Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Fundam Res ; 4(2): 394-400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933503

ABSTRACT

Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant ßA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.

2.
ACS Chem Neurosci ; 15(9): 1732-1737, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38640082

ABSTRACT

For many chaperones, a propensity to self-assemble correlates with function. The highly efficient amyloid suppressing chaperone DNAJB6b has been reported to oligomerize. A key question is whether the DNAJB6b self-assemblies or their subunits are active units in the suppression of amyloid formation. Here, we address this question using a nonmodified chaperone. We use the well-established aggregation kinetics of the amyloid ß 42 peptide (Aß42) as a readout of the amyloid suppression efficiency. The experimental setup relies on the slow dissociation of DNAJB6b assemblies upon dilution. We find that the dissociation of the chaperone assemblies correlates with its ability to suppress fibril formation. Thus, the data show that the subunits of DNAJB6b assemblies rather than the large oligomers are the active forms in amyloid suppression. Our results provide insights into how DNAJB6b operates as a chaperone and illustrate the importance of established assembly equilibria and dissociation rates for the design of kinetic experiments.


Subject(s)
Amyloid beta-Peptides , HSP40 Heat-Shock Proteins , Molecular Chaperones , HSP40 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Amyloid beta-Peptides/metabolism , Nerve Tissue Proteins/metabolism , Amyloid/metabolism , Peptide Fragments/metabolism , Kinetics
3.
Biochimie ; 222: 151-168, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38494110

ABSTRACT

To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.


Subject(s)
Cataract , alpha-Crystallin B Chain , Humans , alpha-Crystallin B Chain/genetics , alpha-Crystallin B Chain/chemistry , alpha-Crystallin B Chain/metabolism , Amino Acid Substitution , Cataract/genetics , Cataract/metabolism , Molecular Dynamics Simulation , Mutation , Mutation, Missense , Protein Domains , Protein Multimerization , Protein Stability
4.
J Mol Biol ; 436(14): 168504, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38423453

ABSTRACT

Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.


Subject(s)
Molecular Chaperones , Polyphosphates , Protein Folding , Polyphosphates/metabolism , Polyphosphates/chemistry , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Amyloid/metabolism , Amyloid/chemistry , Protein Aggregates , Proteins/metabolism , Proteins/chemistry , Animals , Neurodegenerative Diseases/metabolism
5.
Int J Biol Macromol ; 263(Pt 1): 130261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368978

ABSTRACT

αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.


Subject(s)
Copper , alpha-Crystallin B Chain , Humans , Copper/chemistry , alpha-Crystallin B Chain/chemistry , Molecular Chaperones , Homeostasis , Ions
6.
Biochim Biophys Acta Gen Subj ; 1868(4): 130579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307443

ABSTRACT

αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased ß-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).


Subject(s)
Cardiomyopathies , Escherichia coli , Humans , alpha-Crystallin B Chain/genetics , alpha-Crystallin B Chain/metabolism , Cardiomyopathies/genetics , Escherichia coli/metabolism , Mutant Proteins/chemistry , Mutation
7.
Int J Biol Macromol ; 254(Pt 3): 127933, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939764

ABSTRACT

αB-Crystallin (αB-Cry) is expressed in many tissues, and mutations in this protein are linked to various diseases, including cataracts, Alzheimer's disease, Parkinson's disease, and several types of myopathies and cardiomyopathies. The p.D109G mutation, which substitutes a conserved aspartate residue involved in the interchain salt bridges, with glycine leads to the development of both restrictive cardiomyopathy (RCM) and skeletal myopathy. In this study, we generated this mutation in the α-Cry domain (ACD) which is crucial for forming the active chaperone dimeric state, using site-directed mutagenesis. After inducing expression in the bacterial host, we purified the mutant and wild-type recombinant proteins using anion exchange chromatography. Various spectroscopic evaluations revealed significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry caused by this mutation. Furthermore, this pathogenic mutation led to the formation of protein oligomers with larger sizes than those of the wild-type protein counterpart. The mutant protein also exhibited increased chaperone activity and decreased chemical, thermal, and proteolytic stability. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and fluorescence microscopy (FM) demonstrated that p.D109G mutant protein is more prone to forming amyloid aggregates. The misfolding associated with the p.D109G mutation may result in abnormal interactions of human αB-Cry with its natural partners (e.g., desmin), leading to the formation of protein aggregates. These aggregates can interfere with normal cellular processes and may contribute to muscle cell dysfunction and damage, resulting in the pathogenic involvement of the p.D109G mutant protein in restrictive cardiomyopathy and skeletal myopathy.


