Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Food Technol Biotechnol ; 62(1): 49-58, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38601959

ABSTRACT

Research background: The current changes in the global economy, characterised by the climate crisis and the economic and health impact of the COVID-19 pandemic, have led to a significant demand for medicinal herbs. This trend is expected to increase significantly by 2050. In this study, we investigated the biopotential of aqueous infusions of four medicinal plants: Calendula officinalis, Chelidonium majus, Teucrium chamaedrys and Alchemilla vulgaris. Experimental approach: The flavonoid analysis of the aqueous infusions of the selected plants was carried out using the RP-HPLC technique. The antiproliferative activity of the prepared aqueous plant infusions was analysed against three human cancer cell lines (MDA-MD-231, T24 and A549), while the antioxidant potential was measured using three antioxidant methods (DPPH, FRAP and Rancimat assay). Results and conclusions: T. chamaedrys had the highest total phenolics (expressed as GAE (2061±42) mg/L), free radical scavenging activity (IC50=1.9 mg/mL) and Fe(III) reducing antioxidant power (expressed as FeCl2 (9798±27) mg/L). At a concentration of 1 mg/mL, the antiproliferation of T24 by C. majus was 96 % and of MDA-MD-231 cells by A. vulgaris was 75 % after 72 h. After principal component analysis, T. chamaedrys and C. majus were grouped together. Quercetin glucoside and antioxidant capacity (DPPH) contributed the most to differentiate these infusions from the other two. Novelty and scientific contribution: This study represents a comparative analysis of the biopotential of four medicinal plants. A new RP-HPLC method was developed to separate the flavonoids in the herbal infusions. This is the first report on the presence of kaempferol-3-O-rutinoside in C. officinalis and isorhamnetin-3-O-rutinoside in A. vulgaris aqueous infusion. For the first time, C. majus has been shown to contribute to the oxidative stability of edible oil. Furthermore, this is the first comparative study on the antiproliferative activity of selected medicinal plants against the cell lines MDA-MD-231, T24 and A549.

2.
Fitoterapia ; 175: 105944, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580033

ABSTRACT

Chelidonium majus L. contained alkaloids as its main component, exhibiting various biological activities, particularly antibacterial activity. This study aimed to extract alkaloids from C. majus L. (total alkaloids) and evaluate their antibacterial activity both in vitro and in vivo. Reflux extraction was carried out on C. majus L., and the extract was purified with HPD-600 macroporous resin and 732 cation exchange resin columns. Infection modeling of Caenorhabditis elegans (C. elegans) was established to investigate the impact of Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive Staphylococcus aureus (MSSA) on the motility, longevity, and reactive oxygen species (ROS) levels of wild-type worms (N2 strain). The effects of total alkaloids on longevity and ROS were further evaluated in infected N2 worms. Additionally, the effect of total alkaloids on the stress resistance of C. elegans and the mechanism of action were investigated. By utilizing CB1370, DR26 and CF1038 transgenic strains of C. elegans to identify whether the antibacterial activity of total alkaloids was dependent on DAF-2/DAF-16 pathway. The results showed that total alkaloids exhibited a significant antibacterial activity against both MRSA and MSSA (MIC 31.25 µg/mL). Compared with MSSA, the MRSA exhibited a stronger inhibitory effect on the movement behavior and development of worms, along with faster pathogenicity and unique virulence factors. Total alkaloids also displayed the ability to extend the lifespan of C. elegans under oxidative stress and heat stress, and reduce the expression of ROS. The antibacterial activity of total alkaloids was primarily dependent on the DAF-2/DAF-16 pathway, and the presence of functional DAF-2 was deemed essential in total alkaloids mediated immune response against MRSA. Moreover, the antibacterial and anti-infection effects of total alkaloids were found to be associated with the daf-16 gene fragment.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Caenorhabditis elegans , Chelidonium , Methicillin-Resistant Staphylococcus aureus , Caenorhabditis elegans/drug effects , Animals , Alkaloids/pharmacology , Alkaloids/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Chelidonium/chemistry , Reactive Oxygen Species/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Longevity/drug effects , Caenorhabditis elegans Proteins , Plant Extracts/pharmacology , Plant Extracts/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Chelidonium majus
3.
Chin Med ; 19(1): 65, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671520

