Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Pharmacol Res ; 206: 107264, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876443

ABSTRACT

Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.

2.
Mol Pharm ; 21(7): 3256-3267, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856975

ABSTRACT

Prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer cells can serve as a target for imaging and radioligand therapy (RLT). Previously, [68Ga]Ga-P16-093, containing a Ga(III) chelator, N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), displayed excellent PSMA-targeting properties and showed a high tumor uptake and retention useful for diagnosis in prostate cancer patients. Recently, [177Lu]Lu-PSMA-617 has been approved by the U.S. food and drug administration (FDA) for the treatment of prostate cancer patients. Derivatives of PSMA-093 using AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), as the chelator, were designed as alternative agents forming complexes with both diagnostic and therapeutic radiometals, such as gallium-68 (log K = 22.18) or lutetium-177 (log K = 21.85). The aim of this study is to evaluate AAZTA-Gly-O-(methylcarboxy)-Tyr-Phe-Lys-NH-CO-NH-Glu (designated as AZ-093, 1) leading to a gallium-68/lutetium-177 theranostic pair as potential PSMA targeting agents. Synthesis of the desired precursor, AZ-093, 1, was effectively accomplished. Labeling with either [68Ga]GaCl3 or [177Lu]LuCl3 in a sodium acetate buffer solution (pH 4-5) at 50 °C in 5 to 15 min produced either [68Ga]Ga-1 or [177Lu]Lu-1 with high yields and excellent radiochemical purities. Results of in vitro binding studies, cell uptake, and retention (using PSMA-positive prostate carcinoma cells line, 22Rv1-FOLH1-oe) were comparable to that of [68Ga]Ga-P16-093 and [177Lu]Lu-PSMA-617, respectively. Specific cellular uptake was determined with or without the competitive blocking agent (2 µM of "cold" PSMA-11). Cellular binding and internalization showed a time-dependent increase over 2 h at 37 °C in the PSMA-positive cells. The cell uptakes were completely blocked by the "cold" PSMA-11 suggesting that they are competing for the same PSMA binding sites. In the mouse model with implanted PSMA-positive tumor cells, both [68Ga]Ga-1 and [177Lu]Lu-1 displayed excellent uptake and retention in the tumor. Results indicate that [68Ga]Ga/[177Lu]Lu-1 (68Ga]Ga/[177Lu]Lu-AZ-093) is potentially useful as PSMA-targeting agent for both diagnosis and radiotherapy of prostate cancer.


Subject(s)
Antigens, Surface , Gallium Radioisotopes , Glutamate Carboxypeptidase II , Lutetium , Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Lutetium/chemistry , Antigens, Surface/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Cell Line, Tumor , Radioisotopes/chemistry , Animals , Chelating Agents/chemistry , Prostate-Specific Antigen/metabolism , Tissue Distribution , Mice , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Positron Emission Tomography Computed Tomography/methods
3.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892142

ABSTRACT

Scandium (Sc) isotopes have recently attracted significant attention in the search for new radionuclides with potential uses in personalized medicine, especially in the treatment of specific cancer patient categories. In particular, Sc-43 and Sc-44, as positron emitters with a satisfactory half-life (3.9 and 4.0 h, respectively), are ideal for cancer diagnosis via Positron Emission Tomography (PET). On the other hand, Sc-47, as an emitter of beta particles and low gamma radiation, may be used as a therapeutic radionuclide, which also allows Single-Photon Emission Computed Tomography (SPECT) imaging. As these scandium isotopes follow the same biological pathway and chemical reactivity, they appear to fit perfectly into the "theranostic pair" concept. A step-by-step description, initiating from the moment of scandium isotope production and leading up to their preclinical and clinical trial applications, is presented. Recent developments related to the nuclear reactions selected and employed to produce the radionuclides Sc-43, Sc-44, and Sc-47, the chemical processing of these isotopes and the main target recovery methods are also included. Furthermore, the radiolabeling of the leading chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and its structural analogues with scandium is also discussed and the advantages and disadvantages of scandium complexation are evaluated. Finally, a review of the preclinical studies and clinical trials involving scandium, as well as future challenges for its clinical uses and applications, are presented.


