Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123251, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37591017

ABSTRACT

Chiral molecules play a very important role in biological systems, and more and more chiral drugs are used in the treatment of diseases. Mandelic acid (MA) is an important chiral starting substance or the key intermediate of some chiral drugs, and the rapid detection of its chiral purity is very important in the synthesis, separation and detection of drugs. In this study, we developed a method for rapid determination of chiral purity of MA by Raman spectroscopy, and measured a series of Raman spectra of different chiral MA. Through the analysis, it is found that the OH stretching vibration peak can be used to identify the components of chiral molecules, and the enantiomeric excess (ee value) obtained is in good agreement with the real value, and the error is about 5%. The experimental detection speed is fast and the efficiency is high. Our work firstly provides a new idea for the purity detection of chiral molecules by the original Raman spectrum.

2.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513284

ABSTRACT

2-benzothiazoles and 2-(aminophenyl)benzothiazoles represent biologically interesting heterocycles with high pharmacological activity. The combination of these heterocycles with amino acids and peptides is of special interest, as such structures combine the advantages of amino acids and peptides with the advantages of the 2-benzothiazolyl and 2-(aminophenyl)benzothiazolyl pharmacophore group. In this work, we developed an easy and efficient method for the solid-phase synthesis of 2-benzothiazolyl (BTH) and 2-(aminophenyl)benzothiazolyl (AP-BTH) C-terminal modified amino acids and peptides with high chiral purity.


Subject(s)
Amino Acids , Solid-Phase Synthesis Techniques , Amino Acids/chemistry , Amines/chemistry , Benzothiazoles/chemistry , Peptides
3.
Article in English | MEDLINE | ID: mdl-36857849

ABSTRACT

The determination of chiral purity is critical to the evaluation of the quality of peptide pharmaceutical products. For synthetic peptides, the undesirable d-isomers can be introduced as impurities in amino acid starting materials and can also be formed during peptide synthesis and in some cases during product shelf life. A chiral high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method is described that facilitates rapid and accurate determination of amino acid chiral purity of a peptide. The peptide is hydrolyzed in deuterated acid to facilitate correction for any racemization occurring during this step of sample preparation, and the amino acids are subsequently separated by chiral chromatography interfaced with ESI-MS/MS for quantitation. The amino acid samples are analyzed directly following hydrolysis using high-low chromatography and extraction of selected ion response, providing efficiency and simplicity by avoiding the derivatization steps and multiple external standards required by traditional methodologies. GMP method validation feasibility is described for all nineteen chiral proteogenic amino acids. The practical application of the chiral HPLC-ESI-MS/MS method was demonstrated through the recovery of d-amino acid substitutions at each residue of an octapeptide across the 0.1-1.0 % range of interest. The method was applied to the analysis of four model peptides, each consisting of 8-14 amino acid residues, and the results were comparable to those provided by traditional testing methods.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acids/chemistry , Peptides , Amines
4.
J Sep Sci ; 45(13): 2217-2227, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35460597

ABSTRACT

A new approach for the evaluation of chiral purity of serine esterification products bearing long-chain alkyl substituents was developed. The compounds were simply converted to aryl-substituted oxazolines which: (i) facilitates effective chromatographic enantioseparation and (ii) enables direct detection using ultraviolet absorption. The method employs a polysaccharide-based chiral stationary phase and allows enantioseparation of highly stable oxazoline products in less than 6 min using a simple binary mobile phase. As opposed to the previously used normal phase method the developed method was performed in the reversed-phase mode. Aside from the benefits of switching to less hazardous solvents with regard to the principles of Green Chemistry, this has also led to a reduction in the analysis time. In comparison with known serine chromophores, the best enantioseparation of aryloxazoline rigid structure may be achieved only based on non-polar interactions with the chiral stationary phase. In contrast, the substitution of the chromophore moiety with hydroxyl substituent affected intra and intermolecular interactions that caused enantioseparation differences. Concurrently, we found high chirality retention of (R)- and (S)-configuration oxazoline standards (≥99% enantiomeric excess) during the introduction of the ultraviolet label. The method is suitable for rapid injection of the mixture containing the ultraviolet absorption marker without prior purification.


Subject(s)
Polysaccharides , Serine , Chromatography, High Pressure Liquid/methods , Solvents , Stereoisomerism
5.
Braz. J. Pharm. Sci. (Online) ; 58: e19247, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420437

ABSTRACT

Abstract L-Malic acid is the Active Pharmaceutical Ingredient of the latest generation of compound electrolyte injection (STEROFUNDIN ISO, Germany) and plays a very important role in the rescue of critically ill patients. The optical purity of L-malic acid is a Critical Quality Attributes. A new reversed-phase high performance liquid chromatography (RP-HPLC) method for pre-column derivatization of D-malic acid enantiomer impurity in L-malic acid bulk drug was established. The derivatization reaction was carried out using (R)-1-(1-naphthyl)ethylamine ((R)-NEA) as a chiral derivatization reagent. The Kromasil C18 column was used with a detection wavelength of 225 nm, a flow rate of 1.0 mL·min-1, and a column temperature of 30 °C. The mobile phase was acetonitrile-0.01 mol·L-1 potassium dihydrogen phosphate solution (containing 20 mmol·L-1 sodium heptanesulfonate, adjusted to pH 2.80 with phosphoric acid) (at a ratio of 45:55) and the resolution of D-malic acid and L-malic acid derivatization products reached 1.7. The proposed method possesses the advantages of simple operation, mild conditions, stable derivatization products and low cost. Also it gave better separation and was more accurate than previous methods


Subject(s)
Chromatography, High Pressure Liquid/methods , Malicum Acidum/analysis , Chromatography, Reverse-Phase/methods , Patients/classification , Total Quality Management/classification
6.
Chirality ; 33(6): 315-320, 2021 06.
Article in English | MEDLINE | ID: mdl-33876853

ABSTRACT

There has been made an assumption, correlating with experimental data, that the phenomenon of effectively chiral-pure, chiral-induced spiralization of macromolecules in weakly polarized heterochiral solutions is determined by the mechanism of physico-chemical annihilation: enantiomers-antipodes of a chiral compound in a heterochiral solution annihilate; that is, they form achiral dimers, the solution becomes effectively homochiral and further, chiral-induced macromolecular spiralization of one sign of helicity is realized in it in the same way as in other homochiral solutions.

7.
Indian J Pharm Sci ; 71(5): 533-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-20502572

ABSTRACT

A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 mug/ml, respectively for 20 mul injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide].

SELECTION OF CITATIONS
SEARCH DETAIL
...