Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters











Publication year range
1.
Int J Food Microbiol ; 415: 110645, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38430687

ABSTRACT

This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (µmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, √µ = 0.016 (T + 10.13) and √µ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.


Subject(s)
Bacteria , Pseudomonas , Animals , Gas Chromatography-Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Temperature , Food Microbiology , Food Preservation , Colony Count, Microbial , Food Storage
2.
Food Res Int ; 176: 113822, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163722

ABSTRACT

Tomato fruit is susceptible to chilling injury (CI) during its postharvest handling at low temperature. The symptoms caused by this physiological disorder have been commonly evaluated by visual inspection at a macro-observation scale on fruit surface; however, the structure at deeper scales is also affected by CI. This work aimed to propose a descriptive model of the CI development in tomato tissue under the micro-scale, micro-nano-scale and nano-scale approaches using fractal analysis. For that, quality and fractal parameters were determined. In this sense, light microscopy, Environmental Scanning Electron Microscopy (ESEM) and Atomic Force Microscopy (AFM) were applied to analyse micro-, micro-nano- and nano-scales, respectively. Results showed that the morphology of tomato tissue at the micro-scale level was properly described by the multifractal behaviour. Also, generalised fractal dimension (Dq=0) and texture fractal dimension (FD) of CI-damaged pericarp and cuticle were higher (1.659, 1.601 and 1.746, respectively) in comparison to non-chilled samples (1.606, 1.578 and 1.644, respectively); however, FD was unsuitable to detect morphological changes at the nano-scale. On the other hand, lacunarity represented an appropriate fractal parameter to detect CI symptoms at the nano-scale due to differences observed between damaged and regular ripe tissue (0.044 and 0.025, respectively). The proposed multi-scale approach could improve the understanding of CI as a complex disorder to the development of novel techniques to avoid this postharvest issue at different observation scales.


Subject(s)
Solanum lycopersicum , Fruit/chemistry , Cold Temperature
3.
Plant Cell Environ ; 46(7): 2128-2141, 2023 07.
Article in English | MEDLINE | ID: mdl-37066607

ABSTRACT

Chilling can decrease stomatal sensitivity to abscisic acid (ABA) in some legumes, although hormonal mechanisms involved are unclear. After evaluating leaf gas exchange of 16 European soybean genotypes at 14°C, 6 genotypes representing the range of response were selected. Further experiments combined low (L, 14°C) and high (H, 24°C) temperature exposure from sowing until the unifoliate leaf was visible and L or H temperature until full leaf expansion, to impose four temperature treatments: LL, LH, HL, and HH. Prolonged chilling (LL) substantially decreased leaf water content but increased leaf ethylene evolution and foliar concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indole-3-acetic acid, ABA and jasmonic acid. Across genotypes, photosynthesis linearly increased with stomatal conductance (Gs), with photosynthesis of HH plants threefold higher than LL plants at the same Gs. In all treatments except LL, Gs declined with foliar ABA accumulation. Foliar ABA sprays substantially decreased Gs of HH plants, but did not significantly affect LL plants. Thus low temperature compromised stomatal sensitivity to endogenous and exogenous ABA. Applying the ethylene antagonist 1 methyl-cyclopropene partially reverted excessive stomatal opening of LL plants. Thus, chilling-induced ethylene accumulation may mediate stomatal insensitivity to ABA, offering chemical opportunities for improving seedling survival in cold environments.


Subject(s)
Abscisic Acid , Glycine max , Abscisic Acid/pharmacology , Temperature , Ethylenes/pharmacology , Plants
4.
Front Plant Sci ; 14: 1124335, 2023.
Article in English | MEDLINE | ID: mdl-36909409

ABSTRACT

Climate change has led to the search for strategies to acclimatize plants to various abiotic stressors to ensure the production and quality of crops of commercial interest. Sorghum is the fifth most important cereal crop, providing several uses including human food, animal feed, bioenergy, or industrial applications. The crop has an excellent adaptation potential to different types of abiotic stresses, such as drought, high salinity, and high temperatures. However, it is susceptible to low temperatures compared with other monocotyledonous species. Here, we have reviewed and discussed some of the research results and advances that focused on the physiological, metabolic, and molecular mechanisms that determine sorghum cold tolerance to improve our understanding of the nature of such trait. Questions and opportunities for a comprehensive approach to clarify sorghum cold tolerance or susceptibility are also discussed.