Subject(s)
Cardiomyopathy, Restrictive , Crystallins , Muscular Diseases , Humans , Crystallins/chemistry , Mutation , Muscular Diseases/genetics , Molecular Chaperones/metabolism , Mutant Proteins/chemistry , alpha-Crystallin B Chain/genetics , alpha-Crystallin B Chain/chemistry
8.
Biomedicine (Taipei) ; 13(2): 56-61, 2023.
Article in English | MEDLINE | ID: mdl-37937300

ABSTRACT

Introduction: Saliva is a clinically informative biological fluid that contains many biomarkers, allowing multiple analyses to be performed. Aim: The objectives of this study were the assessment of the serum and saliva levels of biochemical parameters and intensity of free radical processes in T2DM patients and the identification of the correlation between certain criteria. Methods: This case-control study included 40 T2DM patients, which were compared with 40 healthy individuals. The levels of glucose, cholesterol triglycerides, total protein, diene conjugates, and chaperone activity were measured using the spectrophotometric method. The concentration of 8-oxo-2'-deoxyguanosine was assessed by competitive enzyme-linked immunosorbent assay. Results: It was established that the progression of diabetes led to an increase in glucose in saliva. The content of 8-oxo-2'-deoxyguanosine and conjugated dienes increased in serum and this increase was associated with the level of glucose and glycated hemoglobin. The level of protein and chaperone activity increased in the saliva of patients with T2DM compared with the control. The correlation analysis revealed a relationship between total protein concentration and conjugated dienes and between chaperone activity and conjugated dienes in saliva. Conclusions: According to the results of the analysis, the pathological changes in DM affected the salivary glands and their secretions. The obtained results allowed us to recommend using saliva as an alternative to blood for the diagnosis and monitoring of T2DM treatments since it is readily available and quickly responds to changes in metabolism in the body.

9.
Pathogens ; 12(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887789

ABSTRACT

Peroxiredoxins (Prxs) have been shown to be important enzymes for trypanosomatids, counteracting oxidative stress and promoting cell infection and intracellular survival. In this work, we investigate the in vitro sensitivity to overoxidation and the overoxidation dynamics of Trypanosoma cruzi Prxs in parasites in culture and in the infection context. We showed that recombinant m-TXNPx, in contrast to what was observed for c-TXNPx, exists as low molecular mass forms in the overoxidized state. We observed that T. cruzi Prxs were overoxidized in epimastigotes treated with oxidants, and a significant proportion of the overoxidized forms were still present at least 24 h after treatment suggesting that these forms are not actively reversed. In in vitro infection experiments, we observed that Prxs are overoxidized in amastigotes residing in infected macrophages, demonstrating that inactivation of at least part of the Prxs by overoxidation occurs in a physiological context. We have shown that m-TXNPx has a redox-state-dependent chaperone activity. This function may be related to the increased thermotolerance observed in m-TXNPx-overexpressing parasites. This study suggests that despite the similarity between protozoan and mammalian Prxs, T. cruzi Prxs have different oligomerization dynamics and sensitivities to overoxidation, which may have implications for their function in the parasite life cycle and infection process.

10.
RNA ; 29(5): 630-643, 2023 05.
Article in English | MEDLINE | ID: mdl-36653114

ABSTRACT

p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.