ABSTRACT

BACKGROUND: Chelidonium majus is a well-known traditional Chinese medicine, and has been reported of the effect in relieving cough and asthma. However, the mechanism of action is still unknown. METHODS: Asthmatic SD rats were first sensitized and established through ovalbumin (OVA) motivation. Subsequently, Hematoxylin and eosin (H&E) staining, Masson's trichrome (Masson) staining, Periodic acid-Schiff (PAS) staining and inflammatory cytokines assay of interleukin (IL)-4, IL-6, IL-17 were implemented to evaluate the protective effects of Chelidonium majus on asthma. Then, the effects of Chelidonium majus and their molecular mechanisms of action on asthma were detected based on the integration of transcriptomics and metabolomics analyses. RESULTS: After administration with Chelidonium majus, the histological injuries of inflammation, collagen deposition and mucus secretion in lungs were attenuated and the serum inflammatory cytokines perturbations were also converted. Furthermore, integrated analysis revealed that after Chelidonium majus treatment, 7 different expression genes (DEGs) (Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9) and 9 metabolic biomarkers (ADP, Xanthosine, Hypoxanthine, Inosine, prostaglandin E2 (PGE2), prostaglandin F2a (PGF2a), phosphatidylserine, Creatine and LysoPC (10:0)) were discovered to be connected with the enrichment metabolic pathways, including Purine metabolism, Arachidonic acid metabolism, Arginine and proline metabolism and Glycerophospholipid metabolism. The obtained metabolic biomarkers and DEGs were mainly related to energy metabolism and inflammation, and may be potential therapeutic targets. CONCLUSION: Chelidonium majus relieved OVA-induced asthma in rats by regulating the Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9 genes expression to restore the disorders in energy metabolism and inflammation.

4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047332

ABSTRACT

The search for new substances with cytotoxic activity against various cancer cells, especially cells that are very resistant to currently used chemotherapeutic agents, such as melanoma cells, is a very important scientific aspect. We investigated the cytotoxic effect of Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis extracts obtained from different parts of these plants collected at various vegetation stages on FaDu, SCC-25, MCF-7, and MDA-MB-231 cancer cells. Almost all the tested extracts showed higher cytotoxicity against these cancer cells than the anticancer drug etoposide. The highest cytotoxicity against the FaDu, SCC-25, MCF-7 and MDA-MB-231 cancer cell lines was obtained for the Sanguinaria candensis extract collected before flowering. The cytotoxicity of extracts obtained from different parts of Chelidonium majus collected at various vegetation stages was also evaluated on melanoma cells (A375, G361 and SK-MEL-3). The highest cytotoxic activity against melanoma A375 cells was observed for the Chelidonium majus root extract, with an IC50 of 12.65 µg/mL. The same extract was the most cytotoxic against SK-MEL-3 cells (IC50 = 1.93 µg/mL), while the highest cytotoxic activity against G361 cells was observed after exposure to the extract obtained from the herb of the plant. The cytotoxic activity of Chelidonium majus extracts against melanoma cells was compared with the cytotoxicity of the following anticancer drugs: etoposide, cisplatin and hydroxyurea. In most cases, the IC50 values obtained for the anticancer drugs were higher than those obtained for the Chelidonium majus extracts. The most cytotoxic extract obtained from the root of Chelidonium majus was selected for in vivo cytotoxic activity investigations using a Danio rerio larvae xenograft model. The model was applied for the first time in the in vivo investigations of the extract's anticancer potential. The application of Danio rerio larvae xenografts in cancer research is advantageous because of the transparency and ease of compound administration, the small size and the short duration and low cost of the experiments. The results obtained in the xenograft model confirmed the great effect of the investigated extract on the number of cancer cells in a living organism. Our investigations show that the investigated plant extracts exhibit very high cytotoxic activity and can be recommended for further experiments in order to additionally confirm their potential use in the treatment of various human cancers.


