Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2403131121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805267

ABSTRACT

The renal elimination pathway is increasingly harnessed to reduce nonspecific accumulation of engineered nanoparticles within the body and expedite their clinical applications. While the size of nanoparticles is recognized as crucial for their passive filtration through the glomerulus due to its limited pore size, the influence of nanoparticle charge on their transport and interactions within the kidneys remains largely elusive. Herein, we report that the proximal tubule and peritubular capillary, rather than the glomerulus, serve as primary charge barriers to the transport of charged nanoparticles within the kidney. Employing a series of ultrasmall, renal-clearable gold nanoparticles (AuNPs) with precisely engineered surface charge characteristics as multimodal imaging agents, we have tracked their distribution and retention across various kidney components following intravenous administration. Our results reveal that retention in the proximal tubules is governed not by the nanoparticle's zeta-potential, but by direct Coulombic interactions between the positively charged surface ligands of the AuNPs and the negatively charged microvilli of proximal tubules. However, further enhancing these interactions leads to increased binding of the positively charged AuNPs to the peritubular capillaries during the initial phase of elimination, subsequently facilitating their slow passage through the glomeruli and interaction with tubular components in a charge-selective manner. By identifying these two critical charge-dependent barriers in the renal transport of nanoparticles, our findings offer a fundamental insight for the design of renal nanomedicines tailored for selective targeting within the kidney, laying down a foundation for developing targeting renal nanomedicines for future kidney disease management in the clinics.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Mice , Kidney Tubules, Proximal/metabolism , Renal Elimination , Kidney/metabolism , Male
2.
ACS Appl Mater Interfaces ; 16(15): 19866-19876, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587105

ABSTRACT

The concept of multiphysics, where materials respond to diverse external stimuli, such as magnetic fields, electric fields, light irradiation, stress, heat, and chemical reactions, plays a fundamental role in the development of innovative devices. Nanomanufacturing, especially in low-dimensional systems, enhances the synergistic interactions taking place on the nanoscale. Light-matter interaction, rather than electric fields, holds great promise for achieving low-power, wireless control over magnetism, solving two major technological problems: the feasibility of electrical contacts at smaller scales and the undesired heating of the devices. Here, we shed light on the remarkable reversible modulation of magnetism using visible light in epitaxial Fe3O4/BaTiO3 heterostructure. This achievement is underpinned by the convergence of two distinct mechanisms. First, the magnetoelastic effect, triggered by ferroelectric domain switching, induces a proportional change in coercivity and remanence upon laser illumination. Second, light-matter interaction induces charged ferroelectric domain walls' electrostatic decompensations, acting intimately on the magnetization of the epitaxial Fe3O4 film by magnetoelectric coupling. Crucially, our experimental results vividly illustrate the capability to manipulate magnetic properties using visible light. This concomitant mechanism provides a promising avenue for low-intensity visible-light manipulation of magnetism, offering potential applications in multiferroic devices.

3.
ChemSusChem ; 17(2): e202301078, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37723645

ABSTRACT

Carbohydrazide electrooxidation reaction (COR) is a potential alternative to oxygen evolution reaction in water splitting process. However, the sluggish kinetics process impels to develop efficient catalysts with the aim of the widespread use of such catalytic system. Since COR concerns the adsorption/desorption of reactive species on catalysts, the electronic structure of electrocatalyst can affect the catalytic activity. Interface charge distribution engineering can be considered to be an efficient strategy for improving catalytic performance, which facilitates the cleavage of chemical bond. Herein, highly dispersed Pd nanoparticles on CeO2 /C catalyst are prepared and the COR catalytic performance is investigated. The self-driven charge transfer between Pd and CeO2 can form the local nucleophilic and electrophilic region, promoting to the adsorption of electron-withdrawing and electron-donating group in carbohydrazide molecule, which facilitates the cleavage of C-N bond and the carbohydrazide oxidation. Due to the local charge distribution, the Pd-CeO2 /C exhibits superior COR catalytic activity with a potential of 0.27 V to attain 10 mA cm-2 . When this catalyst is used for energy-efficient electrolytic hydrogen production, the carbohydrazide electrolysis configuration exhibits a low cell voltage (0.6 V at 10 mA cm-2 ). This interface charge distribution engineering can provide a novel strategy for improving COR catalytic activity.