5.
Plants (Basel) ; 12(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36840114

ABSTRACT

Chilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines.

6.
Glob Chang Biol ; 29(9): 2557-2571, 2023 05.
Article in English | MEDLINE | ID: mdl-36652298

ABSTRACT

Temperate perennial fruit and nut trees play varying roles in world food diversity-providing edible oils and micronutrient, energy, and protein dense foods. In addition, perennials reuse significant amounts of biomass each year providing a unique resilience. But they also have a unique sensitivity to seasonal temperatures, requiring a period of dormancy for successful growing season production. This paper takes a global view of five temperate tree fruit crops-apples, cherries, almonds, olives, and grapes-and assesses the effects of future temperature changes on thermal suitability. It uses climate data from five earth system models for two CMIP6 climate scenarios and temperature-related indices of stress to indicate potential future areas where crops cannot be grown and highlight potential new suitable regions. The loss of currently suitable areas and new additions in new locations varies by scenario. In the southern hemisphere (SH), end-century (2081-2100) suitable areas under the SSP 5-8.5 scenario decline by more than 40% compared to a recent historical period (1991-2010). In the northern hemisphere (NH) suitability increases by 20% to almost 60%. With SSP1-2.6, however, the changes are much smaller with SH area declining by about 25% and NH increasing by about 10%. The results suggest substantial restructuring of global production for these crops. Essentially, climate change shifts temperature-suitable locations toward higher latitudes. In the SH, most of the historically suitable areas were already at the southern end of the landmass limiting opportunities for adaptation. If breeding efforts can bring chilling requirements for the major cultivars closer to that currently seen in some cultivars, suitable areas at the end of the century are greater, but higher summer temperatures offset the extent. The high value of fruit crops provides adaptation opportunities such as cultivar selection, canopy cooling using sprinklers, shade netting, and precision irrigation.


Subject(s)
Climate Change , Fruit , Temperature , Plant Breeding , Cold Temperature , Crops, Agricultural
7.
Insects ; 13(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36292819

ABSTRACT

The sterile insect technique (SIT) application, as an alternative tool for conventional mosquito control methods, has recently gained prominence. Nevertheless, some SIT components require further development, such as protocols under large-scale conditions, focusing on packing and shipping mosquitoes, and considering transporting time. Immobilization of Aedes aegypti males was tested at temperatures 4, 7, 10, and 14 °C, and each temperature was assessed for 60, 90, and 120 min. The recovery after 24 h was also studied. Chilled and control-reared males had comparable survival rates for all conditions, although 4 °C for 120 min impacted male survival. The male escape rate was affected after 60 min of exposure at 4 °C; this difference was not significant, with 24 h of recovery. First, we defined the successful immobilization at 4 °C for 60 min, thus enabling the evaluation of two transportation intervals: 6 and 24 h, with the assessment of different compaction densities of 100 and 150 mosquitoes/cm3 at 10 °C to optimize the shipment. Compaction during simulated mosquito shipments reduced survival rates significantly after 6 and 24 h. In the mating propensity and insemination experiments, the sterile males managed to inseminate 40 to 66% for all treatments in laboratory conditions. The male insemination propensity was affected only by the highest compaction condition concerning the control. The analysis of the densities (100 and 150 males/cm3) showed that a higher density combined with an extended shipment period (24 h) negatively impacted the percentage of inseminated females. The results are very helpful in developing and improving the SIT packing and shipment protocols. Further studies are required to evaluate all combined parameters' synergetic effects that can combine irradiation to assess sexual competitiveness when sterile males are released into the field.

