Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.941
Filter
1.
J Environ Sci (China) ; 147: 74-82, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003085

ABSTRACT

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.


Subject(s)
Benzhydryl Compounds , Enzymes, Immobilized , Laccase , Phenols , Polyethylene Glycols , Water Pollutants, Chemical , Laccase/chemistry , Laccase/metabolism , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Polyethylene Glycols/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Biodegradation, Environmental , Endocrine Disruptors/chemistry
2.
Food Chem ; 462: 140860, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213964

ABSTRACT

A modified QuEChERS method was developed to determine multi-class pesticide and veterinary residues in aquatic products. Chitosan microspheres were conveniently synthesized and utilized as the cleanup adsorbent in the QuEChERS procedure, showcasing rapid filtration one-step pretreatment ability for the determination of drug multi-residues in aquatic products. Compared to conventional synthetic sorbents, chitosan microspheres not only have good purification performance, but also have renewable and degradable properties. This novel sorbent worked well in the simultaneous determination of 95 pesticides and veterinary drug residues in aquatic products after being combined with an improved one-step vortex oscillating cleanup method. We achieved recoveries ranging from 64.0% to 115.9% for target drugs in shrimp and fish matrix. The limits of detection and quantification were 0.5-1.0 and 1.0-2.0 µg kg-1, respectively. Notably, hydrocortisone was detected with considerable frequency and concentration in the tested samples, underscoring the necessity for stringent monitoring of this compound in aquatic products.


Subject(s)
Chitosan , Fishes , Microspheres , Tandem Mass Spectrometry , Veterinary Drugs , Animals , Chitosan/chemistry , Chromatography, High Pressure Liquid , Veterinary Drugs/analysis , Veterinary Drugs/isolation & purification , Food Contamination/analysis , Drug Residues/analysis , Drug Residues/isolation & purification , Drug Residues/chemistry , Pesticides/isolation & purification , Pesticides/analysis , Pesticides/chemistry , Pesticide Residues/isolation & purification , Pesticide Residues/analysis , Pesticide Residues/chemistry , Adsorption , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seafood/analysis , Shellfish/analysis , Liquid Chromatography-Mass Spectrometry
3.
Food Chem ; 462: 141006, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213974

ABSTRACT

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Subject(s)
Anti-Bacterial Agents , Chitosan , Edible Films , Emulsions , Food Packaging , Laurates , Monoglycerides , Nisin , Oils, Volatile , Staphylococcus aureus , Nisin/pharmacology , Nisin/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Laurates/chemistry , Laurates/pharmacology , Food Packaging/instrumentation , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Emulsions/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Monoglycerides/chemistry , Monoglycerides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Perilla/chemistry
4.
J Orthop Surg Res ; 19(1): 602, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342369

ABSTRACT

In this study, we developed scaffolds materials with microspheres to form a double sustained release system.Chitosan/nano-hydroxyapatite (CS-HA) was used as a drug carrier to construct a sustained-release system for Bone morphogenetic protein-2(BMP-2) and Vancomycin (VAN). Furthermore, VAN and BMP-2 loaded microspheres (Ms) were prepared by the emulsion ultrasonic method.The resultant composites were characterized by Scanning electron microscope (SEM), compressive strength, porosity, and biodegradation. The characterization results showed uniform porous and rough surface, enhanced thermal stability, and highest compressive strength ((1.912 ± 0.012) Kpa, the surface of the two microspheres was slightly folded and showed a regular spherical shape.The loading rate of BMP-2 was (59.611 × 10-4 ± 0.023 × 10-4)% and the encapsulation rate was (6.022 ± 0.005)%. The release rate of vancomycin and BMP-2 was 57.194% and 12.968% respectively. Osteogenic differentiation of Bone marrow mesenchymal stem cells (BMSCs) was confirmed by alkaline phosphatase quantification. The deposition of late osteogenic markers (calcium phosphates) detected by Alizarin red, which indicated extracellular matrix mineralization. The results showed that BMP-2/VAN in CS-HA hydrogel successfully achieved the sequential release of the double drugs, which could benefit bone regeneration.