4.
Nanotechnology ; 35(13)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38134438

ABSTRACT

Currently, numerous articles are devoted to examining the influence of geometry and charge distribution on the mechanical properties and structural stability of piezoelectric nanowires (NWs). The varied modeling techniques adopted in earlier molecular dynamics (MD) works dictated the outcome of the different efforts. In this article, comprehensive MD studies are conducted to determine the influence of varied interatomic potentials (partially charged rigid ion model, [PCRIM] ReaxFF, charged optimized many-body [COMB], and Buckingham), geometrical parameters (cross-section geometry, wire diameter, and length), and charge distribution (uniform full charges versus partially charged surface atoms) on the resulting mechanical properties and structural stability of zinc oxide (ZnO) NWs. Our optimized parameters for the Buckingham interatomic potential are in good agreement with the existing experimental results. Furthermore, we found that the incorrect selection of interatomic potentials could lead to excessive overestimate (61%) of the elastic modulus of the NW. While NW length was found to dictate the strain distribution along the wire, impacting its predicted properties, the cross-section shape did not play a major role. Assigning uniform charges for both the core and surface atoms of ZnO NWs leads to a drastic decrease in fracture properties.

5.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630210

ABSTRACT

The interface models of diamond-coated WC-Co cemented carbide (DCCC) were constructed without intermediate layers and with different interface terminals, such as intermediate layers of TiC, TiN, CrN, and SiC. The adhesion work of the interface model was calculated based on the first principle. The results show that the adhesion work of the interface was increased after adding four intermediate layers. Their effect on improving the interface adhesion performance of cemented carbide coated with diamond was ranked in descending order as follows: SiC > CrN > TiC > TiN. The charge density difference and the density of states were further analyzed. After adding the intermediate layer, the charge distribution at the interface junction was changed, and the electron cloud at the interface junction overlapped to form a more stable chemical bond. Additionally, after adding the intermediate layer, the density of states of the atoms at the interface increased in the energy overlapping area. The formant formed between the electronic orbitals enhances the bond strength. Thus, the interface bonding performance of DCCC was enhanced. Among them, the most obvious was the interatomic electron cloud overlapping at the diamond/SiCC-Si/WC-Co interface, its bond length was the shortest (1.62 Å), the energy region forming the resonance peak was the largest (-5-20 eV), and the bonding was the strongest. The interatomic bond length at the diamond/TiNTi/WC-Co interface was the longest (4.11 Å), the energy region forming the resonance peak was the smallest (-5-16 eV), and the bonding was the weakest. Comprehensively considering four kinds of intermediate layers, the best intermediate layer for improving the interface bonding performance of DCCC was SiC, and the worst was TiN.

6.
Materials (Basel) ; 16(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570056

ABSTRACT

The paper presents a study of the crystal structure of anhydrous halides LiF, LiCl and LiBr using density functional theory. Models composed of 125 atoms were used for this study. The theoretical values of the lattice parameters and the distribution of charges in the crystals were determined. Using the assumed models at the level of theory DFT/B3LYP/6-31+g*, the theoretical infrared spectra of lithium halides (LiF, LiCl and LiBr) were calculated for the first time. Additionally, measurements of experimental far-infrared (FIR) spectra were performed for these salts. All the obtained theoretical values were compared with experimental data obtained by us and those available in the literature.