Subject(s)
Phosphoproteins , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , 5' Untranslated Regions/genetics , Nucleolin
11.
Protein Sci ; 32(1): e4549, 2023 01.
Article in English | MEDLINE | ID: mdl-36533311

ABSTRACT

Dynamic interdomain interactions within the Hsp70 protein is the basis for the allosteric and functional properties of Hsp70s. While Hsp70s are generally conserved in terms of structure, allosteric behavior, and some overlapping functions, Hsp70s also contain variable sequence regions which are related to distinct functions. In the Hsp70 sequence, the part with the greatest sequence variation is the C-terminal α-helical lid subdomain of substrate-binding domain (SBDα) together with the intrinsically disordered region. Dynamic interactions between the SBDα and ß-sandwich substrate-binding subdomain (SBDß) contribute to the chaperone functions of Hsp70s by tuning kinetics of substrate binding. To investigate how the C-terminal region of Hsp70 has evolved from prokaryotic to eukaryotic organisms, we tested whether this region can be exchanged among different Hsp70 members to support basic chaperone functions. We found that this region from eukaryotic Hsp70 members cannot substitute for the same region in Escherichia coli DnaK to facilitate normal chaperone activity of DnaK. In contrast, this region from E. coli DnaK and Saccharomyces cerevisiae Hsp70 (Ssa1 and Ssa4) can partially support some roles of human stress inducible Hsp70 (hHsp70) and human cognate Hsp70 (hHsc70). Our results indicate that the C-terminal region from eukaryotic Hsp70 members cannot properly support SBDα-SBDß interactions in DnaK, but this region from DnaK/Ssa1/Ssa4 can still form some SBDα-SBDß interactions in hHsp70 or hHsc70, which suggests that the mode for SBDα-SBDß interactions is different in prokaryotic and eukaryotic Hsp70 members. This study provides new insight in the divergency among different Hsp70 homologs and the evolution of Hsp70s.


Subject(s)
Escherichia coli Proteins , Saccharomyces cerevisiae Proteins , Humans , Escherichia coli/metabolism , HSP70 Heat-Shock Proteins/chemistry , Protein Folding , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Escherichia coli Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry
12.
Plants (Basel) ; 13(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38202427

ABSTRACT

The family of Nuclear Distribution C (NudC) proteins plays a pivotal and evolutionarily conserved role in all eukaryotes. In animal systems, these proteins influence vital cellular processes like cell division, protein folding, nuclear migration and positioning, intracellular transport, and stress response. This review synthesizes past and current research on NudC family members, focusing on their growing importance in plants and intricate contributions to plant growth, development, and stress tolerance. Leveraging information from available genomic databases, we conducted a thorough characterization of NudC family members, utilizing phylogenetic analysis and assessing gene structure, motif organization, and conserved protein domains. Our spotlight on two Arabidopsis NudC genes, BOB1 and NMig1, underscores their indispensable roles in embryogenesis and postembryonic development, stress responses, and tolerance mechanisms. Emphasizing the chaperone activity of plant NudC family members, crucial for mitigating stress effects and enhancing plant resilience, we highlight their potential as valuable targets for enhancing crop performance. Moreover, the structural and functional conservation of NudC proteins across species suggests their potential applications in medical research, particularly in functions related to cell division, microtubule regulation, and associated pathways. Finally, we outline future research avenues centering on the exploration of under investigated functions of NudC proteins in plants.

13.
J Control Release ; 352: 411-421, 2022 12.
Article in English | MEDLINE | ID: mdl-36272662

ABSTRACT

Crystallins, small heat shock chaperone proteins that prevent protein aggregation, are of potential value in treating protein aggregation disorders. However, their therapeutic use is limited by their low potency and poor intracellular delivery. One approach to facilitate the development of crystallins is to improve their activity, stability, and delivery. In this study, zinc addition to αB-crystallin-D3 (αB-D3) formed supramolecular nano- and micro- assemblies, induced dose-dependent changes in structure (beta-sheet to alpha-helix) and increased surface hydrophobicity and chemical stability. Further, crystallin assemblies exhibited a size-dependent chaperone activity, with the nano-assemblies being superior to micro-assemblies and 4.3-fold more effective than the native protein in preventing ß-mercaptoethanol induced aggregation of insulin. Insulin rescued by crystallin assemblies retained the activity as evidenced by glucose uptake in 3T3-L1 cells. The most active nano-assemblies enhanced protein stability, in the presence of urea, by 1.6-fold, whereas intracellular delivery was enhanced by 3.0-fold. The αB-D3 crystallin nano-assemblies exhibit uniquely enhanced stability, activity, and delivery compared to the native protein.