Subject(s)
Chelating Agents , Heterocyclic Compounds, 1-Ring , Nuclear Medicine , Radioisotopes , Radiopharmaceuticals , Scandium , Scandium/chemistry , Humans , Radioisotopes/chemistry , Radioisotopes/therapeutic use , Chelating Agents/chemistry , Chelating Agents/therapeutic use , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use , Heterocyclic Compounds, 1-Ring/chemistry , Nuclear Medicine/methods , Animals , Positron-Emission Tomography/methods , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Tomography, Emission-Computed, Single-Photon/methods
4.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787374

ABSTRACT

Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and ß-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.


Subject(s)
Candida albicans , Candidiasis , Animals , Candida albicans/immunology , Mice , Candidiasis/immunology , Candidiasis/prevention & control , Fungal Vaccines/immunology , Disease Models, Animal , Virulence , Female , Cytokines/metabolism , Biofilms/drug effects , Biofilms/growth & development
5.
Sci Rep ; 14(1): 7663, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561404

ABSTRACT

Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.


Subject(s)
Lolium , Metals, Heavy , Soil Pollutants , Copper/metabolism , Cadmium/metabolism , Chelating Agents/pharmacology , Biodegradation, Environmental , Soil Pollutants/metabolism , Metals, Heavy/analysis , Acids/metabolism , Soil/chemistry
6.
Article in English | MEDLINE | ID: mdl-38441364

ABSTRACT

Soil contamination is a significant environmental issue that poses a threat to human health and the ecosystems. Conventional remediation techniques, such as excavation and landfilling, are often expensive, disruptive, and unsustainable. As a result, there has been growing interest in developing sustainable remediation strategies that are cost-effective, environmentally friendly, and socially acceptable. One such solution is phytoextraction: a nature-based approach that uses the abilities of hyperaccumulator plants to uptake and accumulate metals and metalloids (potentially toxic elements [PTE]) without signs of toxicity. Once harvested, plant biomass can be treated to reduce its volume and weight by combustion, thus obtaining bioenergy, and the ashes can be used for the recovery of metals or in the construction industry. However, phytoextraction has shown variable effectiveness due to soil conditions and plant species specificity, which has led researchers to develop additional approaches known as assisted phytoextraction to enhance its success. Assisted phytoextraction is a remediation strategy based on modifying certain plant traits or using different materials to increase metal uptake or bioavailability. This review article provides a practical and up-to-date overview of established strategies and the latest scientific advancements in assisted phytoextraction. Our focus is on improving plant performance and optimizing the uptake, tolerance, and accumulation of PTE, as well as the accessibility of these contaminants. While we highlight the advantages of using hyperaccumulator plants for assisted phytoextraction, we also address the challenges and limitations associated with this approach. Factors such as soil pH, nutrient availability, and the presence of other contaminants can affect its efficiency. Furthermore, the real-world challenges of implementing phytoextraction on a large scale are discussed and strategies to modify plant traits for successful phytoremediation are presented. By exploring established strategies and the latest scientific developments in assisted phytoextraction, this review provides valuable guidance for optimizing a sustainable, nature-based technology. Integr Environ Assess Manag 2024;00:1-20. © 2024 SETAC.

7.
Biomedicines ; 12(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38540171

ABSTRACT

This review explores ferroptosis, a form of regulated cell death reliant on iron-induced phospholipid peroxidation, in diverse physiological and pathological contexts, including neurodegenerative disorders, and ischemia-reperfusion. In the realm of cardiovascular diseases, it significantly contributes to cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and restrictive cardiomyopathy. Ferroptosis involves intricate interactions within cellular iron metabolism, lipid peroxidation, and the balance between polyunsaturated and monounsaturated fatty acids. Molecularly, factors like p53 and NRF2 impact cellular susceptibility to ferroptosis under oxidative stress. Understanding ferroptosis is vital in cardiomyopathies, where cardiac myocytes heavily depend on aerobic respiration, with iron playing a pivotal role. Dysregulation of the antioxidant enzyme GPX4 is linked to cardiomyopathies, emphasizing its significance. Ferroptosis's role in myocardial ischemia-reperfusion injury, exacerbated in diabetes, underscores its relevance in cardiovascular conditions. This review explores the connection between ferroptosis, the NRF2 pathway, and atherosclerosis, emphasizing their roles in protecting cells from oxidative stress and maintaining iron balance. It discusses the use of iron chelating agents in managing iron overload conditions, with associated benefits and challenges. Finally, it highlights the importance of exploring therapeutic strategies that enhance the glutathione (GSH) system and the potential of natural compounds like quercetin, terpenoids, and phenolic acids in reducing oxidative stress.

