemianopia due to cerebral infarction. METHODS: We studied 19 patients (10 men and 9 women) with homonymous hemianopia and compared them with 34 healthy subjects (20 men and 14 women). Cerebral glucose metabolism was measured by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), 1 to 6 months after the onset. Bilateral regions of interest (ROIs) were selected from the posterior and, anterior striate cortices, extrastriate cortex, and thalamus. Furthermore, semi-quantitative data on cerebral glucose metabolism were obtained for ROIs and compared with the data obtained for homologous regions in the contralateral hemisphere by calculating the ipsilateral/contralateral (I/C) ratio. RESULTS: The I/C ratio for the cerebral glucose metabolism in the posterior striate cortex was high (>0.750) in 8 patients, and the central visual field of these patients improved or showed macular sparing. The I/C ratio for cerebral glucose metabolism in the anterior striate cortex was high (>0.830) in 7 patients, and the peripheral visual field of these patients improved. However, no improvement was observed in 9 patients with a low I/C ratio for cerebral glucose metabolism in both the posterior and anterior striate cortices. CONCLUSION: Measurement of cerebral glucose metabolism in the striate cortex is useful for estimating visual field prognosis. Furthermore, FDG-PET is useful in predicting the prognosis of hemianopia.


Subject(s)
Fluorodeoxyglucose F18 , Glucose , Hemianopsia , Positron-Emission Tomography , Visual Cortex , Humans , Male , Female , Hemianopsia/metabolism , Hemianopsia/diagnostic imaging , Hemianopsia/physiopathology , Middle Aged , Visual Cortex/metabolism , Visual Cortex/diagnostic imaging , Glucose/metabolism , Aged , Prognosis , Adult
6.
Psychol Med ; : 1-9, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634486

ABSTRACT

BACKGROUND: Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS: In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS: We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS: The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.

7.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473761

ABSTRACT

Traumatic brain injury (TBI) is a major public health concern with significant consequences across various domains. Following the primary event, secondary injuries compound the outcome after TBI, with disrupted glucose metabolism emerging as a relevant factor. This narrative review summarises the existing literature on post-TBI alterations in glucose metabolism. After TBI, the brain undergoes dynamic changes in brain glucose transport, including alterations in glucose transporters and kinetics, and disruptions in the blood-brain barrier (BBB). In addition, cerebral glucose metabolism transitions from a phase of hyperglycolysis to hypometabolism, with upregulation of alternative pathways of glycolysis. Future research should further explore optimal, and possibly personalised, glycaemic control targets in TBI patients, with GLP-1 analogues as promising therapeutic candidates. Furthermore, a more fundamental understanding of alterations in the activation of various pathways, such as the polyol and lactate pathway, could hold the key to improving outcomes following TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Brain Injuries/metabolism , Blood Glucose , Glucose/metabolism , Brain Injuries, Traumatic/metabolism , Glycolysis
8.
ESC Heart Fail ; 11(1): 444-455, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037178

ABSTRACT

AIMS: The present study aimed to phenotype the cerebral structural and glucose metabolic alterations in patients with heart failure (HF) using simultaneous positron emission tomography (PET)/magnetic resonance (MR) and to investigate their relationship to cardiac biomarkers and cognitive performance. METHODS AND RESULTS: Forty-two HF patients caused by ischaemic heart disease (mean age 67.2 ± 10.4, 32 males) and 32 age- and sex-matched healthy volunteers (mean age 61.3 ± 4.8, 18 males) were included in this study. Participants underwent simultaneous cerebral fluorine-18 (18 F) fluorodeoxyglucose PET/MR followed by cardiac MR scan, and neuropsychological scores were obtained to assess cognitive performance. The grey matter volume (GMV) and standardized uptake value ratio (SUVR) were calculated to examine cerebral structural and metabolic alterations. Cardiac biomarkers included cardiac MR parameters and cardiac serum laboratory tests. Mediation analysis was performed to explore the associations among cerebral alterations, cardiac biomarkers, and cognitive performance. HF patients demonstrated notable cognitive impairment compared with normal controls (P < 0.001). Furthermore, HF patients exhibited regional brain hypometabolism in the bilateral calcarine cortex, caudate nucleus, thalamus, hippocampus, precuneus, posterior cingulate cortex, lingual and olfactory cortex, and GMV reduction in bilateral thalamus and hippocampus (cluster level at P < 0.05, Gaussian random field correction). The SUVR of the hypometabolic brain regions was correlated with the Montreal Cognitive Assessment (MoCA) scores (r = 0.55, P = 0.038) and cardiac stroke volume (r = 0.49, P = 0.002). Cerebral hypometabolism played a key role in the relationship between the decreased stroke volume and MoCA scores, with a mediation effect of 33.2%. CONCLUSIONS: HF patients suffered cerebral metabolic and structural alterations in regions associated with cognition. The observed correlation between cardiac stroke volume and cognitive impairment underscored the potential influence of cerebral hypometabolism, suggesting that cerebral hypometabolism due to chronic systemic hypoperfusion may significantly contribute to cognitive impairment in HF patients.