Subject(s)
Alkaloids , Antineoplastic Agents , Chelidonium , Mahonia , Melanoma , Sanguinaria , Animals , Humans , Chelidonium/chemistry , Etoposide , Zebrafish , Alkaloids/chemistry , Plant Extracts/chemistry , Antineoplastic Agents/pharmacology , Chromatography, Liquid , Isoquinolines/pharmacology , Melanoma/drug therapy
5.
China Pharmacy ; (12): 935-940, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-972263

ABSTRACT

OBJECTIVE To analyze the main components of Chelidonii Herba-Corydalis Rhizoma (CHCR), and to predict pharmacodynamic substances against estrogen receptor (ER) -positive breast cancer and their potential targets and signaling pathways, followed by verifying experiments. METHODS The ethanol extract of CHCR was analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). The network pharmacology analysis was performed for the screened components. The network diagram of CHCR “active components-target-pathway” was constructed, and the enrichment pathway in vitro was validated. RESULTS A total of 58 chemical components were identified, including 57 alkaloids and 1 organic acid. A total of 38 active ingredients were screened from the network pharmacology, and 38 core targets were found in the protein-protein interaction network of “component-disease” intersection targets; 258 gene ontology entries and 137 Kyoto encyclopedia of genes and genomics pathways were obtained, mainly including estrogen signal pathway, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signal pathway, etc. The results of validation test showed that the median inhibitory concentration of CHCR to MCF-7 cells was 693 μg/mL; 150, 300, 600 μg/mL CHCR could significantly reduce the expressions of phosphorylated PI3K, phosphorylated Akt, ERα protein and ESR1 mRNA (P<0.01). CONCLUSIONS The anti-ER-positive breast cancer effect of CHCR may be related to the regulation of ER and PI3K/Akt pathways, which has the characteristics of multi-component and multi-target effects.

6.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012505

ABSTRACT

Yellow-orange latex of Chelidonium majus L. has been used in folk medicine as a therapeutic agent against warts and other visible symptoms of human papillomavirus (HPV) infections for centuries. The observed antiviral and antitumor properties of C. majus latex are often attributed to alkaloids contained therein, but recent studies indicate that latex proteins may also play an important role in its pharmacological activities. Therefore, the aim of the study was to investigate the effect of the crude C. majus latex and its protein and alkaloid-rich fractions on different stages of the HPV replication cycle. The results showed that the latex components, such as alkaloids and proteins, decrease HPV infectivity and inhibit the expression of viral oncogenes (E6, E7) on mRNA and protein levels. However, the crude latex and its fractions do not affect the stability of structural proteins in HPV pseudovirions and they do not inhibit the virus from attaching to the cell surface. In addition, the protein fraction causes increased TNFα secretion, which may indicate the induction of an inflammatory response. These findings indicate that the antiviral properties of C. majus latex arise both from alkaloids and proteins contained therein, acting on different stages of the viral replication cycle.


Subject(s)
Chelidonium , Latex , Papillomavirus Infections , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Chelidonium/chemistry , Humans , Latex/chemistry , Latex/pharmacology , Papillomavirus Infections/drug therapy , Plant Proteins/pharmacology
7.
Pak J Biol Sci ; 25(3): 234-244, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35234014

ABSTRACT

<b>Background and Objective:</b> Aflatoxins affect many species including humans and animals, therefore the present study was designed to investigate the protective effect of <i>Chelidonium majus</i> Ethanolic Extract (CMEE) on neurotoxicity induced by Aflatoxin B<sub>1</sub> (AFB1) in rats. <b>Materials and Methods:</b> Four groups of male Albino rats were treated orally for 28 days as follows: (1) Control group was daily given DMSO-PBS buffer (1.0 mL per rat), (2) CMEE (300 mg kg<sup>1</sup>/day) dissolved in DMSO-PBS buffer, (3) AFB1 (80 µg kg<sup>1</sup>/day) dissolved in DMSO-PBS buffer and (4) Received daily AFB1 (300 mg kg<sup>1</sup>) in combination with CMEE (300 mg kg<sup>1</sup>). <b>Results:</b> CMEE exhibits antioxidant activity <i>in vitro</i> and neuroameliorative efficiency <i>in vivo</i> as its administration in combination with AFB1 succeeded significantly in down regulating the elevated levels of inflammatory and apoptotic markers and restoring the values of neurochemical markers (AChE-ase, dopamine and serotonin) that were deteriorated by AFB1 intake. <b>Conclusion:</b> In conclusion, the neuroprotective effect of CMEE may be mediated through its antioxidant and free radical scavenging activity that proved from the data<i> </i>of ferric-reducing power ability and DPPH radical scavenging activity.