7.
ACS Appl Mater Interfaces ; 15(29): 35459-35468, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37432932

ABSTRACT

As a clean, sustainable energy source, sound can carry a wealth of information and play a huge role in the Internet of Things era. In recent years, triboelectric acoustic sensors have received increasing attention due to the advantages of self-power supply and high sensitivity. However, the triboelectric charge is susceptible to ambient humidity, which reduces the reliability of the sensor and limits the application scenarios significantly. In this paper, a highly moisture-resistant fluorinated polyimide composited with an amorphous fluoropolymer film was prepared. The charge injection performance, triboelectric performance, and moisture resistance of the composite film were investigated. In addition, we developed a self-powered, highly sensitive, and moisture-resistant porous-structure acoustic sensor based on contact electrification. The detection characteristics of the acoustic sensor are also obtained.

8.
Sci Total Environ ; 892: 164462, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37263441

ABSTRACT

As water scarcity drives the use of more saline water sources, contaminant fate and transport models must capture the impact of high concentrations of alkaline earth metal ions (AEMs) and background electrolytes in these more complex waters. By utilizing macroscopic adsorption data from various electrolyte systems, a Charge Distribution - Multisite Complexation (CD-MUSIC) model, capable of incorporating electrolyte adsorption, was able to accurately simulate the adsorption behavior of alkaline earth metal ions onto goethite. The modeling effort was guided by previous spectroscopic and surface complexation modeling of alkaline earth metal adsorption and built on previous CD-MUSIC modeling that accounted for changes in crystal face contributions to the surface site density as a function of specific surface area. The model was constrained to consider only two dominant surface complex species for each metal ion adsorption reaction. These two species were selected from 44 possible species through objective curve fitting of single-solute macroscopic adsorption data. While most of the alkaline earth metal surface complexes formed outer-sphere complexes at the goethite surface, an inner-sphere species was utilized for Mg2+. With the surface complex species and equilibrium constants obtained from this study, the calibrated model successfully predicted alkaline earth metal ion adsorption over a wide range of solution and surface conditions; the model predictions encompassed a wide range of pH (5-11), solute/solid ratio (1.37 × 10-5- 8.33 × 10-4 mol-solute/g-solid), ionic strengths (0.01 M - 0.7 M), and background electrolytes (Na+, Cs+, Rb+, Cl-, and NO3-) using the same crystal face contribution methodology for site density, capacitance values, and surface acidity constants adopted for proton and cadmium adsorption in previous work (Han and Katz, 2019). Model simulations for a range of background water chemistries demonstrated the potential for Mg2+ to reduce Cd2+ adsorption to goethite in model seawater and oil- and gas-produced waters.


Subject(s)
Iron Compounds , Music , Adsorption , Minerals/chemistry , Iron Compounds/chemistry , Ions , Metals, Alkaline Earth
9.
Polymers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242869

ABSTRACT

Understanding the ionic structure and charge transport on proton exchange membranes (PEMs) is crucial for their characterization and development. Electrostatic force microscopy (EFM) is one of the best tools for studying the ionic structure and charge transport on PEMs. In using EFM to study PEMs, an analytical approximation model is required for the interoperation of the EFM signal. In this study, we quantitatively analyzed recast Nafion and silica-Nafion composite membranes using the derived mathematical approximation model. The study was conducted in several steps. In the first step, the mathematical approximation model was derived using the principles of electromagnetism and EFM and the chemical structure of PEM. In the second step, the phase map and charge distribution map on the PEM were simultaneously derived using atomic force microscopy. In the final step, the charge distribution maps of the membranes were characterized using the model. There are several remarkable results in this study. First, the model was accurately derived as two independent terms. Each term shows the electrostatic force due to the induced charge of the dielectric surface and the free charge on the surface. Second, the local dielectric property and surface charge are numerically calculated on the membranes, and the calculation results are approximately valid compared with those in other studies.