Subject(s)
Cognitive Dysfunction , Heart Failure , Male , Humans , Stroke Volume , Fluorodeoxyglucose F18 , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Heart Failure/complications , Heart Failure/diagnosis , Biomarkers
9.
Geroscience ; 46(1): 769-782, 2024 02.
Article in English | MEDLINE | ID: mdl-38102439

ABSTRACT

AIMS: Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta (Aß) in the brain. The deposition of Aß is believed to initiate a detrimental cascade, including cerebral hypometabolism, accelerated brain atrophy, and cognitive problems-ultimately resulting in AD. However, the timing and causality of the cascade resulting in AD are not yet fully established. Therefore, we examined whether early Aß accumulation affects cerebral glucose metabolism, atrophy rate, and age-related cognitive decline before the onset of neurodegenerative disease. METHODS: Participants from the Metropolit 1953 Danish Male Birth Cohort underwent brain positron emission tomography (PET) imaging using the radiotracers [11C]Pittsburgh Compound-B (PiB) (N = 70) and [18F]Fluorodeoxyglucose (FDG) (N = 76) to assess cerebral Aß accumulation and glucose metabolism, respectively. The atrophy rate was calculated from anatomical magnetic resonance imaging (MRI) scans conducted presently and 10 years ago. Cognitive decline was examined from neurophysiological tests conducted presently and ten or 5 years ago. RESULTS: Higher Aß accumulation in AD-critical brain regions correlated with greater visual memory decline (p = 0.023). Aß accumulation did not correlate with brain atrophy rates. Increased cerebral glucose metabolism in AD-susceptible regions correlated with worse verbal memory performance (p = 0.040). CONCLUSIONS: Aß accumulation in known AD-related areas was associated with subtle cognitive deficits. The association was observed before hypometabolism or accelerated brain atrophy, suggesting that Aß accumulation is involved early in age-related cognitive dysfunction. The association between hypermetabolism and worse memory performance may be due to early compensatory mechanisms adapting for malfunctioning neurons by increasing metabolism.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Male , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Cognition , Atrophy , Glucose/metabolism
10.
Front Endocrinol (Lausanne) ; 14: 1192602, 2023.
Article in English | MEDLINE | ID: mdl-37396164

ABSTRACT

Cognitive dysfunction is increasingly recognized as a complication and comorbidity of diabetes, supported by evidence of abnormal brain structure and function. Although few mechanistic metabolic studies have shown clear pathophysiological links between diabetes and cognitive dysfunction, there are several plausible ways in which this connection may occur. Since, brain functions require a constant supply of glucose as an energy source, the brain may be more susceptible to abnormalities in glucose metabolism. Glucose metabolic abnormalities under diabetic conditions may play an important role in cognitive dysfunction by affecting glucose transport and reducing glucose metabolism. These changes, along with oxidative stress, inflammation, mitochondrial dysfunction, and other factors, can affect synaptic transmission, neural plasticity, and ultimately lead to impaired neuronal and cognitive function. Insulin signal triggers intracellular signal transduction that regulates glucose transport and metabolism. Insulin resistance, one hallmark of diabetes, has also been linked with impaired cerebral glucose metabolism in the brain. In this review, we conclude that glucose metabolic abnormalities play a critical role in the pathophysiological alterations underlying diabetic cognitive dysfunction (DCD), which is associated with multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, inflammation, and others. Brain insulin resistance is highly emphasized and characterized as an important pathogenic mechanism in the DCD.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus , Insulin Resistance , Humans , Diabetes Mellitus/metabolism , Glucose/metabolism , Brain/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Inflammation/complications , Inflammation/metabolism
11.
J Cereb Blood Flow Metab ; 43(2_suppl): 95-105, 2023 11.
Article in English | MEDLINE | ID: mdl-36803299