Subject(s)
Bone Morphogenetic Protein 2 , Chitosan , Durapatite , Hydrogels , Osteomyelitis , Vancomycin , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Bone Morphogenetic Protein 2/administration & dosage , Chitosan/administration & dosage , Chitosan/chemistry , Durapatite/administration & dosage , Osteomyelitis/drug therapy , Animals , Anti-Bacterial Agents/administration & dosage , Chronic Disease , Delayed-Action Preparations , Drug Carriers , Microspheres , Drug Liberation , Osteogenesis/drug effects , Mesenchymal Stem Cells
5.
J Biomed Mater Res B Appl Biomater ; 112(10): e35486, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39295151

ABSTRACT

Hydrogels have emerged as potential materials for bone grafting, thanks to their biocompatibility, biodegradation, and flexibility in filling irregular bone defects. In this study, we fabricated a novel NAH hydrogel system, composed of N,O-carboxymethyl chitosan (NOCC), aldehyde hyaluronic acid (AHA), and hydroxyapatite (HAp). To improve the mechanical strength of the fabricated hydrogel, a porous polycaprolactone (PCL) matrix was synthesized and used as a three-dimensional (3D) support template for NAH hydrogel loading, forming a novel PCL/NAH hybrid scaffold. A mixture of monosodium glutamate (M) and sucrose (S) at varied weight ratios (5M:5S, 7M:3S, and 9M:1S) was used for the fabrication of 3D PCL matrices. The morphology, interconnectivity, and water resistance of the porous PCL scaffolds were investigated for optimal hydrogel loading efficiency. The results demonstrated that PCL scaffolds with porogen ratios of 7M:3S and 9M:1S possessed better interconnectivity than 5M:5S ratio. The compressive strength of the PCL/NAH hybrid scaffolds with 9M:1S (561.6 ± 6.1 kPa) and 7M:3S (623.8 ± 6.8 kPa) ratios are similar to cancellous bone and all hybrid scaffolds were biocompatible. Rabbit models with tibial defects were implanted with the PCL/NAH scaffolds to assess the wound healing capability. The results suggest that the PCL/NAH hybrid scaffolds, specifically those with porogen ratio of 7M:3S, exhibit promising bone healing effects.


Subject(s)
Bone Regeneration , Chitosan , Durapatite , Hyaluronic Acid , Hydrogels , Polyesters , Tissue Scaffolds , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Animals , Rabbits , Durapatite/chemistry , Durapatite/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Polyesters/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Materials Testing , Male
6.
J Appl Biomater Funct Mater ; 22: 22808000241281273, 2024.
Article in English | MEDLINE | ID: mdl-39295153

ABSTRACT

Vanillin loaded-physically crosslinked hydrogel membranes made of PVA/chitosan/itaconic acid (PVA-CS-IA) were prepared using freezing-thawing (F-T) cycle method. To ensure the entanglement of PVA-CS-IA chains, three F-T cycles were repeated. The polymeric chains entanglements were confirmed and characterized by different instrumental characterizations. Physicochemical properties for example, swelling ratio, mechanical characteristics, gel fraction percentage (GF%), hydrolytic degradation, and thermal stability of PVA-CS-IA membrane were discussed in detail. The findings showed that the swelling ratio, mechanical characteristics, and hydrolytic degradation of the crosslinked membranes enhanced with increasing CS-IA contents in membranes composition; however, GF% gradually declined with CS-IA content. Additionally, cell viability test using HFB-4 cell line and antimicrobial activity against Staphylococcus aureus and Escherichia coli were evaluated using MTT assay and the bacterium growth inhibition percentage method; respectively. Notably, with varying incubation durations and membrane concentrations, all examined constructed hydrogels showed significant cell survival percentages. The findings supported the notion that produced hydrogel membranes might be used in a professional setting as antibacterial dressings or biomaterials for quick wound healing rate.


Subject(s)
Anti-Bacterial Agents , Benzaldehydes , Chitosan , Escherichia coli , Polyvinyl Alcohol , Staphylococcus aureus , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Polyvinyl Alcohol/chemistry , Wound Healing/drug effects , Humans , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Benzaldehydes/chemistry , Benzaldehydes/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Membranes, Artificial , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Survival/drug effects , Succinates
7.
Int J Biol Macromol ; 279(Pt 4): 135520, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260643