8.
Front Cell Infect Microbiol ; 14: 1346565, 2024.
Article in English | MEDLINE | ID: mdl-38469346

ABSTRACT

Stenotrophomonas maltophilia are ubiquitous Gram-negative bacteria found in both natural and clinical environments. It is a remarkably adaptable species capable of thriving in various environments, thanks to the plasticity of its genome and a diverse array of genes that encode a wide range of functions. Among these functions, one notable trait is its remarkable ability to resist various antimicrobial agents, primarily through mechanisms that regulate the diffusion across cell membranes. We have investigated the Mla ABC transport system of S. maltophilia, which in other Gram-negative bacteria is known to transport phospholipids across the periplasm and is involved in maintaining outer membrane homeostasis. First, we structurally and functionally characterized the periplasmic substrate-binding protein MlaC, which determines the specificity of this system. The predicted structure of the S. maltophilia MlaC protein revealed a hydrophobic cavity of sufficient size to accommodate the phospholipids commonly found in this species. Moreover, recombinant MlaC produced heterologously demonstrated the ability to bind phospholipids. Gene knockout experiments in S. maltophilia K279a revealed that the Mla system is involved in baseline resistance to antimicrobial and antibiofilm agents, especially those with divalent-cation chelating activity. Co-culture experiments with Pseudomonas aeruginosa also showed a significant contribution of this system to the cooperation between both species in the formation of polymicrobial biofilms. As suggested for other Gram-negative pathogenic microorganisms, this system emerges as an appealing target for potential combined antimicrobial therapies.


Subject(s)
Anti-Infective Agents , Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Humans , Stenotrophomonas maltophilia/metabolism , Gram-Negative Bacteria , Biofilms , Cell Membrane , Anti-Infective Agents/metabolism , Gram-Negative Bacterial Infections/microbiology
9.
Ecotoxicol Environ Saf ; 272: 116113, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38364761

ABSTRACT

Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Biodegradation, Environmental , Chelating Agents/pharmacology , Feasibility Studies , Soil Pollutants/analysis , Plants/metabolism , Metals, Heavy/analysis , Soil
10.
Crit Rev Toxicol ; 54(1): 55-67, 2024 01.
Article in English | MEDLINE | ID: mdl-38270138

ABSTRACT

Aminocarboxylic acid (monoamine-based) chelating agents such as GLDA, MGDA, NTA, and EDG are widely used in a variety of products and processes. In the European Union, based on the Green Deal and the Chemicals Strategy for Sustainability (CSS), there is an increasing tendency to speed up chemical hazard evaluation and to regulate chemicals by grouping substances based on molecular structure similarity. Recently, it was proposed to group polycarboxylic acid monoamines, hydroxy derivatives and their salts with monovalent cations, and to consider all group members as potential carcinogens based on the official CLP classification of one group member, viz. NTA, which is classified as suspected carcinogen Cat. 2. In this review, we show that a grouping approach for harmonized classification and labeling based on molecular structure alone, disregarding existing animal test data as well as current scientific and regulatory knowledge, would result in incorrect classification. Using such a simplistic, although considered pragmatic approach, classification of all group members upfront would not improve protection of human health. Instead, it could not only lead to unnecessary additional vertebrate animal testing but also to onerous and disproportionate restrictions being placed on the use of these valuable substances; some of these even being considered as green chemicals.