8.
Plants (Basel) ; 11(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145795

ABSTRACT

In sweet cherry (Prunus avium), as in other temperate woody perennials, bud dormancy allows for survival in adverse environmental conditions during winter. During this process, environmental signals such as short days and/or low temperatures trigger internal signals that enable buds to become tolerant to the cold. The process involves tracking chilling units up to chilling the requirement fulfillment to resume growth, a transition involving transcriptional regulation, metabolic signaling, and epigenetic-related regulatory events. Massive sequencing of small RNAs was performed to identify miRNAs involved in sweet cherry dormancy by comparing their expression in field (regular seasonal) and controlled non-stop (continuous) chilling conditions. miRNAs highlighted by sequencing were validated using specific stem-loop PCR quantification, confirming expression patterns for known miRNAs such as miR156e, miR166c, miR172d, miR391, miR482c, and miR535b, as well as for newly proposed miRNAs. In silico prediction of the target genes was used to construct miRNA/target gene nodes. In particular, the involvement of the sweet cherry version for the miR156/SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN genes whose expression was opposite in the two conditions suggests their involvement on dormancy regulation in sweet cherry. miRNA levels indicate that the regulation of stress-related genes and hormone synthesis modulates the expression of calcium metabolism and cell development-associated genes. Understanding the regulatory networks involved in sweet cherry dormancy, particularly in the context of miRNA involvement, represents the first step in the development of new agricultural strategies that may help overcome the increasing challenges presented by global climate change.

9.
J Food Biochem ; 46(10): e14266, 2022 10.
Article in English | MEDLINE | ID: mdl-35652286

ABSTRACT

Hot water treatment (HT) induces chilling injury (CI) tolerance in mango, but prolonged exposure to HT causes softening. In this sense, calcium salts stabilize the cell wall. Nevertheless, there is little information on the effect of HT combined with calcium salts (HT-Ca) on calcium absorption and cell wall stability during storage of mango at CI temperature. We evaluated the effect of quarantine HT in combination with calcium chloride (CaCl2 ), calcium citrate (CaCit), or calcium lactate (CaLac) on calcium absorption, CI tolerance, and cell wall stabilization. HT and HT-CaCl2 had the lowest CI development. HT increased firmness loss and electrolyte leakage, and HT-Ca counteracted this effect. Overall, HT-Ca treatments had a similar effect on the cell wall degrading enzymes. HT-CaCl2 was the best treatment and did not present alterations on the epicuticular wax as observed on HT. HT-CaCl2 is a useful technology to stabilize cell wall and preserve mango during chilling storage. PRACTICAL APPLICATIONS: The addition of calcium salts in an established hot water quarantine procedure for mango exportation represents a viable alternative to counteract the negative effects of this thermal treatment upon cell microstructure, maintaining its positive effect of tolerance to chilling injury. In this sense, mango producers and packers can use a HT-CaCl2 treatment to reduce the presence of chilling injury and extent the fruit shelf life and improve its commercialization. Furthermore, technical and infrastructure changes are not necessary for the packaging chain.


Subject(s)
Mangifera , Water Purification , Calcium , Calcium Chloride/analysis , Calcium Chloride/pharmacology , Calcium Citrate/analysis , Calcium Citrate/pharmacology , Cell Wall , Cold Temperature , Fruit/chemistry , Mangifera/chemistry , Quarantine , Salts/analysis , Salts/pharmacology , Temperature
10.
Front Plant Sci ; 13: 771094, 2022.
Article in English | MEDLINE | ID: mdl-35356117