10.
ACS Nano ; 17(11): 10280-10290, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37218668

ABSTRACT

Although molecular piezoelectric materials are ideal constituents for next-generation electronic microdevices, their weak piezoelectric coefficients which restrict their practical applications need to be enhanced by some strategies. Herein, a series of d-phenylalanine derivatives are synthesized and an increased molecular piezoelectric coefficient of their assemblies is achieved by acid doping. The acid doping can increase the asymmetric distribution of charges in the molecules and in turn molecular polarizability, leading to the enhanced molecular piezoelectricity of assemblies. The effective piezoelectric coefficients can be promoted up to 38.5 pm V-1 and four times those without doping, which is also higher than those obtained by the reported methods. Moreover, the piezoelectric energy harvesters can generate voltage up to 3.4 V and current up to 80 nA. This practical strategy can enhance piezoelectric coefficients without varying the crystal structures of the assemblies, which may inspire future molecular design of organic functional materials.

11.
Angew Chem Int Ed Engl ; 62(30): e202303129, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37117155

ABSTRACT

Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.

12.
Angew Chem Int Ed Engl ; 62(26): e202300873, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-36883799

ABSTRACT

The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2 O is well known to affect the dissociation process, but H2 O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single-atom sites (IrRu DSACs) to tune the H2 O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010  N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2 O show that the M-H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction.


Subject(s)
Electricity , Hydrogen , Adsorption , Kinetics , Water
13.
Eur Biophys J ; 52(1-2): 121-127, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36810604

ABSTRACT

In applications of bio-inspired nanoparticles (NPs), their composition is often optimised by including ionizable lipids. I use a generic statistical model to describe the charge and potential distributions in lipid nanoparticles (LNPs) containing such lipids. The LNP structure is considered to contain the biophase regions separated by narrow interphase boundaries with water. Ionizable lipids are uniformly distributed at the biophase-water boundaries. The potential is there described at the mean-filed level combining the Langmuir-Stern equation for ionizable lipids and the Poisson-Boltzmann equation for other charges in water. The latter equation is used outside a LNP as well. With physiologically reasonable parameters, the model predicts the scale of the potential in a LNP to be rather low, smaller or about [Formula: see text], and to change primarily near the LNP-solution interface or, more precisely, inside an NP near this interface because the charge of ionizable lipids becomes rapidly neutralized along the coordinate towards the center of a LNP. The extent of dissociation-mediated neutralization of ionizable lipids along this coordinate increases but only slightly. Thus, the neutralization is primarily due to the negative and positive ions related to the ionic strength in solution and located inside a LNP.


Subject(s)
Lipids , Nanoparticles , Lipids/chemistry , RNA, Small Interfering , Nanoparticles/chemistry , Osmolar Concentration
14.
ACS Appl Mater Interfaces ; 15(9): 11691-11702, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36812350

ABSTRACT

An anionic redox reaction is an extraordinary method for obtaining high-energy-density cathode materials for sodium-ion batteries (SIBs). The commonly used inactive-element-doped strategies can effectively trigger the O redox activity in several layered cathode materials. However, the anionic redox reaction process is usually accompanied by unfavorable structural changes, large voltage hysteresis, and irreversible O2 loss, which hinders its practical application to a large extent. In the present work, we take the doping of Li elements into Mn-based oxide as an example and reveal the local charge trap around the Li dopant will severely impede O charge transfer upon cycling. To overcome this obstacle, additional Zn2+ codoping is introduced into the system. Theoretical and experimental studies show that Zn2+ doping can effectively release the charge around Li+ and homogeneously distribute it on Mn and O atoms, thus reducing the overoxidation of O and improving the stability of the structure. Furthermore, this change in the microstructure makes the phase transition more reversible. This study aimed to provide a theoretical framework for further improve the electrochemical performance of similar anionic redox systems and provide insights into the activation mechanism of the anionic redox reaction.