Subject(s)
Carcinogens , Chelating Agents , Animals , Humans , Amines , Risk Assessment
11.
Ecotoxicol Environ Saf ; 272: 116027, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38295733

ABSTRACT

Deferiprone, generally, is considered an important chelating agent for Fe3+ overload. From a literature data analysis, a lack of information on the interaction of this molecule toward a series of metal cations emerged, inducing to fill out the topic. The complexing ability of deferiprone toward Ca2+, Mg2+, Cd2+ and Pb2+ was studied by potentiometry and 1H NMR spectroscopy, in KCl aqueous solutions at different ionic strength values (0.1 ≤ I/mol dm-3 ≤ 1.0) and T = 298.15 K. The same speciation model featured by the ML, ML2, ML3 and ML(OH) (M = metal and L = deferiprone or DFP) species was obtained for Cd2+ and Pb2+; the formation constants calculated at infinite dilution are: logTß = 7.23±0.02, 12.47±0.03, 16.70±0.04, and -2.53±0.04, respectively for Cd2+ and 9.91±0.01, 15.99±0.02, 19.93±0.05 and 0.99±0.02 for Pb2+. Only two species, namely ML and ML2, were determined for Ca2+ and Mg2+, whose formation constants at infinite dilution are respectively: 3.72±0.01 and 6.50±0.02, for the first one, 5.31±0.01 and 9.58±0.01, for the second. The ligand sequestering ability and affinity toward M2+ were evaluated by determining the pL0.5 and pM parameters at different pHs and ionic strengths. The results suggest that deferiprone has the best complexing and sequestering ability toward Pb2+, followed by Cd2+, Mg2+ and Ca2+, respectively. 1H NMR studies confirmed the DFP affinity for Cd2+ and Pb2+, and in combination with DFT calculations showed that metal cations are bound to the hydroxo-oxo moiety of the pyridinone ring. The data reported in this study provide information on the possible employment of a small molecule like deferiprone, as a chelating and sequestering agent for Pb2+ accumulation or overload from environmental and biological matrices.


Subject(s)
Cadmium , Lead , Deferiprone , Cadmium/chemistry , Cations , Models, Theoretical , Chelating Agents/chemistry
12.
Diabetes Metab J ; 48(1): 59-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38173374

ABSTRACT

BACKGRUOUND: The inflammatory process is known to be an integral part of the pathophysiology of type 2 diabetes mellitus (T2DM). The "labile," redox-active iron, serving as a catalyst in Fenton reaction, producing the deleterious reactive oxygen species, triggering and maintaining inflammation, is hypothesized to play a causative role in this process. Concenter Biopharma continued the development of a new platform of iron chelators (Zygosids), first initiated at the Hebrew University of Jerusalem, Israel (HUJI), acting via the novel mechanism, based on a sequestration of the labile redox-active iron and its substitution by zinc or gallium. The mode of action of Zygosids is based on the higher affinity of the metal-binding moiety of the complex to Fe3+ in comparison to already bound ion, leading to rapid release of the ion of another metal and chelation of Fe3+. Concomitantly, zinc ion, released by the complex, is known for its antidiabetic and anti-inflammatory role. METHODS: The therapeutic effect of zinc-desferrioxamine (Zygosid-50) and gallium-desferrioxamine, was tested on fat sand rat (Psammomys obesus) model of diet-induced T2DM and on Leprdb transgenic diabetic mice. RESULTS: Zygosids demonstrated an ability to noticeably reduce blood glucose and insulin levels and improve the lipid profile. Moreover, an ability to mitigate insulin resistance by >90% was shown on the sand rat model. In addition, a potent anti-inflammatory effect, expressed as a diminishment of the proinflammatory cytokines in tissue levels, was demonstrated. CONCLUSION: Zygosids demonstrated robust therapeutic efficacy in treatment of T2DM. Importantly, no adverse effects were detected, in all the experiments, indicating high safety profile.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gallium , Animals , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Iron/metabolism , Iron/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Zinc/therapeutic use , Gerbillinae/metabolism , Gallium/therapeutic use , Anti-Inflammatory Agents/therapeutic use
13.
Regul Toxicol Pharmacol ; 147: 105540, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070761