ABSTRACT

Pomegranate (Punica granatum) is a non-climacteric fruit with a high antioxidant content in arils and peels, of which 92% are anthocyanins and tannins. However, it is susceptible to chilling injury (CI), a physiological disorder concentrated in the peel, which can affect the organoleptic quality of the fruit. To understand the effects of modified atmosphere and ethylene in responses to stress on the antioxidant quality of the fruit and composition of fatty acids in the peel under CI conditions, the exogenous ethylene treatments (0.5, 1.0, and 1.5 µg L-1), 1-methylcyclopropene (1-MCP; 1 µl L-1), modified atmosphere packaging (MAP: XTend™ bags), combined strategy MAP/1-MCP, and package in macroperforated bags (MPB-control treatment) were evaluated. The assay was performed in cold conditions (2 ± 1°C; 85% RH) to stimulate damage and was sampled for 120 days (+3 days at 20°C). During cold storage, CI symptoms began at 20 days in MPB and at 60 days for all treatments with exogenous ethylene; CI symptoms were delayed up to 120 days in MAP, 1-MCP, and the combined MAP/1-MCP treatment. Damage was concentrated in the peel. Ethylene and MPB-control treatments induced significant electrolyte leakage, lipid peroxidation, and oxidative damage. In contrast, MAP alone or in combination with 1-MCP successfully delayed CI symptoms. However, no significant differences were observed between treatments in fatty acid content, e.g., in the peel, oleic acid, linoleic acid, palmitic acid, but a significant loss was noted after 60 days of storage. Cold storage caused an increase in anthocyanin concentration in the peel and arils, increasing up to 12 times in the peel of the fruit treated with ethylene at the final stage of storage (120 days + 3 days at 20°C), with non-significant differences in the tannin content in the peel. During long-term cold storage of pomegranate, MAP and 1-MCP treatments delay and reduce the appearance of CI symptoms. This long cold storage induces an important decrease in the unsaturated/saturated fatty acid ratio, which is not reversed by any postharvest treatment. A higher unsaturated/saturated fatty acid ratio after 1-MCP treatments showed a protective effect in peel tissues. In addition, it was possible to increase the concentration of anthocyanins in the peel of cold-storage pomegranates treated with ethylene.

11.
J Sci Food Agric ; 102(2): 531-539, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34143503

ABSTRACT

BACKGROUND: Chilling injury (CI) is a physiological disorder that results in a limitation for cold storage (CS) of many fruits and vegetables. The low temperature-induced changes in the properties and composition of cell membranes are involved in the response to chilling temperature and in the mechanism of CI and tolerance. RESULTS: We compared the changes in the lipid composition by gas chromatography-mass spectrometry before, immediately after CS, as well as during a 3-day subsequent period, of tomato fruits with different chilling-sensitivity: Micro-Tom (tolerant) and Minitomato (susceptible). The changes in linolenic acid content, double bond index and digalactosyldiacylglycerol/monogalactosyldiacylglycerol ratio (DGDG/MGDG) showed membrane fluidity adjustment, depending on the temperature. By a database search, we identified 18 membrane-bound fatty acid desaturase (FAD) genes and five DGDG synthases (DGD) genes that phylogenetically clustered into four and two subfamilies, respectively. The FAD and DGD genes were differentially expressed in response to CS, as determined by quantitative reverse transcriptase-polymerase chain reaction analysis. CONCLUSION: The data strongly suggest that reversion of CS-induced changes during the recovery period is important for the proper function of the membrane and tolerance to postharvest CI in tomato fruit. © 2021 Society of Chemical Industry.


Subject(s)
Fruit/chemistry , Galactolipids/chemistry , Solanum lycopersicum/chemistry , Cold Temperature , Food Handling , Food Storage , Gas Chromatography-Mass Spectrometry
12.
J Sci Food Agric ; 102(8): 3350-3358, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34820839

ABSTRACT

BACKGROUND: Vegetable grafting has been increasingly evaluated to improve preharvest tolerance to biotic and abiotic stresses. However, very few studies have identified rootstock-scion combinations able to improve fruit shelf life and reduce the susceptibility to postharvest disorders. Herein, a purple eggplant scion (cv. Monarca) was grafted onto a cold-tolerant hybrid Solanum rootstock ('Java') and the changes in growth, quality, postharvest chilling tolerance, and antioxidant stability were evaluated. RESULTS: Eggplant grafting enhanced plant vigor and fruit growth rate, decreasing the time from set to harvest by 10-15%. Grafted eggplants had a thinner shape and lighter pulp color than the control. The rootstock-scion combination tested showed lower respiration (~60%), dry matter (~15-20%), and phenolic compounds contents (~15-20%) than eggplants from non-grafted plants. Grafting markedly improved fruit performance during postharvest storage. Remarkably, grafted eggplants showed much higher tolerance to chilling injury than the control did, evidenced by a reduction of surface scalds along with decreased softening and pulp browning. The trend in antioxidants found at harvest time was reversed after cold storage due to enhanced stability (20% and 100% for pulp and peel respectively) in fruit from grafted plants. CONCLUSION: Purple eggplant (cv. Monarca) grafting onto 'Java' hybrid rootstock modulated fruit growth, quality at harvest, and increased fruit chilling injury tolerance during storage. Grafting may be a bona fide strategy to induce phenotypic traits able to improve vegetable postharvest performance. © 2021 Society of Chemical Industry.