15.
J Comput Chem ; 44(11): 1148-1157, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36645195

ABSTRACT

In electronic structure theory, the charge distribution of a nucleus is usually approximated by point charge, Gaussian function, or homogeneously charged sphere, because they have an analytical nuclear attraction integral (NAI) formula. However, these functions do not always provide good approximations for nuclei with large mass number. The two-parameter Fermi (2pF) distribution and more realistic distributions describe well even nuclei with large mass number but do not have analytical NAI formulas. We propose a new function model called augmented Gaussian 12 (AG12), which has sufficient number of parameters and analytical NAI formulas. With the proposed fitting scheme, the AG12 charge distribution model optimally reproduces 2pF and the more realistic charge distributions. Moreover, AG12 fitted to 2pF model reproduces the energy difference of hydrogen-like ions well between the Gaussian distribution and 2pF models. Calculations using AG12 also suggested necessity to use more realistic nuclear charge distributions than 2pF.

16.
Expert Opin Drug Discov ; 18(3): 287-302, 2023 03.
Article in English | MEDLINE | ID: mdl-36720196

ABSTRACT

INTRODUCTION: Antimicrobial peptides (AMP) have received particular attention due to their capacity to kill bacteria. Although much is known about them, peptides are currently being further researched. A large number of AMPs have been discovered, but only a few have been approved for topical use, due to their promiscuity and other challenges, which need to be overcome. AREAS COVERED: AMPs are diverse in structure. Consequently, they have varied action mechanisms when targeting microorganisms or eukaryotic cells. Herein, the authors focus on linear peptides, particularly those that are alpha-helical structured, and examine how their charge distribution and hydrophobic amino acids could modulate their biological activity. EXPERT OPINION: The world currently needs urgent solutions to the infective problems caused by resistant pathogens. In order to start the race for antimicrobial development from the charge distribution viewpoint, bioinformatic tools will be necessary. Currently, there is no software available that allows to discriminate charge distribution in AMPs and predicts the biological effects of this event. Furthermore, there is no software available that predicts the side-chain length of residues and its role in biological functions. More specialized software is necessary.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Humans , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Anti-Infective Agents/pharmacology , Amino Acids , Bacteria , Anti-Bacterial Agents/pharmacology
17.
Food Chem ; 407: 135175, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36521388

ABSTRACT

Production of high-affinity and specific antibodies to small molecules with molecular weight (MW) lower than 200 Da is challenging. Here, we designed a novel hapten, named hapten H6, for the detection of 3-methyl-quinoxaline-2-carboxylic acid (MQCA, MW of 189 Da), a residual marker of olaquindox, one of important veterinary antibiotics. The hapten H6 maintained all structural features of MQCA, especially in mulliken atomic charge distribution. Then, a monoclonal antibody (mAb) named 8C9 was obtained with an IC50 value of 0.2 µg/L, yielding a 15.5- to 88.5-fold improvement compared to previously prepared specific antibodies against MQCA. In addition, mAb 8C9 exhibited ignorable cross-reactivity with other structural analogs. Finally, a highly sensitive and specific indirect competitive ELISA based on mAb 8C9 was developed for the detection of MQCA in swine muscle and liver samples with limit of detection values of 0.04 µg/kg and 0.09 µg/kg, respectively.


Subject(s)
Antibodies, Monoclonal , Liver , Animals , Swine , Antibodies, Monoclonal/analysis , Immunoassay , Liver/chemistry , Muscles/chemistry , Haptens , Enzyme-Linked Immunosorbent Assay
18.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079976

ABSTRACT

Diamane, the thinnest sp3-hybridized diamond film, has attracted great interest due to its excellent mechanical, electronic, and thermal properties inherited from both graphene and diamond. In this study, the friction properties of surface hydrogenated and fluorinated diamane (H- and F-diamane) are investigated with dispersion-corrected density functional theory (DFT) calculations for the first time. Our calculations show that the F-diamane exhibits approximately equal friction to graphene, despite the presence of morphological corrugation induced by sp3 hybridization. Comparative studies have found that the coefficient of friction of H-diamane is about twice that of F-diamane, although they have the same surface geometric folds. These results are attributed to the packed charge surface of F-diamane, which can not only effectively shield carbon interactions from two contacting films, but also provide strong electron-electron repulsive interaction, resulting in a large interlayer distance and a small wrinkle of potential energy at the interface. The interesting results obtained in this study have enriched our understanding of the tribological properties of diamane, and are the tribological basis for the design and application of diamane in nanodevices.