Subject(s)
Aflatoxin B1 , Chelidonium , Aflatoxin B1/toxicity , Animals , Antioxidants/pharmacology , Ethanol , Plant Extracts/pharmacology , Rats
8.
J Microbiol Biotechnol ; 32(4): 493-503, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35283423

ABSTRACT

Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.


Subject(s)
Chelidonium , Forkhead Box Protein O3/metabolism , Ovarian Neoplasms , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Apoptosis/genetics , Cell Line, Tumor , Chelidonium/genetics , Chelidonium/metabolism , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Products, tat , Humans , RNA, Small Interfering/genetics , bcl-2-Associated X Protein
9.
Int J Biol Macromol ; 194: 974-981, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34856216

ABSTRACT

Essential oils (EOs) of greater celandine (GC) roots and leaves were extracted, and gas chromatography-mass spectrometry (GC-MS) was used for analyzing them. Then they were loaded into chitosan nanoparticles (CNPs) using emulsion-ionic gelation method. CNPs loaded with greater celandine root essential oil (GCREO) and leave essential oil (GCLEO) were synthesized (size 76.5-115.3 nm) using an emulsion-ionic gelation method. Fourier Transform Infrared (FT-IR), spectroscopy, scanning electron microscope (SEM), and dynamic light scattering (DLS) were used for characterization of the formed NPs. Good encapsulation efficiency was confirmed for GCREO (62.5%) and GCLEO (69.1%) in CNPs. According to the MTT results, the synthesized NPs showed a dose-dependent effect on MCF-7 cell line. The inhibitory concentration (IC50) values for GCREO, GCLEO, CSNRs-GCREO and CNPs-GCLEO samples were 126.4, 90.2, 77.6, and 41.5 µg/mL, respectively. The highest rate of apoptosis was obtained in the CNPs-GCLEO group (63.73%). The results revealed that the cytotoxicity of CSNRs-GCREO and CNPs-GCLEO against MCF-7 cell line was significantly higher than that of their free form, implying that encapsulation of GCREO and GCLEO in CNPs is an efficient technique for improving their anti-cancer activity against MCF-7 cell line.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chelidonium/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , Oils, Volatile/chemistry , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Chemical Phenomena , Chemistry Techniques, Synthetic , Drug Compounding , Gas Chromatography-Mass Spectrometry , Humans , MCF-7 Cells , Spectroscopy, Fourier Transform Infrared
10.
Int J Environ Health Res ; 32(7): 1554-1566, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33706629

ABSTRACT

The aim of the study was to examine the immunomodulatory effect of crude Chelidonium majus L ethanolic extract on ex vivo harvested peripheral blood mononuclear cells (PBMNCs). PBMNCs were isolated by density gradient centrifugation. The PBMNC cytotoxicity assay was performed with HeLa tumor cells as target cells. MTT assay was used to estimate the proliferation effect of extract and cytotoxic efficiency of treated PBMNCs. Flow cytometric analysis was used for immunophenotyping. Treatment induced moderate proliferative response, perturbation in PBMNC ratios, and the emergence of some unconventional subpopulations. The percentage ratio of double positive CD4+ and CD8+ T lymphocytes and monocytes, ratio of T and B lymphocytes expressing CD14, and percentage of NK cells expressing CD57 increased after treatment, indicating activation of PBMNC subpopulations. Cytotoxic activity against HeLa cells was enhanced. Activation of PBMNCs and enhancement of their cytotoxic effect toward HeLa cells indicate the immunostimulatory effect of Ch. majus ethanolic extract.


