Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
ACS Infect Dis ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990322

ABSTRACT

Infectious diabetic wounds present a substantial challenge, characterized by inflammation, infection, and delayed wound healing, leading to elevated morbidity and mortality rates. In this work, we developed a multifunctional lipid nanoemulsion containing quercetin, chlorine e6, and rosemary oil (QCRLNEs) for dual anti-inflammatory and antibacterial photodynamic therapy (APDT) for treating infectious diabetic wounds. The QCRLNEs exhibited spherical morphology with a size of 51 nm with enhanced encapsulation efficiency, skin permeation, and localized delivery at the infected wound site. QCRLNEs with NIR irradiation have shown excellent wound closure and antimicrobial properties in vitro, mitigating the nonselective cytotoxic behavior of PDT. Also, excellent biocompatibility and anti-inflammatory and wound healing responses were observed in zebrafish models. The infected wound healing properties in S. aureus-infected diabetic rat models indicated re-epithelization and collagen deposition with no signs of inflammation. This multifaceted approach using QCRLNEs with NIR irradiation holds great promise for effectively combating oxidative stress and bacterial infections commonly associated with infected diabetic wounds, facilitating enhanced wound healing and improved clinical outcomes.

2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38931396

ABSTRACT

Obesity and its associated hepatic steatosis have become a global concern, posing numerous health hazards. Photodynamic therapy (PDT) is a unique approach that promotes anti-obesity by releasing intracellular fat. Chlorin e6 (Ce6)-PDT was tested for its anti-obesity properties in male ovariectomized (OVX) beagle dogs, as well as male C57BL/6 and Balb/c mice. The 12 OVX beagles were randomly assigned to one of four groups: high-fat diet (HFD) only, Ce6 only, Ce6 + 10 min of light-emitting diode light (LED) treatment, and Ce6 + 15 min of light treatment. We assessed several parameters, such as body weight, adipose tissue morphology, serum biochemistry, and body fat content analysis by computed tomography (CT) scan in HFD-fed beagle dogs. At the end of the study period, dogs that were treated for 35 days with Ce6 and exposed to LED irradiation (660 nm) either for 10 min (Ce6 + 10 min of light) or for 15 min (Ce6 + 15 min of light) had decreased body weight, including visceral and subcutaneous fats, lower aspartate transaminase (AST)/alanine transaminase (ALT) ratios, and a reduction in the area of individual adipocytes with a concomitant increase in the number of adipocytes. Furthermore, C57BL/6 male mice following an HFD diet were effectively treated by Ce6-PDT treatment through a reduction in weight gain and fat accumulation. Meanwhile, Ce6-PDT attenuated hepatocyte steatosis by decreasing the epididymal adipose tissue and balloon degeneration in hepatocytes in HFD-fed Balb/c mice. Taken together, our results support the idea that Ce6-PDT is a promising therapeutic strategy for the recovery of obesity and obesity-related hepatic steatosis.

3.
Biomed Mater ; 19(4)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870927

ABSTRACT

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Subject(s)
Chlorophyllides , Cytokine-Induced Killer Cells , Gold , Lung Neoplasms , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Gold/chemistry , Photochemotherapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Humans , Animals , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Metal Nanoparticles/chemistry , Mice , Immunotherapy/methods , Cell Line, Tumor , Drug Delivery Systems , Polyethylene Glycols/chemistry , A549 Cells , Optical Imaging/methods , Mice, Nude
4.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38869558

ABSTRACT

Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O2. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects. In this work, mesoporous titania nanorods were surface-immobilized with Chlorin e6 (Ce6) conjugated through 3-(aminopropyl)-trimethoxysilane as a coupling agent. The mesoporous nanorods act as nano vehicles for doxorubicin delivery, and the Ce6 provides a visible light-responsive production of ROS to induce PDT. The nanomaterials were characterized by XRD, DRS, FTIR, TGA, N2 adsorption-desorption isotherms at 77 K, and TEM. The obtained materials were tested for their singlet oxygen and hydroxyl radical generation capacity using fluorescence assays. In vitro cell viability experiments with HeLa cells showed that the prepared materials are not cytotoxic in the dark, and that they exhibit photodynamic activity when irradiated with LED light (150 W m-2). Drug-loading experiments with doxorubicin (DOX) as a model chemotherapeutic drug showed that the nanostructures efficiently encapsulated DOX. The DOX-nanomaterial formulations show chemo-cytotoxic effects on Hela cells. Combined photo-chemotoxicity experiments show enhanced effects on HeLa cell viability, indicating that the conjugated nanorods are promising for use in combined therapy driven by LED light irradiation.