19.
Environ Res ; 214(Pt 4): 114103, 2022 11.
Article in English | MEDLINE | ID: mdl-35987375

ABSTRACT

Activated carbon (AC) is negatively charged in aqueous solution, which seriously restricts its application range. Quaternary ammonium salt as a common cationic surfactant was utilized to modify the surface charge distribution of materials. The evolution of the surface charge distribution of AC modified by benzalkonium chloride (BAC), diallyl dimethyl ammonium chloride (DDA) and 3-chloro-2-hydroxypropyl tri-methyl ammonium chloride (CTA) was investigated. Results showed that the surface charge of AC modified by CTA does not change significantly. BAC has a high molecular weight, low surface electrostatic potential and large steric hindrance due to its hydrophobic long-chain alkyl. The diffusion of BAC molecules from solution to AC changed its charge distribution. But these molecules were difficult to combine with AC surface, and most of them were adsorbed into the pores of AC to form aggregates, resulting in a significant reduction in the surface area. BAC modified AC could enhance the adsorption capacity of F- in aqueous solution through electrostatic attraction, but the improvement effect was limited due to the reduction of surface area, and the maximum adsorption capacity was only increased from 1.18 to 3.31 mg/g. DDA has a small molecular weight and high surface electrostatic potential and easily binds to the surface of AC. Some CC bonds in DDA combined with the ionized hydrogen ions derived from phenolic hydroxyl groups in AC to form carbonium-ions. Then, they could react with AC to form ether bonds, causing DDA to be closely bonded with the surface of AC. DDA realizes the targeted regulation of the surface charge distribution of AC, it has little effect on the porous structure of AC. The modified AC still maintained strong adsorption capacity, and the maximum adsorption capacity for F- was 54.98 mg/g. Meanwhile, a large number of zeolites were loaded on the modified AC and formed coating structures.


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Adsorption , Ammonium Chloride , Charcoal/chemistry , Salts , Water/chemistry , Water Pollutants, Chemical/chemistry
20.
J Colloid Interface Sci ; 628(Pt B): 446-455, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35998467

ABSTRACT

Electrocatalytic urea oxidation reaction (UOR) is a prospective method to substitute the slow oxygen evolution reaction (OER) and solve the problem of urea-rich water pollution due to the low thermodynamic voltage, but its complex six-electron oxidation process greatly impedes the overall efficiency of electrolysis. Here, density functional theory (DFT) calculations imply that the metallic Ni3S2 and semiconductive MoS2 could form Mott-Schottky catalyst because of the suitable band structure. Therefore, we synthesized MoS2/Ni3S2 electrocatalyst by a simple hydrothermal method, and studied its UOR and hydrogen evolution reaction (HER) performance. The formed MoS2/Ni3S2 Schottky heterojunction is only required 109  and 166 mV to obtain ±10 mA cm-2 for UOR and HER, respectively, showing great bifunctional catalytic activity. Moreover, the full urea electrolysis driven by MoS2/Ni3S2 delivers 10 and 100 mA cm-2 at a relatively low potential of 1.44 and 1.59 V. Comprehensive experiments and DFT calculations demonstrate that the MoS2/Ni3S2 Schottky heterojunction causes self-driven charge transfer at the interface and forms built-in electric field, which is not only benefit to reduce H* adsorption energy, but also helps to adjust the absorption and directional distribution of urea molecules, thereby promoting the activity of decomposition of water and urea. This research furnishes a tactic to devise more efficient catalysts for H2 generation and the treatment of urea-rich water pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...