Subject(s)
Chelidonium , HeLa Cells , Humans , Leukocytes, Mononuclear , Plant Extracts/pharmacology
11.
Int J Mol Sci ; 22(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34769268

ABSTRACT

Chelidonium majus L. is a latex-bearing plant used in traditional folk medicine to treat human papillomavirus (HPV)-caused warts, papillae, and condylomas. Its latex and extracts are rich in many low-molecular compounds and proteins, but there is little or no information on their potential interaction. We describe the isolation and identification of a novel major latex protein (CmMLP1) composed of 147 amino acids and present a model of its structure containing a conserved hydrophobic cavity with high affinity to berberine, 8-hydroxycheleritrine, and dihydroberberine. CmMLP1 and the accompanying three alkaloids were present in the eluted chromatographic fractions of latex. They decreased in vitro viability of human cervical cancer cells (HPV-negative and HPV-positive). We combined, for the first time, research on macromolecular and low-molecular-weight compounds of latex-bearing plants in contrast to other studies that investigated proteins and alkaloids separately. The observed interaction between latex protein and alkaloids may influence our knowledge on plant defense. The proposed toolbox may help in further understanding of plant disease resistance and in pharmacological research.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Chelidonium/chemistry , Latex/chemistry , Plant Extracts/chemistry , Plant Proteins , Uterine Cervical Neoplasms/drug therapy , Alkaloids/chemistry , Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Female , HeLa Cells , Humans , Plant Proteins/chemistry , Plant Proteins/pharmacology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
12.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830309

ABSTRACT

Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Chelidonium/metabolism , Immunologic Factors/chemistry , Latex/chemistry , Opiate Alkaloids/chemistry , Papaver/metabolism , Phytochemicals/chemistry , Plant Proteins/chemistry , CRISPR-Cas Systems , Cell Line, Tumor , Chelidonium/genetics , Drug Discovery/methods , Gene Editing/methods , Herbivory/drug effects , Humans , Papaver/genetics , Plants, Genetically Modified
13.
Plants (Basel) ; 10(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34579502

ABSTRACT

The effect of cultivation practises on both the phytochemical profile and biological activity of aqueous ethanol extracts of Chelidonium majus L. was studied. Extracts were prepared from aerial parts of the same plant population collected in the wild and grown under organic farming conditions. Both qualitative and quantitative analyses of alkaloids and flavonoid derivatives were performed by LC/MS methods, and the cytotoxicity of lyophilised extracts was studied in B16-F10, HepG2, and CaCo-2 cells. Coptisine was the dominant alkaloid of extracts prepared from wild-grown plants, whereas after cultivation, chelidonine was the most abundant alkaloid. The total alkaloid content was significantly increased by cultivation. Ten flavonol glycoconjugates were identified in C. majus extracts, and quantitative analysis did not reveal significant differences between extracts prepared from wild-grown and cultivated specimens. Treatment with C. majus extracts resulted in a dose-dependent increase in cytotoxicity in all three cell lines. The extracts prepared from cultivated specimens showed higher cytotoxicity than the extracts prepared from wild-grown plants. The strongest cytotoxic effect of cultivated C. majus was observed in B16-F10 cells (IC50 = 174.98 ± 1.12 µg/mL). Cultivation-induced differences in the phytochemical composition of C. majus extracts resulted in significant increases in the cytotoxic activities of the preparations.

14.
Plants (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34451798

ABSTRACT

Chelidonium majus L. is a perennial herbaceous plant that has various medicinal properties. However, the genomic information about its carotenoid biosynthesis pathway (CBP), xanthophyll biosynthesis pathway (XBP), and apocarotenoid biosynthesis pathway (ABP) genes were limited. Thus, the CBP, XBP, and ABP genes of C. majus were identified and analyzed. Among the 15 carotenoid pathway genes identified, 11 full and 4 partial open reading frames were determined. Phylogenetic analysis of these gene sequences showed higher similarity with higher plants. Through 3D structural analysis and multiple alignments, several distinct conserved motifs were identified, including dinucleotide binding motif, carotene binding motif, and aspartate or glutamate residues. Quantitative RT-PCR showed that CBP, XBP, and ABP genes were expressed in a tissue-specific manner; the highest expression levels were achieved in flowers, followed by those in leaves, roots, and stems. The HPLC analysis of the different organs showed the presence of eight different carotenoids. The highest total carotenoid content was found in leaves, followed by that in flowers, stems, and roots. This study provides information on the molecular mechanisms involved in CBP, XBP, and ABP genes, which might help optimize the carotenoid production in C. majus. The results could also be a basis of further studies on the molecular genetics and functional analysis of CBP, XBP, and ABP genes.

15.
Food Chem Toxicol ; 156: 112483, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34375721

ABSTRACT

Metabolic variations, antioxidant potential and cytotoxic effects were investigated in the different plant parts like the leaf, stem, flower, pod, and root of C. majus L. using spectroscopic and chromatographic methods. Total phenolics and flavonoids were studied in the different parts of C. majus L., leaf showed higher flavonoid content (137.43 mg/g), while the pod showed the highest phenolic (23.67 mg/g) content, when compared with the stem, flower and root. In the ABTS antioxidant assay, the flower extract showed 57.94% effect, while the leaf, pod and root extract exhibited 39.10%, 36.08% and 28.88% activity, respectively. The pod and leaf extracts demonstrated the potential effect, exhibiting 45.46 and 41.61% activity, respectively, for the DPPH assay. Similar to the phosphomolybdenum assay, the flower revealed higher antioxidant activity (46.82%) than the other plant parts. The in vitro SRB assay facilitated evaluation of the cytotoxic effect against the HeLa and CaSki human cervical cancerous cells. The extract displayed dose-dependent inhibitory effect on both the cell lines. The highest cytotoxic effect was observed in the pod and flower extracts post 48 h of exposure at 1000 µg/mL. The results of C. majus L. offered new insights in the preliminary steps regarding the development of a high value product for phytomedicine applications though promising metabolic variations with antioxidant and anticancer potentials.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Chelidonium/metabolism , Flavonoids/analysis , HeLa Cells , Humans , Polyphenols/analysis
16.
Molecules ; 26(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34443363

ABSTRACT

The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biological Products/pharmacology , Papaveraceae/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/growth & development , Biological Products/chemistry , Drug Evaluation, Preclinical , Plant Extracts/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
17.
Pharmaceutics ; 13(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201532

ABSTRACT

Endometriosis is a gynecological disease defined by the presence of endometrial tissue outside the uterus. To date, the effective treatment of this disease is still based on invasive surgery or laparoscopy. Chelidonium majus L. (Papaveraceae) belongs to medicinal, latex-bearing plants. Extracts from the plant are a rich source of pharmacologically active agents. Protoberberine compounds derived from C. majus possess anticancer and antiproliferative activities. In the present study of a rat model of endometriosis, we investigated the influence of the plant protoberberine-rich fraction (BBR) obtained from the medicinal plant C. majus on the development of endometriosis. To understand of BBR therapeutic potential for endometriosis, metabolomics has been applied to study. BBR was prepared from an ethanolic extract of dry plants C. majus. Rats (n = 16) with confirmed endometriosis were treated with BBR administered orally (1 g/kg) for 14 days. Blood serum samples were collected from all of the animals and metabolites were studied using the NMR method. The metabolomic pattern was compared before and after the protoberberine treatment. The performed analysis showed significant changes in the concentrations of metabolites that are involved in energy homeostasis, including glucose, glutamine, and lactate. Histopathological studies showed no recurrence of endometriosis loci after treatment with BBR. The results of the study found that BBR treatment prevents the recurrence of endometriosis in rats. Moreover, metabolomics profiling can be applied to better understand the mechanisms of action of these protoberberine secondary plant metabolites. Our findings provide new insights into the pharmaceutical activity of natural protoberberine plant compounds.

18.
Molecules ; 26(5)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807597

ABSTRACT

Efforts to develop the necessary biotechnologies in Greater Celandine (Chelidonium majus L.), a leading plant resource for the development of plant-derived medicines, have been hampered by the lack of knowledge about transcriptome and metabolome regulations of its medicinal components. Therefore, this study aimed to examine the effect of abiotic elicitors, methyl jasmonate (MJ) and salicylic acid (SA), at different time courses (12, 24, 48, and 72 h), on expression and metabolome of key benzophenanthridine alkaloids (BPAs) in an optimized in vitro culture. Gene expression analysis indicated the upregulation of CFS (cheilanthifoline synthase) to 2.62, 4.85, and 7.28 times higher than the control at 12, 24, and 48 h respectively, under MJ elicitation. Besides, MJ upregulated the expression of TNMT (tetrahydroprotoberberine N-methyltransferase) to 2.79, 4.75, and 7.21 times at 12, 24, and 48 h respectively, compared to the control. Investigation of BPAs revealed a significant enhancement in the chelidonine content (9.86 µg/mg) after 72 h of MJ elicitation. Additionally, sanguinarine content increased to its highest level (3.42 µg/mg) after 24 h of MJ elicitation; however, no significant enhancement was detected in its content in shorter elicitation time courses. Generally, higher gene expression and BPAs' level was observed through longer elicitation courses (48 and 72 h). Our findings take part in improving the understanding of transcription and metabolic regulation of BPAs in cultured Greater Celandine cells.


Subject(s)
Acetates/pharmacology , Benzophenanthridines/metabolism , Cell Culture Techniques/methods , Chelidonium/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Salicylic Acid/pharmacology , Chelidonium/cytology , Chelidonium/drug effects , Chelidonium/genetics , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Cells/drug effects , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal/cytology , Plants, Medicinal/drug effects , Plants, Medicinal/metabolism
19.
Phytother Res ; 35(7): 3792-3798, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33778996

ABSTRACT

In December 2019, an outbreak of coronavirus disease 2019 (COVID-19) occurred in Wuhan, China, with a rapid increase in cases worldwide. Until now, among several drugs tested, none demonstrated sufficient efficacy for its etiological treatment. Greater celandine (Chelidonium majus L.) is a well-known medicinal plant, traditionally indicated for digestive disorders and topically to remove warts. This study, performed at private offices in São Paulo and Aracaju (Brazil), describes 20 consecutive COVID-19 outpatients treated with greater celandine and their clinical evolution. The patients, aged 14-71 years (median of 41 years), were treated with Chelidonium majus 10% mother tincture, 20-30 drops three times a day for 3-12 days (median of 5 days). Clinical features were assessed during the treatment and at least until 1 week after its end. These cases were considered mild, as most COVID-19 cases. The symptoms were mainly fever, fatigue, cough, sore throat, coryza, anosmia, ageusia, and headache. Ten patients had comorbidities, such as hypertension, diabetes, and overweight. Complete or almost complete clinical improvement occurred within 1-9 days of treatment (median of 3 days). There were no adverse events. This casuistry, although small, may inspire other researchers to continue investigating Chelidonium majus as a healing treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Chelidonium , Diabetes Mellitus, Type 2 , Plant Preparations/therapeutic use , Adolescent , Adult , Aged , Brazil , Chelidonium/chemistry , Female , Humans , Male , Middle Aged , Plants, Medicinal/chemistry , Young Adult
20.
Materials (Basel) ; 15(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009165

ABSTRACT

In this work we developed a bi-functional Bacterial-Nano-Cellulose (BNC) carrier system for cell cultures of Chelidonium majus-a medicinal plant producing antimicrobial compounds. The porous BNC was biosynthesized for 3, 5 or 7 days by the non-pathogenic Komagataeibacter xylinus bacteria and used in three forms: (1) Without removal of K. xylinus cells, (2) partially cleaned up from the remaining K. xylinus cells using water washing and (3) fully purified with NaOH leaving no bacterial cells remains. The suspended C. majus cells were inoculated on the BNC pieces in liquid medium and the functionalized BNC was harvested and subjected to scanning electron microscopy observation and analyzed for the content of C. majus metabolites as well as to antimicrobial assays and tested for potential proinflammatory irritating activity in human neutrophils. The highest content and the most complex composition of pharmacologically active substances was found in 3-day-old, unpurified BNC, which was tested for its bioactivity. The assays based on the IL-1ß, IL-8 and TNF-α secretion in an in vitro model showed an anti-inflammatory effect of this particular biomatrix. Moreover, 3-day-old-BNC displayed antimicrobial and antibiofilm activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The results of the research indicated a possible application of such modified composites, against microbial pathogens, especially in local surface infections, where plant metabolite-enriched BNC may be used as the occlusive dressing.

SELECTION OF CITATIONS
SEARCH DETAIL
...