Subject(s)
Insulins , alpha-Crystallin B Chain , Protein Aggregates , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism
14.
Int J Mol Sci ; 23(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36012609

ABSTRACT

α-crystallin is a major structural protein in the eye lenses of vertebrates that is composed of two relative subunits, αA and αB crystallin, which function in maintaining lens transparency. As a member of the small heat-shock protein family (sHsp), α-crystallin exhibits chaperone-like activity to prevent the misfolding or aggregation of critical proteins in the lens, which is associated with cataract disease. In this study, high-purity αA and αB crystallin proteins were expressed from E. coli and purified by affinity and size-exclusion chromatography. The size-exclusion chromatography experiment showed that both αA and αB crystallins exhibited oligomeric complexes in solution. Here, we present the structural characteristics of α-crystallin proteins from low to high temperature by combining circular dichroism (CD) and small-angle X-ray scattering (SAXS). Not only the CD data, but also SAXS data show that α-crystallin proteins exhibit transition behavior on conformation with temperature increasing. Although their protein sequences are highly conserved, the analysis of their thermal stability showed different properties in αA and αB crystallin. In this study, taken together, the data discussed were provided to demonstrate more insights into the chaperone-like activity of α-crystallin proteins.


Subject(s)
Crystallins , alpha-Crystallins , Animals , Circular Dichroism , Crystallins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Heat-Shock Response , Scattering, Small Angle , X-Ray Diffraction
15.
Biochim Biophys Acta Proteins Proteom ; 1870(7): 140794, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35643282

ABSTRACT

Previous research has shown that production of the high levels of oxidants overwhelms the body's antioxidant defense system during diabetes mellitus. Under this circumstance, ocular lens proteins are one of the main molecular targets for oxidative damage. In the present study, the individual effect of partial and extensive oxidation on the structure and function of human αB-crystallin was investigated using electrophoresis and various spectroscopic methods. The results of our study suggested that widespread oxidation causes loss of the chaperone activity of this protein, while partial oxidation significantly enhances this activity. Our studies also suggested that partial and extensive oxidation induces the formation of different structures in this protein. In fact, the chaperone-active and chaperone-inactive states of this protein are respectively associated with a minor and extensive structural alteration. Moreover, the oligomeric size distribution shows an inverse relationship with the chaperone activity of this protein. Increasing the chaperone activity of this protein during partial oxidation may be a natural defense mechanism to overcome the damages caused by oxidative stress, especially in diabetes and other pathological diseases.


Subject(s)
Molecular Chaperones , alpha-Crystallin B Chain , Defense Mechanisms , Humans , Molecular Chaperones/chemistry , Oxidation-Reduction , Oxidative Stress , alpha-Crystallin B Chain/chemistry
16.
Biochemistry (Mosc) ; 87(2): 91-105, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35508905

ABSTRACT

The study was aimed to evaluate the impact of peroxynitrite (PON, oxidative stress agent in diabetes), methylglyoxal (MGO, diabetes-associated reactive carbonyl compound), and their simultaneous application on the structural and functional features of human αA-crystallin (αA-Cry) using various spectroscopy techniques. Additionally, the surface tension and oligomer size distribution of the treated and untreated protein were tested using tensiometric analysis and dynamic light scattering, respectively. Our results indicated that the reaction of PON and MGO with human αA-Cry leads to the formation of new chromophores, alterations in the secondary to quaternary protein structure, reduction in the size of protein oligomers, and significant enhancement in the chaperone activity of αA-Cry. To reverse the effects of the tested compounds, ascorbic acid and glutathione (main components of lens antioxidant defense system) were applied. As expected, the two antioxidant compounds significantly prevented formation of high molecular weight aggregates of αA-Cry (according to SDS-PAGE). Our results suggest that the lens antioxidant defense system, in particular, glutathione, may provide a strong protection against rapid incidence and progression of diabetic cataract by preventing the destructive reactions of highly reactive DM-associated metabolites.