ABSTRACT

Aminocarboxylic acid (ethylenediamine-based) chelating agents such as DTPA are widely used in a variety of products and processes. Recently, DTPA was classified in the European Union as a developmental toxicant CLP Category 1B. However, according to the CLP regulation (CLP, 2008) classification as a developmental toxicant requires a chemical to possess an intrinsic, specific property to do so. This paper provides overwhelming evidence that shows the developmental toxicity only seen at a sustained high dose of 1000 mg DTPA/kg bw/day in rats during pregnancy is mediated by zinc depletion which leads to non-specific secondary effects associated with zinc deficiency. Therefore, based on the CLP regulation itself, viz. the lack of a specific, intrinsic property, supported by significant differences in zinc kinetics and physiology between pregnant rats and pregnant women, DTPA should not be classified as a developmental toxicant. Moreover, classification for developmental toxicity resulting from zinc deficiency, and only observed at high doses, would not increase protection of human health; instead, it will only lead to onerous and disproportionate restrictions being placed on the use of this substance.


Subject(s)
Chelating Agents , Zinc , Female , Rats , Humans , Pregnancy , Animals , Chelating Agents/toxicity , Zinc/toxicity , Pentetic Acid/toxicity
14.
Biometals ; 37(2): 433-445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37987955

ABSTRACT

Environmental mercury exposure possesses a significant risk to many human populations. At present there are no effective treatments for acute mercury toxicity. A new compound, N,N'bis-(2-mercaptoethyl) isophthalamide (NBMI), a lipophilic chelating agent was created to tightly/irreversibly bind mercury. A post hoc dose-dependent analysis of NBMI therapy was undertaken on data from a randomized controlled NBMI human treatment trial on 36 Ecuadorian gold miners with elevated urinary mercury concentrations. Study subjects were randomly assigned to receive 100 milligram (mg) NBMI/day, 300 mg NBMI/day, or placebo for 14 days. For each study subject daily mg NBMI dose/Kilogram (Kg) bodyweight were determined and plasma and urine mercury concentrations (micrograms (µg)/Liter (L)) on study day 1 (pre-NBMI treatment), 15 (after 14 days of NBMI treatment) and 45 (30 days after NBMI treatment) were correlated with NBMI dosing using the linear regression statistic in SAS. Regression revealed significant inverse correlations between increasing per mg NBMI/Kg bodyweight/day and reduced concentrations of urinary and plasma mercury on study day 15 (reduced by in urine = 18-20 µg/L and plasma = 2 µg/L) and study day 30 (reduced by in urine = 15-20 µg/L and plasma = 4 µg/L) and significant correlations between reductions in mercury concentrations in urine and plasma. Significant 30% reductions in urinary mercury concentrations per mg NBMI/Kg bodyweight/day administered for 14 days were observed. This study supports the dose-dependent ability of NBMI therapy to significantly reduce mercury concentrations, particularly in the urine, in an acutely mercury exposed human population. NBMI therapy should be evaluated in other mercury exposed populations.


Subject(s)
Mercury , Humans , Mercury/toxicity , Chelating Agents , Environmental Exposure , Antioxidants , Plasma/chemistry
15.
Am J Health Syst Pharm ; 81(7): e159-e165, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38141216

ABSTRACT

PURPOSE: Cobalt metallosis is a rare but dangerous complication of total joint arthroplasty resulting from deterioration of the joint leading to metal-on-metal friction and breakdown. Potential manifestations vary in severity and include dilated cardiomyopathy, thyroid dysfunction, cognitive disturbances, neuropathy, fatigue, and weakness. The therapeutic role of N-acetylcysteine in metallosis has been investigated due to its ability to chelate with heavy metal ions, such as cobalt and chromium. SUMMARY: Here we report the case of a 71-year-old female who presented with suspected metallosis diagnosed in the outpatient setting due to symptoms of significant weight loss and failure to thrive. This metallosis was secondary to the hardware breakdown of a left knee revision roughly 6 years previously. The patient was not a surgical candidate due to her poor nutrition status and was started on nasojejunal tube feeds along with N-acetylcysteine 600 mg by mouth twice daily for 45 days. The patient's serum cobalt levels decreased from 61.7 µg/L on admission to 16.2 µg/L prior to her undergoing proper revision of the left knee roughly 2 months after admission to the hospital. The patient tolerated treatment well and was able to be discharged the day after surgery, with no further complaints or complications. CONCLUSION: This case report contributes to the body of literature suggesting that administration of N-acetylcysteine can reduce serum cobalt concentrations, without notable adverse effects, in the context of prosthetic knee-associated metallosis.