ABSTRACT

Fluoride ion pollution in water has become a serious threat to the water environment and human health. Adsorption is a promising means of fluoride removal, but it also faces challenges such as the difficult separation and recovery of powdered particles, the leaching of modified coatings from adsorbents, and the structural disintegration of macroscopic adsorbents. For addressing the above challenges, glutaraldehyde/polyvinyl alcohol co-crosslinked ZrSAF/chitosan spongy composites (ZrS/GPCS) were prepared by utilizing encapsulation strategies and cross-linking. ZrS/GPCS-1, ZrS/GPCS-3 and ZrS/GPCS-4 were prepared due to the different amounts of cross-linking agents. The results showed that their fluoride ion adsorption capacities were 42.02, 44.44 and 39.84 mg/g, respectively. The removal of fluoride ions by ZrS/GPCS was maintained at >80 % in the pH range of 4-10. The addition of glutaraldehyde and polyvinyl alcohol affected the contact efficiency of fluoride ions with chitosan and ZrSAF, influencing the adsorption rate and adsorption effect. Glutaraldehyde, polyvinyl alcohol and ZrSAF improved the thermal stability, mechanical properties and structural integrity of chitosan matrix. Both the chitosan matrix and the internal ZrSAF played an important role in fluoride removal, and the removal mechanisms included electrostatic interaction, hydrogen bonding, and complexation.

8.
Eur J Pharm Sci ; 202: 106896, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39250981

ABSTRACT

Recent advances in understanding Alzheimer's disease (AD) suggest the possibility of an infectious etiology, with Porphyromonas gingivalis emerging as a prime suspect in contributing to AD. P. gingivalis may invade systemic circulation via weakened oral/intestinal barriers and then cross the blood-brain barrier (BBB), reaching the brain and precipitating AD pathology. Based on the proposed links between P. gingivalis and AD, a prospective approach is the development of an oral nanovaccine containing P. gingivalis antigens for mucosal delivery. Targeting the gut-associated lymphoid tissue (GALT), the nanovaccine may elicit both mucosal and systemic immunity, thereby hampering P. gingivalis ability to breach the oral/intestinal barriers and the BBB, respectively. The present study describes the optimization, characterization, and in vitro evaluation of a candidate chitosan-coated poly(lactic-co-glycolic acid) (PLGA-CS) nanovaccine containing a P. gingivalis antigen extract. The nanocarrier was prepared using the double emulsion solvent evaporation method and optimized for selected experimental factors, e.g. PLGA amount, surfactant concentration, w1/o phase ratio, applying a d-optimal statistical design to target the desired physicochemical criteria for its intended application. After nanocarrier optimization, the nanovaccine was characterized in terms of particle size, polydispersity index (PdI), ζ-potential, encapsulation efficiency (EE), drug loading (DL), morphology, and in vitro release profile, as well as for mucoadhesivity, stability under simulated gastrointestinal conditions, antigen integrity, in vitro cytotoxicity and uptake using THP-1 macrophages. The candidate PLGA-CS nanovaccine demonstrated appropriate physicochemical, mucoadhesive, and antigen release properties for oral delivery, along with acceptable levels of EE (55.3 ± 3.5 %) and DL (1.84 ± 0.12 %). The integrity of the encapsulated antigens remained uncompromised throughout NPs production and simulated gastrointestinal exposure, as confirmed by SDS-PAGE and Western blotting analyses. Furthermore, the nanovaccine showed effective in vitro uptake, while exhibiting low cytotoxicity. Taken together, these findings underscore the potential of PLGA-CS NPs as carriers for adequate antigen mucosal delivery, paving the way for further investigations into their applicability as vaccine candidates against P. gingivalis.


Subject(s)
Antigens, Bacterial , Chitosan , Drug Carriers , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Porphyromonas gingivalis , Chitosan/chemistry , Chitosan/administration & dosage , Porphyromonas gingivalis/drug effects , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Drug Carriers/chemistry , Nanoparticles/administration & dosage , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Drug Liberation
9.
Int J Biol Macromol ; 279(Pt 4): 135532, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265903