Subject(s)
Solanum melongena , Antioxidants/chemistry , Fruit/chemistry , Phenols/analysis
13.
Ciênc. rural (Online) ; 52(4): e20210395, 2022. tab
Article in English | VETINDEX | ID: biblio-1339691

ABSTRACT

Different chilling treatments are used before meat storage. The effect of spray chilling (SC) on meat quality appears to vary. Here, we investigated the effects of SC on beef carcass weight loss and meat quality during subsequent storage. The 2-h SC program tested involved 180-s initial spraying, followed by 60-s spray cycles at 540-s intervals. Deboned chuck tender (IMPS 116B) beef cuts were vacuum-packaged and stored for up to 60 d. Purge and cooking losses, Warner-Bratzler shear force, meat colour [CIE L*, a*, b*], and microbiological quality were evaluated. SC reduced carcass weight loss (P<0.001) compared with conventional chilling. However, storage time affected the purge and cooking losses, and Warner-Bratzler shear force. CIE a* and b* values increased (P<0.05) after 30-d aging in both chilling treatments. Pronounced psychrotrophic growth was observed during storage after both treatments. In conclusion, SC can be used to reduce the economic losses associated with meat chilling, without affecting meat quality attributes.


Diferentes tratamentos de resfriamento são utilizados antes da estocagem das carnes. O efeito da aspersão de carcaças (SC) na qualidade da carne parece variar. Neste estudo, investigou-se os efeitos da aspersão de carcaças bovinas na perda de peso e na qualidade da carne durante subsequente estocagem. O programa de aspersão testado foi de um tempo total de 2 h, com uma aspersão inicial de 180 s, seguida por ciclos de aspersão de 60 s em intervalos de 540 s. Os cortes comerciais desossados "Peixinho" (IMPS 116B) foram embalados a vácuo e estocados por até 60 dias. Foram avaliadas as perdas por exsudação e cozimento, força de cisalhamento por Warner-Bratzler, cor da carne (CIE L*, a*, b*) e qualidade microbiológica. SC reduziu a perda de peso da carcaça (P < 0,001) em comparação com o resfriamento convencional. No entanto, o tempo de estocagem influenciou a perda por exsudação, por cozimento e força de cisalhamento. Os valores de CIE a* e b* aumentaram (P < 0,05) após 30 dias de maturação em ambos os tratamentos de resfriamento. O crescimento pronunciado de psicrotróficos foi observado durante a estocagem em ambos os tratamentos. Em conclusão, o SC pode ser usado para reduzir as perdas econômicas associadas ao resfriamento da carne, sem afetar os atributos de qualidade da carne.


Subject(s)
Animals , Cattle , Chemical Phenomena , Red Meat/microbiology , Frozen Foods/microbiology , Identity and Quality Standard for Products and Services
14.
Arq. Inst. Biol. (Online) ; 89: e00012021, 2022. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1393886

ABSTRACT

The objective of this study was to evaluate the effective temperature for overcoming the dormancy of 'Fuyu' persimmon tree buds. Stem samples were collected three times between 2013 and 2014. Stems were maintained in a climate incubator chamber at 3, 6, 9, and 12 °C. For each temperature, five numbers of additional chilling hours (CH) (0, 240, 384, 528, and 672 CH) were studied. The experimental design was completely randomized in a 5 × 4 factorial design (chilling hours × temperatures) with four replications with 10 cuttings. The maintenance of branches at cold temperatures from 3 to 12 °C intensified endodormancy of the buds when the plants were at the beginning of endodormancy. The most effective temperatures for overcome dormancy when the buds were in transition from paradormancy to endodormancy were from 3 to 6 °C. When the buds were already in endodormancy, temperatures of 3, 6, 9, and 12 °C were effective for the accumulation of cold and overcoming dormancy. The increase in the number of chilling hours from 3 to 12 °C induced budburst and the temperature of 12 °C was able to slowly induce and overcome bud dormancy.


