Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 46(12): 2923-2930, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34467682

ABSTRACT

The present study determined the quantitative markers of total proanthocyanidins in the purification of the industrial waste Choerospondias axillaris pericarp based on the comparison results of high-performance liquid chromatography(HPLC) and mass spectrometry(MS) and optimized the purification process with two stable procyanidins as markers. The adsorption and desorption of five different macroporous adsorption resins, the static adsorption kinetics curve of NKA-Ⅱ resin, the maximum sample load, and the gradient elution were investigated. The UPLC-Q-TOF-MS/MS was employed for qualitative analysis of the newly-prepared total proanthocyanidins of C. axillaris pericarp. As revealed by the results, NKA-Ⅱ resin displayed strong adsorption and desorption toward total proanthocyanidins. The sample solution(50 mg·mL~(-1)) was prepared from 70% ethanol crude extract of C. axillaris pericarp dissolved in water and 7-fold BV of the sample solution was loaded, followed by static adsorption for 12 h. After 8-fold BV of distilled water and 6-fold BV of 10% ethanol were employed to remove impurities, the solution was eluted with 8-fold BV of 50% ethanol, concentrated, and dried under reduced pressure, and purified total proanthocyanidin powder was therefore obtained. Measured by vanillin-hydrochloric acid method, the purity and transfer rate of total proanthocyanidins were 47.67% and 59.92%, respectively, indicating the feasibi-lity of the optimized process. UPLC-Q-TOF-MS/MS qualitative analysis identified 16 procyanidins in C. axillaris total proanthocyanidins. The optimized purification process is simple in operation and accurate in component identification, and it can be applied to the process investigation of a class of components that are difficult to be separated and purified. It can also provide technical support and research ideas for the comprehensive utilization of industrial waste.


Subject(s)
Anacardiaceae , Proanthocyanidins , Adsorption , Chromatography, High Pressure Liquid , Plant Extracts , Proanthocyanidins/analysis , Resins, Synthetic , Tandem Mass Spectrometry
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-888030

ABSTRACT

The present study determined the quantitative markers of total proanthocyanidins in the purification of the industrial waste Choerospondias axillaris pericarp based on the comparison results of high-performance liquid chromatography(HPLC) and mass spectrometry(MS) and optimized the purification process with two stable procyanidins as markers. The adsorption and desorption of five different macroporous adsorption resins, the static adsorption kinetics curve of NKA-Ⅱ resin, the maximum sample load, and the gradient elution were investigated. The UPLC-Q-TOF-MS/MS was employed for qualitative analysis of the newly-prepared total proanthocyanidins of C. axillaris pericarp. As revealed by the results, NKA-Ⅱ resin displayed strong adsorption and desorption toward total proanthocyanidins. The sample solution(50 mg·mL~(-1)) was prepared from 70% ethanol crude extract of C. axillaris pericarp dissolved in water and 7-fold BV of the sample solution was loaded, followed by static adsorption for 12 h. After 8-fold BV of distilled water and 6-fold BV of 10% ethanol were employed to remove impurities, the solution was eluted with 8-fold BV of 50% ethanol, concentrated, and dried under reduced pressure, and purified total proanthocyanidin powder was therefore obtained. Measured by vanillin-hydrochloric acid method, the purity and transfer rate of total proanthocyanidins were 47.67% and 59.92%, respectively, indicating the feasibi-lity of the optimized process. UPLC-Q-TOF-MS/MS qualitative analysis identified 16 procyanidins in C. axillaris total proanthocyanidins. The optimized purification process is simple in operation and accurate in component identification, and it can be applied to the process investigation of a class of components that are difficult to be separated and purified. It can also provide technical support and research ideas for the comprehensive utilization of industrial waste.


Subject(s)
Adsorption , Anacardiaceae , Chromatography, High Pressure Liquid , Plant Extracts , Proanthocyanidins/analysis , Resins, Synthetic , Tandem Mass Spectrometry
3.
Zhongguo Zhong Yao Za Zhi ; 45(5): 1180-1187, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32237463

ABSTRACT

Based on the idea of plant metabolomics, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to compare the chemical composition between 6 batches of fruit vinegar brewed from Choerospondias axillaris fruit peel and 6 batches of apple vinegar purchased from 3 companies. Antioxidant and α-glucosidase inhibition activities were also tested in vitro. A total of 43 compounds were identified by reference substance, liquid chromatography-mass spectrometry(LC-MS/MS) fragmentation information or literature data. A total of 40 compounds were identified in the C. axillaris fruit peel vinegar. A total of 16 compounds were identified in apple vinegar. There were 13 common ingredients including organic acids and esters such as citric acid, 2-isopropyl malic acid, and triethyl citrate. The results of partial leastsquares-discriminant analysis(PLS-DA) indicated that they had 33 significantly different compounds such as proanthocyanidin oligomer, quercetin-3-O-rhamnoside and heptadecanoic acid. The proanthocyanidins and flavonoid glycosides in C. axillaris peel vinegar were more abundant than apple vinegar, so it had better health function than ordinary fruit vinegar. The results showed that C. axillaris fruit peel vinegar had stronger antioxidant and α-glucosidase inhibition activities in vitro. The vinegar brewed from waste C. axillaris fruit peel had more chemical ingredients than the apple vinegar. C. axillaris fruit peel vinegar had better biological activity and health function, so it had good development prospect. This study provided the scientific evidence for exploiting the C. axillaris fruit peel into high value-added products. It also provided ideas for the comprehensive development and utilization of similar Chinese medicine waste.


Subject(s)
Acetic Acid/pharmacology , Anacardiaceae/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Malus/chemistry , Antioxidants , Chromatography, High Pressure Liquid , Fruit/chemistry , Plant Extracts , Tandem Mass Spectrometry , alpha-Glucosidases
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008489

ABSTRACT

Based on the idea of plant metabolomics, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to compare the chemical composition between 6 batches of fruit vinegar brewed from Choerospondias axillaris fruit peel and 6 batches of apple vinegar purchased from 3 companies. Antioxidant and α-glucosidase inhibition activities were also tested in vitro. A total of 43 compounds were identified by reference substance, liquid chromatography-mass spectrometry(LC-MS/MS) fragmentation information or literature data. A total of 40 compounds were identified in the C. axillaris fruit peel vinegar. A total of 16 compounds were identified in apple vinegar. There were 13 common ingredients including organic acids and esters such as citric acid, 2-isopropyl malic acid, and triethyl citrate. The results of partial leastsquares-discriminant analysis(PLS-DA) indicated that they had 33 significantly different compounds such as proanthocyanidin oligomer, quercetin-3-O-rhamnoside and heptadecanoic acid. The proanthocyanidins and flavonoid glycosides in C. axillaris peel vinegar were more abundant than apple vinegar, so it had better health function than ordinary fruit vinegar. The results showed that C. axillaris fruit peel vinegar had stronger antioxidant and α-glucosidase inhibition activities in vitro. The vinegar brewed from waste C. axillaris fruit peel had more chemical ingredients than the apple vinegar. C. axillaris fruit peel vinegar had better biological activity and health function, so it had good development prospect. This study provided the scientific evidence for exploiting the C. axillaris fruit peel into high value-added products. It also provided ideas for the comprehensive development and utilization of similar Chinese medicine waste.


Subject(s)
Acetic Acid/pharmacology , Anacardiaceae/chemistry , Antioxidants , Chromatography, High Pressure Liquid , Fruit/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Malus/chemistry , Plant Extracts , Tandem Mass Spectrometry , alpha-Glucosidases
SELECTION OF CITATIONS
SEARCH DETAIL
...