ABSTRACT

The present work focuses on the fabrication of polyvinyl alcohol-chitosan-loaded oleanolic acid-nanofibers (PVA-CS-OLA-NFs) for bacterial infection. The prepared PVA-CS-OLA-NFs were characterized for contact angle, SEM, AFM, XRD, FTIR, and TGA. The solid-state characterization and in vitro performance evaluation of nanofibers reveal consistent interconnection and diameters ranging from 102 ± 9.5 to 386 ± 11.6 nm. The nanofibers have a flat surface topography and exhibit efficient drug entrapment. Moreover, the in vitro release profile of PVA-CS-OLA-NFs was found to be 51.82 ± 1.49 % at 24 h. Furthermore, the hemocompatibility study showed that the developed PVA-CS-OLA-NFs are non-hemolytic to human blood. The PVA-CS-OLA-NFs demonstrate remarkable antibacterial capabilities, as evidenced by their MBC and MIC values, which range from 128 and 32 µg/mL, against the strains of S. aureus. The in-vivo fluorescence optical imaging showed the sustained PVA-CS-OLA-NFs release at the wound site infected with S. aureus for a longer duration of time. Moreover, the PVA-CS-OLA-NFs showed superior wound healing performance against S. aureus infected wounds compared to the marketed formulation. Further, the laser Doppler imaging system improved oxygen saturation, blood supply, and wound healing by providing real-time blood flow and oxygen saturation information.

10.
Int J Biol Macromol ; 280(Pt 1): 135593, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276880

ABSTRACT

This study explored natural deep eutectic solvent-based polyphenolic extract from date fruit seed as a functional and bioactive compound in chitosan-poly(vinyl)alcohol (CSPVA) films. Various concentrations of the extract (1.5 %, 2 %, 2.5 %, and 3 %) were added to study the effect on the film's bioactive, physicochemical, mechanical and structural properties. The extract increased the total phenolic content (0.01 to 0.16 mg GAE/mL), and antioxidant activities determined via 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay (1.45 to 5.53 mmol GAE/mL), and ferric ion reducing antioxidant power assay (0.12 to 2.4 µmol TE/mL) assays. It also enhanced antibacterial activities against Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli. The extract was also successful in increasing the elongation at break (45.51 % to 58.16 %) and thickness (0.10 to 0.19 mm) while reducing tensile strength (11.18 MPa to 3.02 MPa) and Young's modulus (24.5 MPa to 5.7 MPa). UV-shielding ability, opacity, water vapor permeability (3.7 to 7.6 × 10-10 g/m.s.Pa) and solubility (53.7 % to 73.9 %) also increased. CSPVA films with 3 % DSP preserved white shrimps better than cling film by reducing quality deterioration (i.e., color, lipid oxidation, and bacterial population) after 4 days of refrigeration. These findings suggest that CSPVA films enriched with green-extracted date seed polyphenolic compounds hold significant potential for sustainable food packaging.

11.
Chemosphere ; 365: 143334, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278325

ABSTRACT

The current study tries to find the impact of the integration of laccase enzyme (Lac) onto magnetized chitosan (Cs) nanoparticles composed of molybdenum disulfide (MoS2 NPs) (Fe3O4/Cs/MoS2/Lac NPs) on the removal of AFM1 in milk samples. The Fe3O4/Cs/MoS2/Lac NPs were characterized by FT-IR, XRD, BET, TEM, FESEM, EDS, PSA, and VSM analysis. The cytotoxic activity of the synthesized nanoparticles in different concentrations was evaluated using the MTT method. The results show that the synthesized nanoparticles don't have cytotoxic activity at concentrations less than 20 mg/l. The ability of the prepared nanoparticles to remove AFM1 was compared by bare laccase enzyme, MoS2, and Fe3O4/Cs/MoS2 composite, indicating that the Fe3O4/Cs/MoS2/Lac NPs the highest adsorption efficiency toward AFM1. Besides, the immobilization efficiency of laccase with a concentration range of 0.5-2.0 was investigated, indicating that the highest activity recovery of 96.8% was obtained using 2 mg/ml laccase loading capacity. The highest removal percentage of AFM1 (68.5%) in the milk samples was obtained by the Fe3O4/Cs/MoS2/Lac NPs at a contact time of 1 h. As a result, Fe3O4/MoS2/Cs/Lac NPs can potentially be utilized as an effective sorbent with high capacity and selectivity to remove AFM1 from milk samples.