Subject(s)
Cold Temperature , Plant Shoots/physiology , Diospyros , Plant Dormancy/physiology
15.
Pharmaceutics ; 13(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34452147

ABSTRACT

Nanoencapsulation via spray cooling (also known as spray chilling and spray congealing) has been used with the aim to improve the functionality, solubility, and protection of drugs; as well as to reduce hygroscopicity; to modify taste and odor to enable oral administration; and many times to achieve a controlled release profile. It is a relatively simple technology, it does not require the use of low-cost solvents (mostly associated to toxicological risk), and it can be applied for lipid raw materials as excipients of oral pharmaceutical formulations. The objective of this work was to revise and discuss the advances of spray cooling technology, with a greater emphasis on the development of lipid micro/nanoparticles to the load of active pharmaceutical ingredients for oral administration.

16.
Front Plant Sci ; 12: 684130, 2021.
Article in English | MEDLINE | ID: mdl-34178003

ABSTRACT

Peach (Prunus persica) fruits have a fast ripening process and a shelf-life of days, presenting a challenge for long-distance consuming markets. To prolong shelf-life, peach fruits are stored at low temperatures (0 to 7 °C) for at least two weeks, which can lead to the development of mealiness, a physiological disorder that reduces fruit quality and decreases consumer acceptance. Several studies have been made to understand this disorder, however, the molecular mechanisms underlying mealiness are not fully understood. Epigenetic factors, such as DNA methylation, modulate gene expression according to the genetic background and environmental conditions. In this sense, the aim of this work was to identify differentially methylated regions (DMRs) that could affect gene expression in contrasting individuals for mealiness. Peach flesh was studied at harvest time (E1 stage) and after cold storage (E3 stage) for 30 days. The distribution of DNA methylations within the eight chromosomes of P. persica showed higher methylation levels in pericentromeric regions and most differences between mealy and normal fruits were at Chr1, Chr4, and Chr8. Notably, differences in Chr4 co-localized with previous QTLs associated with mealiness. Additionally, the number of DMRs was higher in CHH cytosines of normal and mealy fruits at E3; however, most DMRs were attributed to mealy fruits from E1, increasing at E3. From RNA-Seq data, we observed that differentially expressed genes (DEGs) between normal and mealy fruits were associated with ethylene signaling, cell wall modification, lipid metabolism, oxidative stress and iron homeostasis. When integrating the annotation of DMRs and DEGs, we identified a CYP450 82A and an UDP-ARABINOSE 4 EPIMERASE 1 gene that were downregulated and hypermethylated in mealy fruits, coinciding with the co-localization of a transposable element (TE). Altogether, this study indicates that genetic differences between tolerant and susceptible individuals is predominantly affecting epigenetic regulation over gene expression, which could contribute to a metabolic alteration from earlier stages of development, resulting in mealiness at later stages. Finally, this epigenetic mark should be further studied for the development of new molecular tools in support of breeding programs.