Subject(s)
Acetylcysteine , Cobalt , Aged , Female , Humans , Acetylcysteine/therapeutic use , Chromium , Cobalt/blood , Metals/adverse effects
16.
Carbohydr Res ; 535: 109012, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157586

ABSTRACT

To understand the regioselectivity observed in the allylation of pyrimidine nucleosides and to identify the factors directing the reaction, a theoretical study of the regioselective allylation was carried out. Several key points were considered such as: the structure of the deprotonated nucleobase in the presence of Na+; the effect of the solvent on the dissociation and aggregation reactions of thymidine/Na+ ion pair; and the likely allylation reaction mechanisms involved. The results showed that the regioselectivity observed experimentally can be attributed to a greater stability of a dimeric form coupled to an increase of the reaction barrier in THF due to larger Na+ binding to the nucleobase.


Subject(s)
Pyrimidine Nucleosides , Pyrimidine Nucleosides/chemistry , Thymidine
17.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38054971

ABSTRACT

Host nutritional immunity utilizes metal deprivation to help prevent microbial infection. To investigate bacterial adaptation to such restrictive conditions, we conducted experimental evolution with two metal sequestering agents. Ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentamethylene phosphonic acid (DTPMP) were selected as ligands because they differentially affect cellular levels of iron, manganese and zinc in Escherichia coli. Mutants of E. coli strain BW25113 were isolated after cultivation at sub-minimum inhibitory concentration (MIC) chelant levels and genetic changes potentially responsible for tolerance were identified by whole-genome sequencing. In EDTA-selected strains, mutations in the promoter region of yeiR resulted in elevated gene expression. The yeiR product, a zinc-specific metallochaperone, was confirmed to be primarily responsible for EDTA resistance. Similarly, in two of the DTPMP-selected strains, a promoter mutation increased expression of the fepA-entD operon, which encodes components of the ferric-enterobactin uptake pathway. However, in this case improved DTPMP tolerance was only detectable following overexpression of FepA or EntD in trans. Additional mutations in the cadC gene product, an acid-response regulator, preserved the neutrality of the growth medium by constitutively activating expression of the cadAB regulon. This study uncovers specific resistance mechanisms for zinc and iron starvation that could emerge by selection against host nutritional immunity or competition with heterologous metallophores. It also provides insight into the specific metals affected by these two widely used chelators critical for their antibacterial mode of action.


Subject(s)
Escherichia coli , Iron , Escherichia coli/genetics , Edetic Acid , Zinc , Anti-Bacterial Agents
18.
Arch Cardiol Mex ; 93(Supl): 1-12, 2023.
Article in English | MEDLINE | ID: mdl-37913795

ABSTRACT

OBJECTIVE: Generate recommendations for the diagnosis, management, and follow-up of chronic hyperkalemia. METHOD: This consensus was made by nephrologists and cardiologists following the GRADE methodology. RESULTS: Chronic hyperkalemia can be defined as a biochemical condition with or without clinical manifestations characterized by a recurrent elevation of serum potassium levels that may require pharmacological and or non-pharmacological intervention. It can be classified as mild (K+ 5.0 to < 5.5 mEq/L), moderate (K+ 5.5 to 6.0 mEq/L) or severe (K+ > 6.0 mEq/L). Its incidence and prevalence have yet to be determined. Risk factors: chronic kidney disease, chronic heart failure, diabetes mellitus, age ≥ 65 years, hypertension, and drugs that inhibit the renin angiotensin aldosterone system (RAASi), among others. There is no consensus for the management of chronic hyperkalemia. The suggested pattern for patients is to identify and eliminate or control risk factors, provide advice on potassium intake and, for whom it is indicated, optimize RAASi therapy, administer oral potassium binders and correct metabolic acidosis. CONCLUSIONS: The recommendation is to pay attention to the diagnosis, management, and follow-up of chronic hyperkalemia, especially in patients with risk factors.