5.
Article in English | MEDLINE | ID: mdl-38755500

ABSTRACT

Photodynamic Therapy (PDT) is a promising paradigm for treating cancer, especially superficial cancers, including skin and oral cancers. However, the effectiveness of PDT is hindered by the hydrophobicity of photosensitizers. Here, chlorin e6 (Ce6), a hydrophobic photosensitizer, was loaded into pluronic F127 micelles to enhance solubility and improve tumor-specific targeting efficiency. The resulting Ce6@F127 Ms demonstrated a significant increase in solubility and singlet oxygen generation (SOG) efficiency in aqueous media compared to free Ce6. The confocal imaging and fluorescence-activated cell sorting (FACS) analysis confirmed the enhanced internalization rate of Ce6@F127 Ms in murine melanoma cell lines (B16F10) and human oral carcinoma cell lines (FaDu). Upon laser irradiation (666 nm), the cellular phototoxicity of Ce6@F127 Ms against B16F10 and FaDu was approximately three times higher than the free Ce6 treatment. The in vivo therapeutic investigations conducted on a murine model of skin cancer demonstrated the ability of Ce6@F127 Ms, when combined with laser treatment, to penetrate solid tumors effectively, which resulted in a significant reduction in tumor volume compared to free Ce6. Further, the Ce6@F127 Ms demonstrated upregulation of TUNEL-positive cells, downregulation of proliferation markers in tumor tissues, and prevention of lung metastasis with insignificant levels of proliferating cells and collagenase, as validated through immunohistochemistry. Subsequent analysis of serum and blood components affirmed the safety and efficacy of Ce6@F127 Ms in mice. Consequently, the developed Ce6@F127 Ms exhibits significant potential for concurrently treating solid tumors and preventing metastasis. The photodynamic formulation holds great clinical translation potential for treating superficial tumors.

6.
Biochem Biophys Res Commun ; 710: 149835, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38574457

ABSTRACT

We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Lysosomes , Hydrogen-Ion Concentration , Drug Combinations
7.
Nanotechnology ; 35(29)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38593752

ABSTRACT

Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.e. polydopamine nanoparticles) can induce NIR light-mediated heat energy, thereby selectively targeting and ameliorating cancer cells. Similarly, chlorin e6 (Ce6) also has high ROS generation ability and antitumor activity against various types of cancer. Based on this tenet, In the current study, we have encapsulated Mel-Ce6 in a polydopamine (PDA) nanocarrier (MCP NPs) synthesized by the oxidation polymerization method. The hydrodynamic diameter of the synthesized spherical MCP NPs was 139 ± 10 nm. The MCP NPs, upon irradiation with NIR 690 nm laser for 6 min, showed photothermal efficacy of more than 50 °C. Moreover, the red fluorescence in the MCP NPs due to Ce6 can be leveraged for diagnostic purposes. Further, the MCP NPs exhibited considerable biocompatibility with the L929 cell line and exerted nearly 70% ROS-mediated cytotoxicity on the B16 melanoma cell line after the laser irradiation. Thus, the prepared MCP NPs could be a promising theranostic agent for treating the B16 melanoma cancer.


Subject(s)
Chlorophyllides , Indoles , Melanins , Melanoma, Experimental , Nanoparticles , Polymers , Porphyrins , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Nanoparticles/chemistry , Animals , Mice , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Cell Line, Tumor , Porphyrins/chemistry , Porphyrins/pharmacology , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Phototherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Photothermal Therapy
8.
Photodiagnosis Photodyn Ther ; 47: 104096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643893