12.
Int J Pharm ; 665: 124715, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284424

ABSTRACT

Postmastectomy radiotherapy causes capsular contracture due to fibroproliferation of the capsular tissue around the implant. In fibrosis, unlike normal wound healing, structural and functional disorders are observed in the tissues caused by excessive/irregular accumulation of extracellular matrix proteins. It has been reported that transforming growth factor-ß3 (TGF-ß3) prevents and reverses fibrosis in various tissues or provides scarless healing with its antifibrotic effect. Additionally, TGF-ß3 has been shown to reduce fibrosis in radiotherapy-induced fibrosis syndrome. However, no study in the literature investigates the effects of exogenously applied TGF-ß3 on capsular contracture in aesthetic or reconstructive breast implant application. TGF-ß3, which has a very short half-life, has low bioavailability with parenteral administration. Within the scope of this study, free TGF-ß3 was loaded into the nanoparticles to increase its low bioavailability and extend its duration of action by providing controlled release. The aim of this study is to investigate the preventive/improving effects of radiation induced capsular contracture using chitosan film formulations containing TGF-ß3 loaded poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles in implant-based breast reconstruction. In the characterization studies of nanoparticles, the particle size and zeta potential of the TGF-ß3-loaded PLGA-b-PEG nanoparticle formulation selected to be used in the treatment group were found to be 123.60 ± 2.09 nm and -34.87 ± 1.42 mV, respectively. The encapsulation efficiency of the formulation was calculated as 99.91 %. A controlled release profile was obtained in in vitro release studies. Chitosan film formulations containing free TGF-ß3 or TGF-ß3-loaded PLGA-b-PEG nanoparticles were used in in vivo studies. In animal studies, rats were randomly distributed into 6 groups (n = 8) as sham, implant, implant + radiotherapy, implant + radiotherapy + chitosan film containing unloaded nanoparticles, implant + radiotherapy + chitosan film containing free TGF-ß3, implant + radiotherapy + chitosan film containing TGF-ß3 loaded nanoparticle. In all study groups, a 2 cm incision was made along the posterior axillary line at the thoracic vertebral level in rats to reach the lateral edge of the latissimus dorsi. The fascial attachment to the chest wall was then bluntly dissected to create a pocket for the implants. In the treatment groups, the wound was closed after films were placed on the outer surface of the implants. After administering prophylactic antibiotics, rats were subjected to irradiation with 10 Gy photon beams targeted to each implant site. Each implant and the surrounding excised tissue were subjected to the necessary procedures for histological (capsule thickness, cell density), immunohistochemical, and biochemical (α-SMA, vimentin, collagen type I and type III, TGF-ß1 and TGF-ß3: expression level/protein level) examinations. It was determined that the levels of TGF-ß1 and TGF-ß3 collagen type III, which decreased as a result of radiotherapy, were brought to the control level with free TGF-ß3 film and TGF-ß3 nanoparticle film formulations. Histological analyses, consistent with biochemical analyses, showed that thick collagen and fibrosis, which increased with radiotherapy, were brought to the control level with free TGF-ß3 film and TGF-ß3 nanoparticle film treatments. In biochemical analyses, the decrease in thick collagen was compatible with the decrease in the collagen type I/type III ratio in the free TGF-ß3 film and TGF-ß3 nanoparticle film groups. Changes in protein expression show that TGF-ß3 loaded nanoparticles are more successful than free TGF-ß3 in wound healing. In line with these results and the literature, it is thought that the balance of TGF-ß1 and TGF-ß3 should be maintained to ensure scarless wound healing with no capsule contracture.

13.
Acta Biomater ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245308

ABSTRACT

Cell therapy is a promising strategy for treating neurological pathologies but requires invasive methods to bypass the blood-brain barrier restrictions. The nose-to-brain route has been presented as a direct and less invasive alternative to access the brain. The primary limitations of this route are low retention in the olfactory epithelium and poor cell survival in the harsh conditions of the nasal cavity. Thus, using chitosan-based hydrogel as a vehicle is proposed in this work to overcome the limitations of nose-to-brain cell administration. The hydrogel's design was driven to achieve gelification in response to body temperature and a mucosa-interacting chemical structure biocompatible with cells. The hydrogel showed a < 30 min gelation time at 37 °C and >95 % biocompatibility with 2D and 3D cultures of mesenchymal stromal cells. Additionally, the viability, stability, and migration capacity of oligodendrocyte precursor cells (OPCs) within the hydrogel were maintained in vitro for up to 72 h. After the intranasal administration of the OPCs-containing hydrogel, histological analysis showed the presence of viable cells in the nasal cavity for up to 72 h post-administration in healthy athymic mice. These results demonstrate the hydrogel's capacity to increase the residence time in the nasal cavity while providing the cells with a favorable environment for their viability. This study presents for the first time the use of thermosensitive hydrogels in nose-to-brain cell therapy, opening the possibility of increasing the delivery efficiency in future approaches in translational medicine. STATEMENT OF SIGNIFICANCE: This work highlights the potential of biomaterials, specifically hydrogels, in improving the effectiveness of cell therapy administered through the nose. The nose-to-brain route has been suggested as a non-invasive way to directly access the brain. However, delivering stem cells through this route poses a challenge since their viability must be preserved and cells can be swept away by nasal mucus. Earlier attempts at intranasal cell therapy have shown low efficiency, but still hold promise to the future. The hydrogels designed for this study can provide stem cells with a biocompatible environment and adhesion to the nasal atrium, easing the successful migration of viable cells to the brain.