ABSTRACT

Methylene Blue (MB) is a brain-penetrating drug with putative neuroprotective, antioxidant and metabolic enhancing effects. In vitro studies suggest that MB enhances mitochondrial complexes activity. However, no study has directly assessed the metabolic effects of MB in the human brain. We used in vivo neuroimaging to measure the effect of MB on cerebral blood flow (CBF) and brain metabolism in humans and in rats. Two doses of MB (0.5 and 1 mg/kg in humans; 2 and 4 mg/kg in rats; iv) induced reductions in global cerebral blood flow (CBF) in humans (F(1.74, 12.17)5.82, p = 0.02) and rats (F(1,5)26.04, p = 0.0038). Human cerebral metabolic rate of oxygen (CMRO2) was also significantly reduced (F(1.26, 8.84)8.01, p = 0.016), as was the rat cerebral metabolic rate of glucose (CMRglu) (t = 2.6(16) p = 0.018). This was contrary to our hypothesis that MB will increase CBF and energy metrics. Nevertheless, our results were reproducible across species and dose dependent. One possible explanation is that the concentrations used, although clinically relevant, reflect MB's hormetic effects, i.e., higher concentrations produce inhibitory rather than augmentation effects on metabolism. Additionally, here we used healthy volunteers and healthy rats with normal cerebral metabolism where MB's ability to enhance cerebral metabolism might be limited.


Subject(s)
Brain , Methylene Blue , Humans , Rats , Animals , Methylene Blue/pharmacology , Methylene Blue/metabolism , Brain/blood supply , Glucose/metabolism , Oxygen/metabolism , Oxygen Consumption , Cerebrovascular Circulation
12.
J Cereb Blood Flow Metab ; 43(5): 778-790, 2023 05.
Article in English | MEDLINE | ID: mdl-36606595

ABSTRACT

Recanalization therapy after acute ischemic stroke enables restoration of cerebral perfusion. However, a significant subset of patients has poor outcome, which may be caused by disruption of cerebral energy metabolism. To assess changes in glucose metabolism subacutely and chronically after recanalization, we applied two complementary imaging techniques, fluorodeoxyglucose (FDG) positron emission tomography (PET) and deuterium (2H) metabolic imaging (DMI), after 60-minute transient middle cerebral artery occlusion (tMCAO) in C57BL/6 mice. Glucose uptake, measured with FDG PET, was reduced at 48 hours after tMCAO and returned to baseline value after 11 days. DMI revealed effective glucose supply as well as elevated lactate production and reduced glutamate/glutamine synthesis in the lesion area at 48 hours post-tMCAO, of which the extent was dependent on stroke severity. A further decrease in oxidative metabolism was evident after 11 days. Immunohistochemistry revealed significant glial activation in and around the lesion, which may play a role in the observed metabolic profiles. Our findings indicate that imaging (altered) active glucose metabolism in and around reperfused stroke lesions can provide substantial information on (secondary) pathophysiological changes in post-ischemic brain tissue.


Subject(s)
Ischemic Stroke , Stroke , Animals , Mice , Deuterium/metabolism , Pilot Projects , Fluorodeoxyglucose F18/metabolism , Ischemic Stroke/pathology , Mice, Inbred C57BL , Brain/blood supply , Positron-Emission Tomography , Infarction, Middle Cerebral Artery/pathology , Glucose/metabolism
13.
Alzheimers Dement ; 19(1): 97-106, 2023 01.
Article in English | MEDLINE | ID: mdl-35289980

ABSTRACT

INTRODUCTION: Delirium is associated with new onset dementia and accelerated cognitive decline; however, its pathophysiology remains unknown. Cerebral glucose metabolism previously seen in delirium may have been attributable to acute illness and/or dementia. We aimed to statistically map cerebral glucose metabolism attributable to delirium. METHODS: We assessed cerebral glucose metabolism using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) in sick, older patients with and without delirium, all without clinical dementia (N = 20). Strict exclusion criteria were adopted to minimize the effect of established confounders on FDG-PET. RESULTS: Patients with delirium demonstrated hypometabolism in the bilateral thalami and right superior frontal, right posterior cingulate, right infero-lateral anterior temporal, and left superior parietal cortices. Regional hypometabolism correlated with delirium severity and performance on neuropsychological testing. DISCUSSION: In patients with acute illness but without clinical dementia, delirium is accompanied by regional cerebral hypometabolism. While some hypometabolic regions may represent preclinical Alzheimer's disease (AD), thalamic hypometabolism is atypical of AD and consistent with the clinical features that are unique to delirium.


Subject(s)
Alzheimer Disease , Delirium , Humans , Fluorodeoxyglucose F18/metabolism , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/metabolism , Acute Disease , Alzheimer Disease/metabolism , Positron-Emission Tomography/methods , Glucose/metabolism , Delirium/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism
14.
Eur J Hybrid Imaging ; 6(1): 29, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36517647

ABSTRACT

BACKGROUND: The postulated benefits of the ketogenic diet in the management of multiple medical conditions have seen more patients who are in therapeutic ketosis attending 18F-FDG PET scans. This study aimed to investigate the effect of ketosis on cerebral glucose metabolism in a clinical PET scanning environment using 18F-FDG uptake as a surrogate marker. METHODS: A retrospective audit was conducted of the brain 18F-FDG uptake in 52 patients who underwent PET scans for possible cardiac sarcoidosis or suspected intracardiac infection, following a ketogenic diet and prolonged fasting. SUVbw for whole brain and separate brain regions was compared with serum glucose and serum ketone body (beta-hydroxybutyrate) levels. RESULTS: The expected negative association between serum glucose levels and whole brain 18F-FDG uptake was confirmed. A reduction in SUVbw due to increasing serum ketones levels was also observed that was independent of and in addition to the effects of glucose. The magnitude of the reduction in SUVbw related to serum glucose level and serum ketone level was found to be greater in the precuneus than in the cerebellum or whole brain. CONCLUSION: In a real-world clinical PET setting, cerebral 18F-FDG uptake appears to be affected by glycaemia and ketonaemia. This means when assessing the brain, both serum glucose and ketone levels need to be considered when SUVs are used to distinguish between pathologic and physiologic states. The magnitude of this effect appears to vary between different brain regions. This regional difference should be taken into consideration when selecting the appropriate brain region for SUV normalisation, particularly when undertaking database comparison in the assessment of dementia.

15.
Braz J Psychiatry ; 44(5): 495-506, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36420910

ABSTRACT

OBJECTIVE: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. METHODS: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. RESULTS: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. CONCLUSIONS: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18/metabolism , Carbon Radioisotopes/metabolism , Brain/diagnostic imaging , Brain/pathology , Positron-Emission Tomography/methods , Amyloid beta-Peptides
16.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(5): 495-506, Sept.-Oct. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1403774

ABSTRACT

Objective: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F]fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease. Methods: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early-phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or -negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping. Results: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early-phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration. Conclusions: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.

17.
Front Aging Neurosci ; 14: 932906, 2022.
Article in English | MEDLINE | ID: mdl-36034127

ABSTRACT

This study aimed to investigate the effect of cognitive reserve (CR) on the rate of cognitive decline and cerebral glucose metabolism in amnestic mild cognitive impairment (MCI) using the Study on Diagnosis of Early Alzheimer's Disease-Japan (SEAD-J) dataset. The patients in SEAD-J underwent cognitive tests and fluorodeoxyglucose-positron emission tomography (FDG-PET). MCI to be studied was classified as amnestic MCI due to Alzheimer's disease (AD) with neurodegeneration. A total of 57 patients were visually interpreted as having an AD pattern (P1 pattern, Silverman's classification). The 57 individuals showing the P1 pattern were divided into a high-education group (years of school education ≥13, N = 18) and a low-education group (years of school education ≤12, N = 39). Voxel-based statistical parametric mapping revealed more severe hypometabolism in the high-education group than in the low-education group. Glucose metabolism in the hippocampus and temporoparietal area was inversely associated with the years of school education in the high- and low-education groups (N = 57). General linear mixed model analyses demonstrated that cognitive decline was more rapid in the high-education group during 3-year follow-up. These results suggest that the cerebral glucose metabolism is lower and cognitive function declines faster in patients with high CR of amnestic MCI due to AD defined by FDG-PET.

18.
Skin Res Technol ; 28(5): 708-713, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35644027

ABSTRACT

BACKGROUND: The neural basis of rosacea is not well understood. This study aimed to determine whether cerebral glucose metabolism (CGM) changes on 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET)/computed tomography (CT) scans can detect functional network changes in specific brain areas in patients with rosacea. MATERIALS AND METHODS: Eight adults with rosacea and 10 age/sex-matched healthy adults (controls) were enrolled in the study. 18 F-FDG PET/CT brain images for all eight patients and whole-body images for two of the patients were analyzed qualitatively and semi-quantitatively. Differences between the study groups were examined using Fischer's exact test and a Student's t-test. A voxel-based analysis using statistical parametric mapping was performed to compare the brain metabolism of the patients with that of the controls. RESULTS: Compared with the controls, the patients with rosacea showed extensive changes in the CGM signals in the cerebral cortex and limbic system, with less CGM shown in the right superior parietal lobule, right postcentral gyrus, right parahippocampal gyrus, left superior frontal gyrus, and lateral posterior thalamic nucleus and more CGM in the right precentral gyrus, left inferior frontal gyrus, and cerebellar tonsil. No dysmetabolic lesions were found in the whole-body 18 F-FDG PET/CT images. CONCLUSION: Specific neural functional changes occur in patients with rosacea that may explain its pathogenesis.


Subject(s)
Positron Emission Tomography Computed Tomography , Rosacea , Adult , Cross-Sectional Studies , Fluorodeoxyglucose F18 , Glucose , Humans , Rosacea/diagnostic imaging
19.
Alzheimers Dement ; 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35673950

ABSTRACT

HYPOTHESIS AND PREDICTIONS: Here, we claim that amyloid beta (Aß) accumulation is a protective mechanism that ultimately fails. We predict that more Aß accumulates in regions with higher rates of glucose metabolism, reaching a maximum followed by progression of pathology. BACKGROUND: Aß accumulation is characteristic of Alzheimer's disease (AD) but the accumulation does not correlate with cognitive decline, unlike the rates of glucose metabolism. STRATEGY: We compared averaged and individual estimates of regional binding potentials of [11 C]Pittsburgh compound B to regionally averaged and individual values of metabolism of [18 F]fluorodeoxyglucose in brain regions of volunteers with AD. SIGNIFICANCE: The claim explains the cognitive decline in some patients at a significantly lower level of Aß deposition than in other patients, as well as the presence of cognitively healthy individuals with high Aß accumulation. With further support of the hypothesis, the significance of Aß accumulation in brains of patients with AD may require revision.

20.
J Cereb Blood Flow Metab ; 42(11): 2066-2079, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35748031

ABSTRACT

Chemical-exchange spin-lock (CESL) MRI can map regional uptake and utilisation of glucose in the brain at high spatial resolution (i.e sub 0.2 mm3 voxels). We propose two quantitative kinetic models to describe glucose-induced changes in tissue R1ρ and apply them to glucoCESL MRI data acquired in tumour-bearing and healthy rats. When assuming glucose transport is saturable, the maximal transport capacity (Tmax) measured in normal tissue was 3.2 ± 0.6 µmol/min/mL, the half saturation constant (Kt) was 8.8 ± 2.2 mM, the metabolic rate of glucose consumption (MRglc) was 0.21 ± 0.13 µmol/min/mL, and the cerebral blood volume (vb) was 0.006 ± 0.005 mL/mL. Values in tumour were: Tmax = 7.1 ± 2.7 µmol/min/mL, Kt = 14 ± 1.7 mM, MRglc = 0.22 ± 0.09 µmol/min/mL, vb = 0.030 ± 0.035 mL/mL. Tmax and Kt were significantly higher in tumour tissue than normal tissue (p = 0.006 and p = 0.011, respectively). When assuming glucose uptake also occurs via free diffusion, the free diffusion rate (kd) was 0.061 ± 0.017 mL/min/mL in normal tissue and 0.12 ± 0.042 mL/min/mL in tumour. These parameter estimates agree well with literature values obtained using other approaches (e.g. NMR spectroscopy).


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Biological Transport , Brain/diagnostic imaging , Brain/metabolism , Glucose/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...