Subject(s)
Crystallins , Diabetes Mellitus , alpha-Crystallin A Chain , Antioxidants/metabolism , Antioxidants/pharmacology , Crystallins/chemistry , Crystallins/metabolism , Glutathione/metabolism , Humans , Magnesium Oxide , Oxidative Stress , alpha-Crystallin A Chain/chemistry
17.
Front Mol Biosci ; 9: 875205, 2022.
Article in English | MEDLINE | ID: mdl-35463950

ABSTRACT

The G98R mutation in αA-crystallin is associated with presenile cataract development in humans. Previous studies have indicated that mutant proteins altered structure, decreased stability, increased oligomeric size, loss of chaperone-like activity, and susceptibility to proteolysis could be contributing factors to cataract formation. To evaluate the effect of substrate protein interactions with the mutant protein on cataract formation, we have performed chaperone assays with alcohol dehydrogenase (ADH), citrate synthase (CS), and ßB2-crystallin (ßB2), and analyzed the reaction mixtures by multi-angle light scattering (MALS) analysis. It appears that αAG98R protein initially gets stabilized upon interaction with substrate proteins. Analysis of the chaperone-client protein complexes revealed that wild-type αA-crystallin interacts with substrate proteins to form compact complexes leading to a slight increase in oligomeric mass, whereas αAG98R forms less compact and high molecular weight complexes with the substrate, and the resulting complexes continue to increase in size over time. As a result, the soluble complexes formed initially by the mutant protein begin to scatter light and precipitate. We found that the stability and chaperone activity of the αAG98R can be improved by modifying the protein with low concentrations (50 µM) of methylglyoxal (MGO). Incubation of αAG98R protein (1 mg/ml) under aseptic conditions for 30 days at 37°C resulted in precipitation of the mutant protein. In contrast, mutant protein incubations carried out with 50 µM MGO remained soluble and transparent. SDS-PAGE analysis showed gradual autolysis of the mutant protein in the absence of MGO. The average molar mass of the mutant protein oligomers changed from 7,258 ± 12 kDa to 3,950 ± 08 kDa within 60 min of incubation with MGO. There was no further significant change in the molar mass of mutant protein when tested on day 7 of MGO treatment. Our data suggest that the initial stabilization of αAG98R by substrate proteins could delay congenital cataracts' appearance, and the uncontrolled long-term interaction amongst mutant subunits and substrate proteins could be the rationale behind presenile cataracts formation. The results also demonstrate the potential benefit of low concentrations of MGO in stabilizing mutant chaperone protein(s).

18.
Curr Pharm Biotechnol ; 23(5): 719-727, 2022.
Article in English | MEDLINE | ID: mdl-34225616

ABSTRACT

BACKGROUND: The molecular chaperone function of αB-crystallins is heavily involved in maintaining lens transparency and the development of cataracts. OBJECTIVES: The aim of the study was to investigate whether divalent metal ion binding improves the stability and αB-crystallin chaperone activity. METHODS: In this study, we have developed an H101G αB-crystallin mutant and compared the surface hydrophobicity, chaperone activity, and secondary and tertiary structure with the wild type in the presence and absence of metal ions. RESULTS: Substitution of His101 with glycine resulted in structural and functional changes. Spectral analysis and chaperone-like activity assays showed that substitution of glycine resulted in a higher percentage of random coils, increased hydrophobicity, and 22±2% higher chaperone-like activity. Whereas in the presence of the Cu2+ ion, H101G exhibited 32±1% less chaperone-like activity compared to the wild type. CONCLUSION: Cu2+ has been reported to enhance the chaperone-like activity of lens α-crystallin. Our results indicate that H101 is the predominant Cu2+ binding site, and the mutation resulted in a partial unfolding that impaired the binding of Cu2+ to H101 residue. In conclusion, this study further helps to understand the important binding site for Cu2+ to αB-crystallin.


Subject(s)
Crystallins , Animals , Circular Dichroism , Crystallins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Protein Folding , Rats
19.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208567

ABSTRACT

Plant phosphoprotein phosphatases are ubiquitous and multifarious enzymes that respond to developmental requirements and stress signals through reversible dephosphorylation of target proteins. In this study, we investigated the hitherto unknown functions of Brassica rapa protein phosphatase 5.2 (BrPP5.2) by transgenic overexpression of B. rapa lines. The overexpression of BrPP5.2 in transgenic lines conferred heat shock tolerance in 65-89% of the young transgenic seedlings exposed to 46 °C for 25 min. The examination of purified recombinant BrPP5.2 at different molar ratios efficiently prevented the thermal aggregation of malate dehydrogenase at 42 °C, thus suggesting that BrPP5.2 has inherent chaperone activities. The transcriptomic dynamics of transgenic lines, as determined using RNA-seq, revealed that 997 and 1206 (FDR < 0.05, logFC ≥ 2) genes were up- and down-regulated, as compared to non-transgenic controls. Statistical enrichment analyses revealed abiotic stress response genes, including heat stress response (HSR), showed reduced expression in transgenic lines under optimal growth conditions. However, most of the HSR DEGs were upregulated under high temperature stress (37 °C/1 h) conditions. In addition, the glucosinolate biosynthesis gene expression and total glucosinolate content increased in the transgenic lines. These findings provide a new avenue related to BrPP5.2 downstream genes and their crucial metabolic and heat stress responses in plants.


Subject(s)
Brassica rapa/physiology , Gene Expression Regulation, Plant , Glucosinolates/biosynthesis , Heat-Shock Response/genetics , Nuclear Proteins/genetics , Phosphoprotein Phosphatases/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Biomarkers , Computational Biology/methods , Gene Expression Profiling , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified
20.
BMC Biotechnol ; 21(1): 39, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34126963

ABSTRACT

BACKGROUND: HSPB5 is an ATP-independent molecular chaperone that is induced by heat shock or other proteotoxic stresses. HSPB5 is cytoprotective against stress both intracellularly and extracellularly. It acts as a potential therapeutic candidate in ischemia-reperfusion and neurodegenerative diseases. RESULTS: In this paper, we constructed a recombinant plasmid that expresses and extracellularly secrets a HSPB5-Fc fusion protein (sHSPB5-Fc) at 0.42 µg/ml in CHO-K1 cells. This sHSPB5-Fc protein contains a Fc-tag at the C-terminal extension of HSPB5, facilitating protein-affinity purification. Our study shows that sHSPB5-Fc inhibits heat-induced aggregation of citrate synthase in a time and dose dependent manner in vitro. Administration of sHSPB5-Fc protects lens epithelial cells against cisplatin- or UVB-induced cell apoptosis. It also decreases GFP-Httex1-Q74 insolubility, and reduces the size and cytotoxicity of GFP-Httex1-Q74 aggregates in PC-12 cells. CONCLUSION: This recombinant sHSPB5-Fc exhibits chaperone activity to protect cells against proteotoxicity.


Subject(s)
Protective Agents/pharmacology , alpha-Crystallin B Chain/genetics , alpha-Crystallin B Chain/pharmacology , Animals , Apoptosis/drug effects , CHO Cells , Cricetinae , Cricetulus , Cytoprotection , Epithelial Cells/chemistry , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Protective Agents/chemistry , Protective Agents/metabolism , Protein Aggregates , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , alpha-Crystallin B Chain/chemistry , alpha-Crystallin B Chain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...