14.
Int J Biol Macromol ; 280(Pt 1): 135528, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278448

ABSTRACT

Citrus Huanglongbing (HLB) poses an enormous challenge to Citrus cultivation worldwide, necessitating groundbreaking interventions beyond conventional pharmaceutical methods. In this study, we propose molybdenum disulfide-chitosan nanoparticles (MoS2-CS NPs) through electrostatic adsorption, preserving the plant-beneficial properties of molybdenum disulfide (MoS2), while enhancing its antibacterial effectiveness through chitosan modification. MoS2-CS NPs exhibited significant antibacterial efficacy against RM1021, and the closest relatives to Candidatus Liberibacter asiaticus (CLas), Erwinia carotovora, and Xanthomonas citri achieved survival rates of 7.40 % ± 1.74 %, 8.94 % ± 1.40 %, and 6.41 % ± 0.56 %, respectively. In vivo results showed, CLas survival rate of 10.42 % ± 3.51 %. Furthermore, treatment with MoS2-CS NPs resulted in an increase in chlorophyll and carotenoid content. Concomitantly, a significant reduction in malondialdehyde (MDA), soluble sugar, hydrogen peroxide (H2O2), and starch contents was also observed. Mechanistically, MoS2-CS NPs enhanced the activity of antioxidant-related enzymes by upregulating the expression of antioxidant genes, thereby galvanizing the antioxidant system to alleviate oxidative stress. Collectively, this dual functionality-combining direct antibacterial action with the activation of plant defense mechanisms-marks a promising strategy for managing Citrus Huanglongbing and suggests potential agricultural applications for MoS2-based antibacterial treatments.

15.
Int J Biol Macromol ; 280(Pt 1): 135757, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299414

ABSTRACT

Oral probiotics can alleviate enteric inflammations but their rapid transit through the gut limits their retention and colonization in the colon. Here, a novel strategy integrating the bacterial double-layer coating and hydrogel microsphere embedding techniques was used to highly enhance the colonic retention and colonization efficiency of Lactobacillus rhamnosus GG (LGG). LGG was coated by the double layers of chitosan (CS) and tannic acid (TA), and then embedded in calcium alginate (CA) hydrogel microspheres to form LGG@CT@CA. The microspheres resisted gastric liquids, improving LGG safe transit through the stomach to reach the colon. LGG@CT was rapidly released in the colon due to the good swelling of hydrogel microspheres. More importantly, LGG exhibited long-term retention up to 7 days in the colon and colonized the deep site of the colonic mucosa. LGG@CT@CA had a high therapeutic efficiency of ulcer colitis with the long colon and the low intestinal permeability of colonic tissues. LGG@CT@CA also alleviated the small intestinal damage induced by irradiation and the survival rates were improved. The mechanisms included local ROS decrease, IL-10 increase, and ferroptosis reduction in the small intestine. The oral colon-targeted system holds promise for oral probiotic therapy by the long-term retention and colonization in the colon.

16.
Int J Biol Macromol ; 280(Pt 2): 135939, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317283

ABSTRACT

Bacterial infection and free radical oxidative stress at the wound site could easily cause cascade inflammation and hinder the healing process of the wound. In this study, chitosan-cysteine-gallic acid (CCG) hydrogel with antibacterial and antioxidant properties was synthesized by chitosan (CS), cysteine (Cys), and gallic acid (GA) for a preliminary evaluation of its therapeutic efficacy in a mouse model of full-layer skin defect. In vitro analysis showed that the CCG hydrogel had good antibacterial activity and blood compatibility. In vivo, the CCG hydrogel wound dressings accelerated wound healing, stimulate angiogenesis, increase collagen deposition and anti-inflammatory factor expression. The CCG hydrogel wound dressing is designed to promote the regeneration of damaged skin tissue and is expected to become a potential candidate for clinical treatment.