17.
Rev. colomb. cienc. pecu ; 34(1): 63-72, Jan.-Mar. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1394929

ABSTRACT

Abstract Background: Multidrug-resistant bacteria present in food of animal origin raise human and animal health concerns. Objective: To assess antimicrobial resistance of Escherichia coli isolates from sheep carcasses subjected to spray-chilling with water (4 and 10 hours) during cooling. Methods: Thirty surface swabs were collected from carcasses before and after the last water spray in two slaughter periods. In a first assessment (1st sampling), three spray-chilled carcasses (4 hours), three non-sprayed and one control carcass were sampled. In a second assessment (2nd sampling), the same number of carcasses and treatments were maintained, but spray-chilling was extended to 10 hours. All samples collected were isolated and submitted to susceptibility test using 16 (1st sampling) and 17 (2nd sampling) antimicrobials, respectively. Results: Overall, E. coli isolates were resistant most antimicrobials. Spray-chilled and control carcasses (10 hours) showed resistance to meropenem. Conclusion: E. coli isolates from carcasses subjected to spray-chilling with water for 10 hours had higher antimicrobial resistance to one, two, and four antimicrobial classes, characterizing a multidrug resistance profile. These results highlight the need to monitor health status throughout the meat production processes.


Resumen Antecedentes: las bacterias multirresistentes presentes en alimentos de origen animal son motivo de alerta para la salud humana y animal. Objetivo: verificar la resistencia a antimicrobianos de aislados de Escherichia coli en canales ovinas sometidas a aspersión (4 y 10 h) durante la refrigeración. Métodos: Luego de dos faenas de sacrificio, treinta hisopos fueron colectados en la superficie de las canales antes y después de la última aspersión. En un primer sacrificio (1era colecta) se recolectaron muestras de tres canales sometidas a aspersión (4 horas), tres sin aspersión y una canal como control. En un segundo sacrificio (2da colecta), el mismo número de canales y tratamientos se mantuvo, y el período de aspersión se extendió a 10 horas. Las muestras recogidas fueron aisladas y sometidas a la prueba de susceptibilidad utilizándo 16 (1.ª colecta) y 17 (2.ª colecta) antimicrobianos, respectivamente. Resultados: los aislamientos de E. coli fueron, en general, resistentes a las principales clases de antimicrobianos. Las canales con aspersión y el control (10 h) presentaron resistencia al meropenem. Conclusión: cuando la asperción duró 10 h, los aislados de E. coli presentaron mayor resistencia para una, dos y cuatro clases de antimicrobianos, es decir, fueron multirresistentes a los fármacos utilizados. Esto resalta la necesidad de monitorear el estado de salud durante todos los procesos de producción de carne.


Resumo Antecedentes: bactérias multirresistentes presentes em alimentos de origem animal são motivo de preocupação e alerta na saúde humana e animal. Objetivo: verificar a resistência antimicrobiana em isolados de Escherichia coli de carcaças de ovinos pulverizadas ou não (4 e 10 horas) durante a refrigeração. Métodos: foram coletados trinta swabs de superfície em carcaças antes e após a última aspersão em dois abates. Em outubro do 2015, três carcaças aspergidas foram amostradas, três sem aspersão e uma carcaça para controle, por um período de 4 horas. Em julho de 2016 (2ª coleta), o mesmo número de carcaças e tratamentos foram mantidos e o período de aspersão foi prolongado em 10 horas. As amostras coletadas foram isoladas e submetidas ao teste de susceptibilidade em 16 (1ª coleta) e 17 (2ª coleta) antimicrobianos, respectivamente. Resultados: isolados de E. coli foram, em geral, resistentes às principais classes de antimicrobianos. As carcaças e o controle aspergidos (10 h) apresentaram resistência ao meropenem. Conclusão: quando a aspersão de água durou 10 horas, os isolados de E. coli apresentaram maior resistência antimicrobiana a uma, duas e quatro classes de antimicrobianos, o que é uma multirresistência aos fármacos testados. Isso alerta para a necessidade de monitorar os aspectos de saúde durante todos os processos de produção de carne.