OBJETIVO: Generar recomendaciones para el diagnóstico, el manejo y el seguimiento de la hiperkalemia crónica. MÉTODO: Este consenso fue realizado por nefrólogos y cardiólogos siguiendo la metodología GRADE. RESULTADOS: La hiperkalemia crónica puede definirse como una condición bioquímica, con o sin manifestaciones clínicas, caracterizada por una elevación recurrente de las concentraciones séricas de potasio que puede requerir una intervención farmacológica, no farmacológica o ambas. Puede clasificarse en leve (K+ 5,0 a < 5,5 mEq/l), moderada (K+ 5,5 a 6,0 mEq/l) o grave (K+ > 6,0 mEq/l). Su incidencia y prevalencia no han sido claramente determinadas. Se consideran factores de riesgo la enfermedad renal crónica, la insuficiencia cardiaca crónica, la diabetes mellitus, la edad ≥ 65 años, la hipertensión arterial y el tratamiento con inhibidores del sistema renina-angiotensina-aldosterona (iSRAA), entre otros. No hay consenso sobre el manejo de la hiperkalemia crónica. Se sugiere identificar y eliminar o controlar los factores de riesgo, brindar asesoramiento sobre la ingesta de potasio y, para quien esté indicado, optimizar la terapia con iSRAA, administrar aglutinantes orales del potasio y corregir la acidosis metabólica. CONCLUSIONES: Se recomienda prestar atención al diagnóstico, el manejo y el seguimiento de la hiperkalemia crónica, en especial en los pacientes con factores de riesgo.


Subject(s)
Heart Failure , Hyperkalemia , Humans , Aged , Hyperkalemia/diagnosis , Hyperkalemia/etiology , Hyperkalemia/therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Colombia , Consensus , Potassium/therapeutic use , Heart Failure/drug therapy
19.
Chemosphere ; 344: 140386, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37813248

ABSTRACT

A new fabrication method of nanofibrous metal oxide electrode comprising Pt nanofiber (Pt-NF) covered with PbO2 on a Ti substrate was proposed. Pt-NF was obtained by performing sputtering deposition of Pt on the surface of electrospun poly(vinyl alcohol) (PVA) nanofiber on a Ti substrate, in which PVA was then removed by calcination (Ti/Pt-NF). Subsequently, by introducing PbO2 to the Ti/Pt-NF using the electrodeposition method, a nanofibrous Ti/Pt-NF/PbO2 electrode was finally obtained. Because the Ti substrate was covered by nanofibrous Pt, it had no environmental exposure and thus, was not oxidized during calcination. The crystal structure of the PbO2 mainly consisted of ß-form rather than α-form; the ß-form was suitable for electrochemical decomposition and remained stable even after 20 h of use. The nanofibrous Ti/Pt-NF/PbO2 electrodes showed 10% lower anode potential, 1.6 times higher current density at water decomposition potential, lower electrical resistance in the ion charge transfer resistance, and 2.27 times higher electrochemically active surface area than those of a planar-type Ti/Pt/PbO2 electrode, and demonstrated excellent electrochemical performance. As a result, compared with the planar electrode, the Ti/Pt-NF/PbO2 electrode showed more effective electrochemical decomposition toward nitrilotriacetic acid (80%) and ethylenediaminetetraacetic acid (83%), which are commonly used as chelating agents in nuclear decontamination.


Subject(s)
Nanofibers , Water Pollutants, Chemical , Oxidation-Reduction , Chelating Agents , Water Pollutants, Chemical/analysis , Titanium/chemistry , Oxides/chemistry , Electrodes
20.
Pharmaceutics ; 15(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37896129

ABSTRACT

A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aß1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aß in presence and in absence of Cu2+.

SELECTION OF CITATIONS
SEARCH DETAIL
...