ABSTRACT

BACKGROUND: Port wine stains (PWS) are vascular malformations, and photodynamic therapy (PDT) is a promising treatment. Emerging drug delivery methods employ nanoparticles (NPs) to enhance drug permeability and retention in diseased blood vessels and improve drug bioavailability. (-) -epigallocatechin-3-gallate glycine (EGCG) has anti-angiogenetic effects and boosts photodynamic therapy. Chlorin e6 (Ce6) is capable of efficiently producing singlet oxygen, rendering it a very promising photosensitizer for utilization in nanomedicine. MATERIAL AND METHODS: EGCG-Ce6-NPs were synthesized and characterized using various techniques. The photodynamic effects of EGCG-Ce6-NPs on endothelial cells were evaluated. The compatibility and toxicity of the nanoparticle was tested using the CCK-8 assay. The intracellular uptake of the nanoparticle was observed using an inverted fluorescence microscope, and the intracellular fluorescence intensity was detected using flow cytometry. The ROS generation and apoptosis induced by EGCG-Ce6-NPs was observed using confocal laser scanning microscopy and flow cytometry respectively. RESULTS: EGCG-Ce6-NPs exhibited stability, spherical shape of uniform size while reducing the particle diameter, low polydisperse profile and retaining the ability to effectively generate singlet oxygen. These characteristics suggest promising potential for enhancing drug permeability and retention. Additionally, EGCG-Ce6-NPs demonstrated good compatibility with endothelial cells and enhanced intracellular uptake of Ce6. Furthermore, EGCG-Ce6-NPs increased activation efficiency, induced significant toxicity, more reactive oxygen species, and a higher rate of late apoptosis after laser irradiation. CONCLUSION: This in vitro study showed the potentials EGCG-Ce6-NPs for the destruction of endothelial cells in vasculature.


Subject(s)
Catechin , Chlorophyllides , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/pharmacology , Photosensitizing Agents/pharmacokinetics , Photochemotherapy/methods , Nanoparticles/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/pharmacokinetics , Catechin/chemistry , Humans , Porphyrins/pharmacology , Porphyrins/pharmacokinetics , Endothelial Cells/drug effects , Polyphenols/pharmacology , Apoptosis/drug effects , Singlet Oxygen/metabolism , Cell Survival/drug effects
9.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474527

ABSTRACT

The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.


Subject(s)
Arsenic , Chlorophyllides , Porphyrins , Humans , Copper/chemistry , Spectroscopy, Fourier Transform Infrared , Ions , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry
10.
Food Chem ; 447: 138960, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461727

ABSTRACT

Iron Chlorin e6 (ICE6), a star plant growth regulator (PGR) with independent intellectual property rights in China, has demonstrated its efficacy through numerous field experiments. We innovatively employed salting-out assisted liquid-liquid extraction (SALLE) with HPLC-UV/Vis to detect ICE6 residues in water, soil, garlic seeds, and sprouts. Using methanol and a C18 column with acetonitrile: 0.1% phosphoric acid mobile phase (55:45, v:v), we achieved a low LOQ of 0.43 to 0.77 µg kg-1. Calibration curves showed strong linearity (R2 > 0.992) within 0.01 to 5.00 mg kg-1. Inter-day and intra-day recoveries (0.05 to 0.50 mg kg-1) demonstrated high sensitivity and accuracy (recoveries: 75.36% to 107.86%; RSD: 1.03% to 8.78%). Additionally, density functional theory (DFT) analysis aligned UV/Vis spectra and indicated ICE6's first-order degradation (2.03 to 4.94 days) under various environmental conditions, mainly driven by abiotic degradation. This study enhances understanding of ICE6's environmental behavior, aids in risk assessment, and guides responsible use in agroecosystems.


Subject(s)
Garlic , Metalloporphyrins , Chromatography, High Pressure Liquid/methods , Hydrolysis , Soil , Liquid-Liquid Extraction/methods
11.
Eur J Med Chem ; 269: 116283, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38461680

ABSTRACT

In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a ß-glucuronidase-responsive linker. Upon activation by ß-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Urinary Bladder Neoplasms , Humans , Glucuronidase , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Porphyrins/pharmacology , Cell Line, Tumor , Nanoparticles/therapeutic use
12.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542430

ABSTRACT

To identify the vascular alteration by photodynamic therapy (PDT), the utilization of high-resolution, high-speed, and wide-field photoacoustic microscopy (PAM) has gained enormous interest. The rapid changes in vasculature during PDT treatment and monitoring of tumor tissue activation in the orthotopic pancreatic cancer model have received limited attention in previous studies. Here, a fully two-axes waterproof galvanometer scanner-based photoacoustic microscopy (WGS-PAM) system was developed for in vivo monitoring of dynamic variations in micro blood vessels due to PDT in an orthotopic pancreatic cancer mouse model. The photosensitizer (PS), Chlorin e6 (Ce6), was utilized to activate antitumor reactions in response to the irradiation of a 660 nm light source. Microvasculatures of angiogenesis tissue were visualized on a 40 mm2 area using the WGS-PAM system at 30 min intervals for 3 h after the PDT treatment. The decline in vascular intensity was observed at 24.5% along with a 32.4% reduction of the vascular density at 3 h post-PDT by the analysis of PAM images. The anti-vascularization effect was also identified with fluorescent imaging. Moreover, Ce6-PDT increased apoptotic and necrotic markers while decreasing vascular endothelial growth factor (VEGF) expression in MIA PaCa-2 and BxPC-3 pancreatic cancer cell lines. The approach of the WGS-PAM system shows the potential to investigate PDT effects on the mechanism of angiographic dynamics with high-resolution wide-field imaging modalities.


Subject(s)
Chlorophyllides , Pancreatic Neoplasms , Photochemotherapy , Porphyrins , Mice , Animals , Photochemotherapy/methods , Microscopy , Vascular Endothelial Growth Factor A/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Porphyrins/pharmacology , Porphyrins/therapeutic use
13.
Photochem Photobiol Sci ; 23(3): 409-420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319518

ABSTRACT

In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.


Subject(s)
Photochemotherapy , Polyethylene Glycols , Porphyrins , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Chlorophyll A , HeLa Cells , Polysorbates , Porphyrins/pharmacology , Porphyrins/chemistry , Hydrophobic and Hydrophilic Interactions , Chlorophyll/chemistry
14.
Int J Pharm ; 654: 123951, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38423154

ABSTRACT

Previous studies have demonstrated the effects of theranostic agents on atherosclerotic plaques. However, there is limited information on targeted theranostics for photodynamic treatment of atherosclerosis. This study aimed to develop a macrophage-mannose-receptor-targeted photoactivatable nanoagent that regulates atherosclerosis and to evaluate its efficacy as well as safety in atherosclerotic mice. We synthesised and characterised D-mannosamine (MAN)-polyethylene glycol (PEG)-chlorin e6 (Ce6) for phototheranostic treatment of atherosclerosis. The diagnostic and therapeutic effects of MAN-PEG-Ce6 were investigated using the atherosclerotic mouse model. The hydrophobic Ce6 photosensitiser was surrounded by the hydrophilic MAN-PEG outer shell of the self-assembled nanostructure under aqueous conditions. The MAN-PEG-Ce6 was specifically internalised in macrophage-derived foam cells through receptor-mediated endocytosis. After laser irradiation, the MAN-PEG-Ce6 markedly increased singlet oxygen generation. Intravital imaging and immunohistochemistry analyses verified MAN-PEG-Ce6's specificity to plaque macrophages and its notable anti-inflammatory impact by effectively reducing mannose-receptor-positive macrophages. The toxicity assay showed that MAN-PEG-Ce6 had negligible effects on the biochemical profile and structural damage in the skin and organs. Targeted photoactivation with MAN-PEG-Ce6 thus has the potential to rapidly reduce macrophage-derived inflammatory responses in atheroma and present favourable toxicity profiles, making it a promising approach for both imaging and treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Nanoparticles , Photochemotherapy , Porphyrins , Humans , Animals , Mice , Photochemotherapy/methods , Mannose , Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Macrophages , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Porphyrins/chemistry , Cell Line, Tumor
15.
Bioorg Chem ; 145: 107203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377817

ABSTRACT

Antimicrobial photodynamic therapy (PDT) is a promising alternative to antibiotics for eradicating pathogenic bacterial infections. It holds advantage of not inducing antimicrobial resistance but is limited for the treatment of gram-negative bacterial infection due to the lack of photosensitizer (PS) capable of targeted permeating the outer membrane (OM) of gram-negative bacteria. To facilitate the targeted permeability of PS, cyclic polymyxin b nonapeptide that can specifically bind to the lipopolysaccharide on OM, is conjugated to an FDA approved PS chlorin e6 via variable linkers. Based on structure to activity study, C6pCe6 with aminohexanoic linker and P2pCe6 with amino-3, 6-dioxaoctanoic linker are identified to preferentially image gram-negative bacteria. These two conjugates also exhibit improved aqueous dispersity and enhanced ROS generation, consequently enabled their selective bactericidal activities against gram-negative bacteria upon 660 nm light irradiation. The effective photobactericidal ability of P2pCe6 is further validated on P. aeruginosa infected G. mellonella. Moreover, it is demonstrated to effectively treat the P. aeruginosa infection and accelerate the healing process at the wound site of mouse. Owing to the light irradiation triggered targeted imaging and enhanced bactericidal capacities, P2pCe6 hold great potential to serve as a potent PS for mediating the phototheranostics of gram-negative bacterial infection.


Subject(s)
Anti-Infective Agents , Gram-Negative Bacterial Infections , Photochemotherapy , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Photochemotherapy/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Gram-Negative Bacteria
16.
Photodiagnosis Photodyn Ther ; 46: 104022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401820

ABSTRACT

Photodynamic therapy (PDT) is proved effective for treating low-grade squamous intraepithelial lesions (LSIL) and condylomata acuminata (CA). 5-Aminolevulinicacid (5-ALA) is the most common applied photosensitizer, but high rate of unbearable pain and relative long incubation time were reported. Here, we report a 27-year-old woman suffering from cervical and vaginal giant CA with LSIL involving the whole right vaginal fornix, cervical surface, and vaginal wall. Holmium yttrium aluminum garnet (Ho: YAG) laser was first applied to remove the giant CA lesions. STBF, a derivative of chlorin e6 (Ce6) was then applied on suspicious lesions as a new photosensitizer for 1 h. Lesions were exposed to LED illumination with a wavelength of 630 nm and light dose of 200-284 J/cm2 for cervical canal and the vaginal surfaces, 100-150 J/cm2 for cervix surface. Vaginal giant CA and LSIL lesions got complete remission at 6-month follow-up. Mild tolerable adverse reactions were observed after STBF-PDT and relieved in 24 h. Thus, the combination of Ho: YAG laser and STBF-PDT may be a novel option for cervical and vaginal giant CA and LSIL, especially for special vaginal fornix areas.


Subject(s)
Chlorophyllides , Lasers, Solid-State , Photochemotherapy , Photosensitizing Agents , Porphyrins , Humans , Female , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Adult , Lasers, Solid-State/therapeutic use , Porphyrins/therapeutic use , Porphyrins/pharmacology , Condylomata Acuminata/drug therapy , Condylomata Acuminata/therapy , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/therapy , Vaginal Neoplasms/drug therapy , Vaginal Neoplasms/therapy
17.
Photodiagnosis Photodyn Ther ; 45: 103969, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211779

ABSTRACT

BACKGROUND: The study is aimed at developing a method for monitoring photodynamic therapy (PDT) of a tumor using chlorin-type photosensitizers (PSs). Lack of monitoring of chlorin e6 (Cе6) photobleaching, hemoglobin oxygenation and blood flow during light exposure can limit the PDT effectiveness. MATERIALS AND METHODS: Phototheranostics includes spectral-fluorescence diagnostics of Ce6 distribution in the NIR range and PDT with simultaneous assessment of hemoglobin oxygenation and tumor blood flow. Fluorescence diagnostics and PDT were performed using the single laser λexc=660 ± 5 nm. RESULTS: Combined spectroscopic PDT monitoring method allowed simultaneous estimation of Ce6 photobleaching, hemoglobin oxygenation and tumor vascular thrombosis during PDT without interrupting the therapeutic light exposure. CONCLUSION: The developed method of tumor phototheranostics using chlorin-type PSs may make it possible to personalize the duration of therapeutic light exposure during PDT.


Subject(s)
Chlorophyllides , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Fluorescence , Photochemotherapy/methods , Hemoglobins
18.
ACS Appl Mater Interfaces ; 16(5): 5683-5695, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38261396