17.
J Sci Food Agric ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324370

ABSTRACT

BACKGROUND: Previous studies have demonstrated that the addition of chitosan can improve the quality and functional properties of meat products. However, the underlying mechanism remains unclear. In this study, the effect and mechanism of the addition of chitosan on the gel properties of myofibrillar protein (MP) were investigated. RESULTS: The results indicated that the gel strength and the water-holding capacity of MP-chitosan gel increased significantly when chitosan was added at 2.5-10 mg mL-1. Myofibrillar protein samples with 10 mg mL-1 added chitosan exhibited the highest elasticity and viscosity during gel formation and strengthening. The addition of chitosan also caused a modification in both the secondary and tertiary structure of MP, resulting in an enhanced exposure of hydrophobic and sulfhydryl groups in comparison with the control. Chitosan inhibited the conversion of immobilized water into free water and the formation of water channels during the thermal gelation process of MP. The denaturation enthalpy (ΔH) of myosin decreased as the concentration of chitosan exceeded 5 mg mL-1. The microstructure showed that the incorporation of chitosan (5-10 mg mL-1) facilitated the formation of compact and well organized MP gel networks. CONCLUSION: The addition of chitosan can enhance the functional properties of meat protein and facilitate heat-induced gelation, making it a promising ingredient for improving the quality of processed meat products. © 2024 Society of Chemical Industry.

18.
Int J Biol Macromol ; 280(Pt 2): 135853, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39306164

ABSTRACT

The stability of quercetin remains a challenge for their application in industrial food production. In order to solve this shortcoming, zein-tannic acid covalent complex was prepared. Fourier transform infrared spectroscopy demonstrated the formation of CN bond between zein and tannic acid. Quercetin loaded nanoparticles (QZTC) were prepared by zein-tannic acid complex and carboxymethyl chitosan by anti-solvent co-precipitation and pH migration method. The structure of the nanoparticles was characterized and the effects of tannic acid modification and carboxymethyl chitosan addition on the encapsulation efficiency, oxidation resistance, antibacterial property, environmental stability and microstructure of the nanoparticles were studied. The results showed that compared with zein nanoparticles, QZTC had higher encapsulation rate, smaller and more uniform spherical microstructure. Compared with free quercetin and the other two nanoparticles, QZTC showed higher light, heat, storage stability, antioxidant and antibacterial abilities (p < 0.05). It was also found that the improvement of stability mainly depended on the formation of CN covalent bond, hydrogen bond, electrostatic interaction and hydrophobic interaction between components. This study provides new ideas for improving the environmental stability, antioxidant and antibacterial properties of quercetin and for developing nanoparticles that can be used in food processing.

19.
J Pharm Sci ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276978

ABSTRACT

Docetaxel (DTX) is one of the most potent anticancer drugs but its extensive side effects necessitate innovative formulations. In this study, we aimed to investigate the expression pattern of apoptotic proteins, cell cycle arrest, and apoptosis induction after treatment with encapsulated DTX in alginate-chitosan nanoparticles in both breast cancer cells (MCF-7) and peripheral blood mononuclear cells (PBMCs). The characterization of the nanoparticles revealed a spherical shape with a size <50 nm, a hydrodynamic diameter of 200 nm, a Polydispersity Index of 0.5, and an encapsulation efficiency of 98.75 %. The free drug was released completely within 11 h while encapsulated DTX was released only 34 % in 96 h. The encapsulated drug indicated higher cytotoxicity on MCF-7 cells and the half inhibitory concentration (IC50) value was 2 µg/ml after 72 h. Quantitative real-time PCR demonstrated a significant increase in cell death as the expression of apoptosis regulatory protein (Bcl-2) was downregulated with no impact on Bax in the MCF-7 cells. A notable decrease in the expression pattern of pro-inflammatory cytokine (IL-1ß) in PBMCs indicated less inflammation induction. Flow cytometry analysis revealed that the newly formulated drug induced less opoptosis in PBMCs than the free DTX. Cell cycle arrest in the sub-G1 phase was observed for the free drug while the encapsulated drug exhibited no significant changes. Our results suggest the high toxicity of the formulated drug in contrast to the free DTX on the MCF-7 cell line, minimal blood cell side effects, and no inflammation positioning it as a promising alternative to free docetaxel.

20.
Int J Biol Macromol ; 280(Pt 3): 135893, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317275

ABSTRACT

Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.

SELECTION OF CITATIONS
SEARCH DETAIL