18.
Int J Mol Sci ; 22(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467390

ABSTRACT

Citrus fruit are sensitive to chilling injury (CI) during cold storage, a peel disorder that causes economic losses. C-repeat binding factors (CBFs) are related to cold acclimation and tolerance in different plants. To explore the role of Citrus CBFs in fruit response to cold, an in silico study was performed, revealing three genes (CBF1, CBF2, and CBF3) whose expression in CI sensitive and tolerant cultivars was followed. Major changes occurred at the early stages of cold exposure (1-5 d). Interestingly, CBF1 was the most stimulated gene in the peel of CI-tolerant cultivars (Lisbon lemon, Star Ruby grapefruit, and Navelina orange), remaining unaltered in sensitive cultivars (Meyer lemon, Marsh grapefruit, and Salustiana orange). Results suggest a positive association of CBF1 expression with cold tolerance in Citrus cultivars (except for mandarins), whereas the expression of CBF2 or CBF3 genes did not reveal a clear relationship with the susceptibility to CI. Light avoidance during fruit growth reduced postharvest CI in most sensitive cultivars, associated with a rapid and transient enhance in the expression of the three CBFs. Results suggest that CBFs-dependent pathways mediate at least part of the cold tolerance responses in sensitive Citrus, indicating that CBF1 participates in the natural tolerance to CI.


Subject(s)
Citrus/genetics , Cold Temperature , Food Storage/methods , Fruit/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Adaptation, Physiological/genetics , Citrus/classification , Citrus paradisi/genetics , Citrus sinensis/genetics , Protein Isoforms/genetics , Species Specificity
19.
Heliyon ; 7(1): e05905, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33490674

ABSTRACT

Postharvest diseases and disorders are two of the most important parameters associated with the quality of avocado fruit. The aim of this study was to identify postharvest diseases and disorders in Hass avocado plots and to evaluate their relationships with different preharvest agronomical practices. This work was developed in 20 commercial plots of Hass avocado dedicated to production for national and export markets. The first part of this work was associated with the identification and characterization of diseases and disorders related with postharvest of avocado. In addition, it was determined the incidence of each disease and disorder based on simulation of postharvest scenarios for the national and export markets. Using a multinomial logistic regression model, it was possible to determine that the presence of each disease and disorder were related to crop management practices, soil and leaf and fruit nutrients levels. Most relevant postharvest disease and disorders were anthracnose, stem-end rot, chilling injury, and lenticel damage. Additionally, variables such as dry matter, plant pruning, and tissue concentration of Ca+2 were related with some pathologies and disorders. This work presents an advance in the recognition of postharvest diseases and disorders in avocado under tropical conditions, besides determining the main edaphic and anthropogenic associated factors.

20.
J Sci Food Agric ; 101(3): 1161-1166, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32785943

ABSTRACT

BACKGROUND: Tree-ripe mangoes are of a better quality than the more commonly marketed mature-green fruit. However, the postharvest life of tree-ripe mangoes at the chilling threshold temperature for mature-green fruit of 12 °C is insufficient to allow long distance transport for international marketing. Because the chilling sensitivity often decreases as fruit ripen, lower temperatures (5 and 8 °C) in combination with a controlled atmosphere of 5 kPa O2 plus 10 or 25 kPa CO2 were tested to determine whether the quality of tree-ripe mangoes could be maintained longer without chilling injury (CI). RESULTS: Tree-ripe 'Tommy Atkins' and 'Keitt' mangoes were stored for 14 or 21 days, respectively, in air or controlled atmosphere (CA) at 5 or 8 °C. Respiration rates were below 10 mL kg-1 h-1 during CA storage and increased three-fold during a 3-day shelf life period at 20 °C. Ethanol synthesis of fruit stored in 25 kPa CO2 , but not 10 kPa CO2 , increased during storage and remained high during shelf life, indicating physiological stress. Elevated electrolyte leakage and 1-aminocyclopropane-1-carboxylic acid concentrations in both cultivars stored in 25 kPa CO2 also indicated that mesocarp tissues were injured by the higher CO2 level. No CI symptoms were observed in air or CA at either 5 or 8 °C. CONCLUSION: Storage of tree-ripe mangoes in 5 kPa O2 plus 10 kPa CO2 at either 5 or 8 °C best maintained the quality of Tommy Atkins and Keitt fruit for 14 or 21 days, respectively, without evidence of either atmosphere injury or CI. © 2020 Society of Chemical Industry.


Subject(s)
Carbon Dioxide/analysis , Food Storage/methods , Mangifera/chemistry , Food Storage/instrumentation , Fruit/chemistry , Quality Control , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL