Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.757
Filter
1.
Front Physiol ; 15: 1360255, 2024.
Article in English | MEDLINE | ID: mdl-38983720

ABSTRACT

Introduction: Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Currently, there is no vaccine against this disease. Thus, control of the insect vector population is the main strategy available to reduce the number of cases. Triatomines are considered obligate hematophagous, but different alternative feeding behaviors were described, such as haemolymphagy or plant feeding. Methods: To determine the preference for sugar feeding in nymphs and adults of Rhodnius prolixus, the insects were exposed a piece of cotton containing bromophenol blue plus sucrose. In addition, we offered several sugars for different species of triatomines, and tested sugar meals as a route of delivery of insecticides in first-instar nymphs of R. prolixus. The effect of sugar feeding on the physiology of these different species of triatomines was recorded. Results: First instar nymphs ingested sucrose more strongly than other stages, and showed high mortality rates. In different species of triatomines, sucrose induced an ingestion, but engorgement varied according to the species. R. prolixus nymphs showed an indiscriminate intake of various sugars, with very different physiological effects. Furthermore, ingesting different combinations of insecticides + sugar significantly reduced insect survival. Discussion: In summary, we described for the first-time sugar feeding as a widespread behavior in several species of triatomines, and the possibility of the use of toxic sugar baits for the control of these vectors. The knowledge of feeding behavior in these insects can be fundamental for the development of new strategies to control Chagas disease.

2.
Lancet Reg Health Am ; 36: 100821, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006126

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, affects millions worldwide. The 2030 WHO roadmap aims to eliminate it as a public health concern, emphasising the need for timely diagnosis to enhance treatment access. Current diagnostic algorithms, which rely on multiple tests, have prolonged turnaround times. This proves particularly problematic in resource-limited settings. Addressing this issue necessitates the validation and adoption of innovative tools. We explore recent developments in Chagas disease diagnosis, reviewing historical context and advancements. Despite progress, challenges persist. This article contributes to the understanding of current and future directions in this neglected healthcare area. Parasitological methods are simple but exhibit low sensitivity and require supplementary tests. Molecular methods, with automation potential, allow quantification and higher throughput. Serological tools show good performance but struggle with parasite antigenic diversity. Prioritising point-of-care tests is crucial for widespread accessibility and could offer a strategy to control disease impact. Ultimately, balancing achievements and ongoing obstacles is essential for comprehensive progress.

3.
Cureus ; 16(6): e62398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006585

ABSTRACT

Introduction Chagas disease is caused by the protozoan Trypanosoma cruzi. It is endemic in 21 countries in Central and South America. Spain is the only nonendemic country with the highest number of Chagas disease cases outside the Americas. The only transmission mechanism in Spain is vertical transmission. Materials and methods We reviewed the records of pregnant women from endemic countries who underwent prenatal care at the Hospital Universitario de Guadalajara, from January 1, 2009, to December 31, 2022, to determine the rate of Chagas disease screening and vertical transmission. Results Out of a total of 1,681 pregnant women from endemic countries, prenatal screening was conducted on 316 (18.7%) of them. According to our study, the prevalence of the disease in the population of pregnant women from endemic countries is 0.95% with a 95% confidence interval (ranging from 0.32% to 2.75%), with three out of the 316 screened women testing positive for the disease. All positive cases were among Bolivian women. Vertical transmission was not observed in any of the cases. However, because of the small sample size, this study cannot conclusively determine the vertical transmission rate in the province of Guadalajara. Conclusions Implementing regulated prenatal screening protocols for Chagas disease at regional or national levels is necessary to increase the rate of prenatal screening. Additionally, increasing awareness of this condition among healthcare professionals and at-risk populations could further improve prenatal screening rates and treatment adherence.

4.
Article in English | MEDLINE | ID: mdl-38949980

ABSTRACT

Background: Chagas disease or American trypanosomiasis, caused by Trypanosoma cruzi and vectored by triatomines, affects millions of people worldwide. In endemic countries including Mexico, infections in domestic animals, such as dogs, may affect the risk of human disease when they serve as a source of infection to vectors that subsequently infect humans. Materials and Methods: We conducted a cross-sectional study of 296 dogs from two cities near the northern and southern borders of Mexico: Reynosa, Tamaulipas, and Tuxtla Gutierrez, Chiapas. Infection was measured based on testing of blood using T. cruzi quantitative PCR (qPCR) and up to three antibody detection assays. The StatPak immunochromatographic assay was used to screen samples and the indirect fluorescent antibody (IFA) and multiplex microsphere immunoassay (MIA) tests were used as secondary tests on all samples that screened positive and a subset of negatives. Serologic positivity was defined based on reactivity on at least two independent tests. Results: Of the 280 samples tested for parasite DNA, two (0.7%) were positive, one of which (0.4%) was confirmed as T. cruzi discrete typing unit TcIV. Overall, 72 (24.3%) samples were reactive for T. cruzi antibodies via StatPak of which 8 were also positive using MIA and 2 were also positive using IFA (including one of the PCR-positive dogs). Overall, nine dogs (3.4%) met study criteria of positivity based on either/both serology or PCR tests. Positive dogs were found in both regions of Mexico; five (2.7%) from Reynosa and four (3.6%) from Tuxtla Gutierrez. We found no association between infection status and state of origin, sex, age group, breed group, neighborhood, and whether other pets lived in the home. Conclusion: Our results re-emphasize dogs' utility as sentinels for T. cruzi in Mexico and underscore the need for improved veterinary diagnostic tests and parasite surveillance at the household level in endemic countries.

5.
Animals (Basel) ; 14(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38997996

ABSTRACT

We aimed to characterize the echocardiographic alterations in dogs from an endemic region that were naturally infected with T. cruzi. Dogs (n = 130) seropositive for antibodies against T. cruzi and/or with acute parasitemia were enrolled in the study. Indicators of changes in the structure and systolic and diastolic functions of the left ventricle (LV) and blood flow patterns were evaluated by echocardiography. The frequency and extent of alterations in these indicators were associated with the severity of the disease. Briefly, 15 (11.54%) dogs were diagnosed with dilated cardiomyopathy (DCM), and 115 (88.46%) dogs were diagnosed as being without DCM. Infected dogs with DCM exhibited structural features of LV dysfunction, e.g., a significant (p < 0.05) increase in the LV internal diameter at systole and diastole (LVID-s, LVID-d) and a decline in the LV posterior wall (LVPW-d) thickness at diastole. Despite an increase in stroke volume and cardiac output indicating contraction force, DCM resulted in a decreased ejection fraction, affecting systolic function. Dogs that were diagnosed as DCM-negative but were positive for T. cruzi by PCR exhibited a high frequency of an increase in the thickness of the interventricular septum in systole (IVS-s) and the LV posterior wall in diastole (LVPW-d), a decline in the LV inner diameter (LVID-d, LVID-s), and fractional shortening (FS). The thinning of the LVPW at systole was the most defining feature observed in chronically infected dogs. In summary, this is the first study reporting the echocardiographic changes occurring in dogs naturally infected with T. cruzi and developing DCM. Our data suggest that changes in LVID are a major indicator of risk of cardiac involvement, and the observation of changes in the IVS, LVPW, and FS have predictive value in determining the risk of DCM development in infected dogs.

6.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000409

ABSTRACT

Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-ß (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-ß inhibitor, IC50 114.3 µM), losmapimod (p38 inhibitor, IC50 17.6 µM) and SP600125 (c-Jun inhibitor, IC50 3.9 µM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.


Subject(s)
Chagas Cardiomyopathy , Fibrosis , Mice, Inbred C57BL , Pyridones , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/pathology , Mice , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/parasitology , Myocardium/pathology , Myocardium/metabolism , Collagen/metabolism , Trypanosoma cruzi/drug effects , Humans , Chronic Disease , Transforming Growth Factor beta/metabolism , Disease Models, Animal , p38 Mitogen-Activated Protein Kinases/metabolism , Male , Anthracenes
7.
Transpl Infect Dis ; : e14336, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980983

ABSTRACT

BACKGROUND: Chagas disease (ChD) is endemic in many parts of the world and can be transmitted through organ transplantation or reactivated by immunosuppression. Organs from infected donors are occasionally used for transplantation, and the best way of managing the recipients remains a subject of debate. METHODS: We present a single-center cohort study describing a 10-year experience of kidney transplantation in patients at risk of donor-derived ChD and or reactivation. Patients received prophylactic treatment with Benznidazole and were monitored for transmission or reactivation. Monitoring included assessing direct parasitemia, serology, and polymerase chain reaction (PCR). RESULTS: Fifty-seven kidney transplant recipients (KTRs) were enrolled in the study. Forty-four patients (77.2%) were at risk of primary ChD infection, nine patients (15.8%) were at risk of disease reactivation, and four patients (7.0%) were at risk of both. All patients received Benznidazole prophylaxis, starting on the first day after transplantation. Parasitemia was assessed in 51 patients (89.5%), serology also in 51 patients (89.5%), and PCR in 40 patients (70.2%). None of the patients exhibited clinically or laboratory-detectable signs of disease. A single patient experienced a significant side effect, a cutaneous rash with intense pruritus. At 1-year post-transplantation, the patient and graft survival rates were 96.5% and 93%, respectively. CONCLUSION: In this study, no donor-derived or reactivation of Trypanosoma cruzi infection occurred in KTRs receiving Benznidazole prophylaxis.

8.
Int J Pharm ; 661: 124417, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964489

ABSTRACT

Benznidazole (BNZ) serves as the primary drug for treating Chagas Disease and is listed in the WHO Model List of Essential Medicines for Children. Herein, a new child-friendly oral BNZ delivery platform is developed in the form of supramolecular eutectogels (EGs). EGs address BNZ's poor oral bioavailability and provide a flexible twice-daily dose in stick-pack format. This green and sustainable formulation strategy relies on the gelation of drug-loaded Natural Deep Eutectic Solvents (NaDES) with xanthan gum (XG) and water. Specifically, choline chloride-based NaDES form stable and biocompatible 5 mg/mL BNZ-loaded EGs. Rheological and Low-field NMR investigations indicate that EGs are viscoelastic materials comprised of two co-existing regions in the XG network generated by different crosslink distributions between the biopolymer, NaDES and water. Remarkably, the shear modulus and relaxation spectrum of EGs remain unaffected by temperature variations. Upon dilution with simulated gastrointestinal fluids, EGs results in BNZ supersaturation, serving as the primary driving force for its absorption. Interestingly, after oral administration of EGs to rats, drug bioavailability increases by 2.6-fold, with a similar increase detected in their cerebrospinal fluid. The noteworthy correlation between in vivo results and in vitro release profiles confirms the efficacy of EGs in enhancing both peripheral and central BNZ oral bioavailability.

9.
Insect Biochem Mol Biol ; : 104154, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972513

ABSTRACT

Chagas disease affects around 8 million people globally, with Latin America bearing approximately 10,000 deaths each year. Combatting the disease relies heavily on vector control methods, necessitating the identification of new targets. Within insect genomes, genes harboring small open reading frames (smORFs - < 100 amino acids) present numerous potential candidates. In our investigation, we elucidate the pivotal role of the archetypal smORF-containing gene, mille-pattes/polished-rice/tarsalless (mlpt/pri/tal), in the post-embryonic development of the kissing bug Rhodnius prolixus. Injection of double-stranded RNA targeting mlpt (dsmlpt) during nymphal stages yields a spectrum of phenotypes hindering post-embryonic growth. Notably, fourth or fifth stage nymphs subjected to dsmlpt do not undergo molting. These dsmlpt nymphs display heightened mRNA levels of JHAMT-like and EPOX-like, enzymes putatively involved in the juvenile hormone (JH) pathway, alongside increased expression of the transcription factor Kr-h1, indicating changes in the hormonal control. Histological examination reveals structural alterations in the hindgut and external cuticle of dsmlpt nymphs compared to control (dsGFP) counterparts. Furthermore, significant changes in the vector's digestive physiology were observed, with elevated hemozoin and glucose levels in the posterior midgut of dsmlpt nymphs. Importantly, dsmlpt nymphs exhibit impaired metacyclogenesis of Trypanosoma cruzi, the causative agent of Chagas disease, underscoring the crucial role of proper gut organization in parasite differentiation. Thus, our findings constitute the first evidence of a smORF-containing gene's regulatory influence on vector physiology, parasitic cycle, and disease transmission.

10.
Article in English | MEDLINE | ID: mdl-38972897

ABSTRACT

Metal-Organic Frameworks (MOFs) have been shown to enhance the activity of encapsulated compounds by facilitating their passage across cell membranes, thereby enabling controlled and selective release. This study investigates the efficacy of BNZ@Zn-MOFs against the acute phase of Trypanosoma cruzi infection in a mouse model. The particles were synthesized by electroelution (EL), doped with BZN via mechanochemistry, and characterized using scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (XRD). BNZ@Zn-MOFs released 80% of the encapsulated BZN within 3 h, demonstrating no cytotoxicity in NIH-3T3 and HeLa cells. Furthermore, in a model of acute experimental T. cruzi-infection in BALB/c mice, the delivery system exhibited antiparasitic activity at a significantly lower BZN concentration compared to free BZN treatment. PCR analysis of treated mice revealed no parasite DNA in their tissues, and hematoxylin-eosin staining showed no apparent damage to tissue architecture. Additionally, serum levels of liver function enzymes remained unchanged, indicating no adverse effects on liver function. This delivery system, utilizing suboptimal BZN doses, enables the preservation of drug activity while potentially facilitating a substantial decrease in side effects associated with Chagas disease treatment.

11.
J Med Entomol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970363

ABSTRACT

Population genetic structure of arthropod disease vectors provides important information on vector movement and climate or other environmental variables that influence their distribution. This information is critical for data-driven vector control. In the first comprehensive study of the genetic structure of T. dimidiata s.l. (Latreille, 1811) we focus on an area of active transmission designated as a top priority for control. We examined a high number of specimens across a broad geographic area along the border of Guatemala and El Salvador including multiple spatial scales using a high number of genome-wide markers. Measuring admixture, pairwise genetic differentiation, and relatedness, we estimated the specimens represented three genetic clusters. We found evidence of movement (migration/gene flow) across all spatial scales with more admixture among locations in El Salvador than in Guatemala. Although there was significant isolation by distance, the 2 close villages in Guatemala showed either the most or least genetic variation indicating an additional role of environmental variables. Further, we found that social factors may be influencing the genetic structure. We demonstrated the power of genomic studies with a large number of specimens across a broad geographic area. The results suggest that for effective vector control movement must be considered on multiple spatial scales along with its contributing factors.

12.
Article in English | MEDLINE | ID: mdl-38902151

ABSTRACT

INTRODUCTION: Treatment of Chagas disease frequently causes distress to patients due to a high incidence of adverse effects. Different preemptive tests have been researched to prevent these effects and to allow focus to be given to certain predisposed patients. Benznidazole is the most prescribed Chagas disease treatment in Spain. In this work, we analyzed the genetic markers HLA-B*35 allele group and HLA-B*35:05 allele specifically, as well as an allergy patch test, as benznidazole's most frequent adverse effects are cutaneous. METHODS: HLA-B intermediate-resolution genotyping was performed followed by a high-resolution level analysis. Cutaneous allergies were tested using strips impregnated with a mixture of benznidazole and placed on the upper back of patients before starting treatment. RESULTS: In our sample of more than 400 patients, there was almost no relationship between any kind of side effect and either of the HLA-B alleles studied. The patch testing was quickly discarded as a preemptive test due to its low sensitivity (16.7%). CONCLUSION: In conclusion, we were unable to replicate and corroborate genetic markers identified by other groups and there is currently no test that can anticipate the adverse effects of benznidazole, therefore, more investigation should be carried out in this field.

13.
Nat Prod Res ; : 1-9, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907673

ABSTRACT

Anti-Trypanosoma cruzi activity of compounds from fruits of Schinus terebinthifolius Raddi (pink pepper) were evaluated, using sustainable techniques such as steam distillation (SD) and supercritical fluid extraction (SFE). SD was optimised using a design of experiment and SFE was carried out using supercritical CO2 solvent (300 bar and 60 °C). Results of the anti-T. cruzi activity showed that the essential oil presented high activity (IC50 = 4.5 ± 0.3 µg/mL), whereas the supercritical extract had a moderate effect (IC50 = 19.7 ± 2.9 µg/mL). The differences in the anti-T. cruzi activity can be attributed to the extraction of non-volatile compounds in the SFE, such as moronic and (Z)-masticadienoic acids. In contrast, SD extracted only volatile compounds such as monoterpenes and sesquiterpenes. Therefore, these results suggest that the volatile compounds from pink pepper are involved with the anti-T. cruzi activity.

14.
Vox Sang ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872389

ABSTRACT

BACKGROUND AND OBJECTIVES: Trypanosoma cruzi is the etiologic agent of Chagas disease (CD), an anthropozoonosis from the American continent that progresses from an acute phase to an indeterminate phase, followed by a chronic symptomatic phase in around 30% of patients. In countries where T. cruzi is not endemic, many blood transfusion services test blood donors who have stayed in an endemic country ('at-risk stay')-even if they do not present with other risk factors. However, the efficiency of this approach has been questioned. MATERIALS AND METHODS: On 18 September 2023, a worldwide survey was distributed among employees of blood transfusion services. The questions mainly pertained to CD's endemicity in the blood services' region, the current testing policy for T. cruzi and the number of confirmed positive results among donors with a prior at-risk stay alone (i.e., without other risk factors for T. cruzi infection). RESULTS: Twenty-six recipients completed the survey. Of the 22 (84.6%) blood services that operated in a non-endemic region, 9 (42.9%) tested donors for T. cruzi, including 8 (88.9%) that considered the travel history or the duration of the stay (alone) in their testing algorithm ('study blood services'). Over 93 years of observation among all study blood services, 2 donations from donors with an at-risk stay alone and 299 from those with other risk factors were confirmed positive for T. cruzi. CONCLUSION: The study findings question the utility of testing blood donors who have stayed in an endemic country without other risk factors.

15.
Diagnostics (Basel) ; 14(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893719

ABSTRACT

Chagas disease is an inflammatory parasitic infection caused by Trypanosoma cruzi (T. cruzi). Early diagnosis is crucial in guiding treatment and slowing disease progression; however, current diagnostic methods have insufficient detection limits and often require skilled technicians. Molecular tests, especially isothermal nucleic acid assays, are advantageous due to their excellent sensitivity, specificity, speed, and simplicity. Here, we optimized a colorimetric loop-mediated isothermal amplification (LAMP) assay for T. cruzi. We can detect as few as 2 genomic copies/reaction using three different T. cruzi strains. We examined selectivity using other parasitic protozoans and successfully detected T. cruzi DNA extracted from parasites in human whole blood down to 1.2 parasite equivalents/reaction. We also performed a blinded study using canine blood samples and established a 100% sensitivity, specificity, and accuracy for the colorimetric LAMP assay. Finally, we used a heated 3D printer bed and an insulated thermos cup to demonstrate that the LAMP incubation step could be performed with accessible, low-cost materials. Altogether, we have developed a high-performing assay for T. cruzi with a simple colorimetric output that would be ideal for rapid, low-cost screening at the point of use.

16.
Prog Mol Biol Transl Sci ; 207: 23-58, 2024.
Article in English | MEDLINE | ID: mdl-38942539

ABSTRACT

Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.


Subject(s)
Drug Repositioning , Protozoan Infections , Humans , Animals , Protozoan Infections/drug therapy , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/pharmacology
17.
Microorganisms ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38930535

ABSTRACT

Chagas disease, discovered over a century ago, continues to pose a global health challenge, affecting millions mainly in Latin America. This historical review with commentary outlines the disease's discovery, its evolution into a global concern due to migration, and highlights significant advances in diagnostics and treatment strategies. Despite these advancements, the paper discusses ongoing challenges in eradication, including vector control, congenital transmission, the disease's asymptomatic nature, and socioeconomic barriers to effective management. It calls for a multidisciplinary approach, enhanced diagnostics, improved treatment accessibility, and sustained vector control efforts. The review emphasizes the importance of global collaboration and increased funding to reduce Chagas disease's impact.

18.
Pharmaceutics ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931921

ABSTRACT

Chagas disease (CD) is a worldwide public health problem. Benznidazole (BZ) is the drug used to treat it. However, in its commercial formulation, it has significant side effects and is less effective in the chronic phase of the infection. The development of particulate systems containing BZ is therefore being promoted. The objective of this investigation was to develop polymeric nanoparticles loaded with BZ and examine their trypanocidal impact in vitro. Two formulas (BNP1 and BNP2) were produced through double emulsification and freeze drying. Subsequent to physicochemical and morphological assessment, both formulations exhibited adequate yield, average particle diameter, and zeta potential for oral administration. Cell viability was assessed in H9C2 and RAW 264.7 cells in vitro, revealing no cytotoxicity in cardiomyocytes or detrimental effects in macrophages at specific concentrations. BNP1 and BNP2 enhanced the effect of BZ within 48 h using a treatment of 3.90 µg/mL. The formulations notably improved NO reduction, particularly BNP2. The findings imply that the compositions are suitable for preclinical research, underscoring their potential as substitutes for treating CD. This study aids the quest for new BZ formulations, which are essential in light of the disregard for the treatment of CD and the unfavorable effects associated with its commercial product.

19.
Sci Rep ; 14(1): 13818, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879638

ABSTRACT

The hematophagous common bed bug, Cimex lectularius, is not known to transmit human pathogens outside laboratory settings, having evolved various immune defense mechanisms including the expression of antimicrobial peptides (AMPs). We unveil three novel prolixicin AMPs in bed bugs, exhibiting strong homology to the prolixicin of kissing bugs, Rhodnius prolixus, and to diptericin/attacin AMPs. We demonstrate for the first time sex-specific and immune mode-specific upregulation of these prolixicins in immune organs, the midgut and rest of body, following injection and ingestion of Gr+ (Bacillus subtilis) and Gr- (Escherichia coli) bacteria. Synthetic CL-prolixicin2 significantly inhibited growth of E. coli strains and killed or impeded Trypanosoma cruzi, the Chagas disease agent. Our findings suggest that prolixicins are regulated by both IMD and Toll immune pathways, supporting cross-talk and blurred functional differentiation between major immune pathways. The efficacy of CL-prolixicin2 against T. cruzi underscores the potential of AMPs in Chagas disease management.


Subject(s)
Bedbugs , Escherichia coli , Trypanosoma cruzi , Animals , Trypanosoma cruzi/drug effects , Bedbugs/microbiology , Bedbugs/drug effects , Escherichia coli/drug effects , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Female , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Male , Chagas Disease/parasitology , Insect Proteins/metabolism , Amino Acid Sequence
20.
Parasitol Res ; 123(6): 248, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904688

ABSTRACT

Sterol 14-demethylase (CYP51) inhibitors, encompassing new chemical entities and repurposed drugs, have emerged as promising candidates for Chagas disease treatment, based on preclinical studies reporting anti-Trypanosoma cruzi activity. Triazoles like ravuconazole (RAV) and posaconazole (POS) progressed to clinical trials. Unexpectedly, their efficacy was transient in chronic Chagas disease patients, and their activity was not superior to benznidazole (BZ) treatment. This paper aims to summarize evidence on the global activity of CYP51 inhibitors against T. cruzi by applying systematic review strategies, risk of bias assessment, and meta-analysis from in vivo studies. PubMed and Embase databases were searched for original articles, obtaining fifty-six relevant papers meeting inclusion criteria. Characteristics of animal models, parasite strain, treatment schemes, and cure rates were extracted. Primary outcomes such as maximum parasitaemia values, survival, and parasitological cure were recorded for meta-analysis, when possible. The risk of bias was uncertain in most studies. Animals treated with itraconazole, RAV, or POS survived significantly longer than the infected non-treated groups (RR = 4.85 [3.62, 6.49], P < 0.00001), and they showed no differences with animals treated with positive control drugs (RR = 1.01 [0.98, 1.04], P = 0.54). Furthermore, the overall analysis showed that RAV or POS was not likely to achieve parasitological cure when compared with BZ or NFX treatment (OD = 0.49 [0.31, 0.77], P = 0.002). This systematic review contributes to understanding why the azoles had failed in clinical trials and, more importantly, how to improve the animal models of T. cruzi infection by filling the gaps between basic, translational, and clinical research.


Subject(s)
14-alpha Demethylase Inhibitors , Chagas Disease , Disease Models, Animal , Trypanosoma cruzi , Animals , Humans , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Sterol 14-Demethylase/metabolism , Thiazoles , Treatment Outcome , Triazoles/therapeutic use , Triazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...