ABSTRACT

Photosensitizers have been widely used to cause intratumoral generation of reactive oxygen species (ROS) for cancer therapy, but they are easily disturbed by the autophagy pathway, a self-protective mechanism by mitigating oxidative damage. Hereby, we reported a simple and effective strategy to construct a carrier-free nanodrug, Ce6@CQ namely, based on the self-assembly of the photosensitizer chlorin e6 (Ce6) and the autophagy inhibitor chloroquine (CQ). Specifically, Ce6@CQ avoided the unexpected toxicity caused by the regular nanocarrier and also ameliorated its stability in different conditions. Light-activated Ce6 generated cytotoxic ROS and elicited part of the immunogenic cell death (ICD). Moreover, CQ induced autophagy dysfunction, which hindered self-healing in tumor cells and enhanced photodynamic therapy (PDT) to exert a more potent killing effect and more efficient ICD. Also, Ce6@CQ could effectively accumulate in the xenograft breast tumor site in a mouse model through the enhanced permeability and retention (EPR) effect, and the growth of breast tumors was effectively inhibited by Ce6@CQ with light. Such a carrier-free nanodrug provided a new strategy to improve the efficacy of PDT via the suppression of autophagy to digest ROS-induced toxic substances.


Subject(s)
Breast Neoplasms , Nanoparticles , Photochemotherapy , Porphyrins , Animals , Mice , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Immunogenic Cell Death , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Autophagy , Porphyrins/pharmacology , Porphyrins/therapeutic use
19.
ACS Biomater Sci Eng ; 10(3): 1869-1879, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38291563

ABSTRACT

Localized photodynamic therapy (PDT) uses a polymeric-photosensitizer (PS)-embedded, covered self-expandable metallic stent (SEMS). PDT is minimally invasive and a noteworthy potential alternative for treating esophageal strictures, where surgery is not a viable option. However, preclinical evidence is insufficient, and optimized irradiation energy dose ranges for localized PDT are unclear. Herein, we validated the irradiation energy doses of the SEMS (embedded in a PS using chlorin e6 [Ce6] and covered in silicone) and PDT-induced tissue changes in a rat esophagus. Cytotoxicity and phototoxicity in the Ce6-embedded SEMS piece with laser irradiation were significantly higher than that of the silicone-covered SEMS with or without laser and the Ce6-embedded silicone-covered SEMS without laser groups (all p < 0.001). Moreover, surface morphology, atomic changes, and homogeneous coverage of the Ce6-embedded silicone-covered membrane were confirmed. The ablation range of the porcine liver was proportionally increased with the irradiation dose (all p < 0.001). The ablation region was identified at different irradiation energy doses of 50, 100, 200, and 400 J/cm2. The in vivo study in the rat esophagus comprised a control group and 100, 200, and 400 J/cm2 energy-dose groups. Finally, histology and immunohistochemistry (TUNEL and Ki67) confirmed that the optimized Ce6-embedded silicone-covered SEMS with selected irradiation energy doses (200 and 400 J/cm2) effectively damaged the esophageal tissue without ductal perforation. The polymeric PS-embedded silicone-covered SEMS can be easily placed via a minimally invasive approach and represents a promising new approach for the palliative treatment of malignant esophageal strictures.


Subject(s)
Chlorophyllides , Esophageal Stenosis , Photochemotherapy , Porphyrins , Self Expandable Metallic Stents , Humans , Rats , Swine , Animals , Esophageal Stenosis/drug therapy , Esophageal Stenosis/surgery , Palliative Care , Silicones , Constriction, Pathologic/drug therapy , Porphyrins/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Polymers/therapeutic use
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005422

ABSTRACT

Objective To design and synthesize the conjugate (compound 1) of chlorin e6 (compound 3) with fluorouracil (5-Fu) as novel pH-responsive dual-mode antitumor photosensitizer by acyl hydrazone bond coupling, based on literature reports that combination of 5-Fu and photosensitizer possess synergistic anti-tumor effect, and investigate its photodynamic antitumor activity and mechanism. Methods Lead compound 3 was obtained by alkali degradation with 25% KOH-CH3OH on pheophorbide a (compound 4) which was prepared through acid hydrolysis of chlorophyll a in crude chlorophyll extracts from silkworm excrement. Reflux reaction of 5-Fu with P2S5 in pyridine formed crude 4-thio-5-fluorouracil which was followed to react with hydrazine hydrate (N2H4·H2O) in CH3OH to give 5-fluorouracil-4-hydrazone (compound 2). Then, treatment of compound 3 i.e. acid alkali degradation product of chlorophyll a in silkworm excrement with EDC·HCl generated its 171- and 152 cyclic anhydride which was followed to directly react with intermediate compound 2 to successfully get title compound 1. In addition, its pH-responsive 5-Fu release and photodynamic antitumor activity and their mechanisms in vitro were investigated. Results Compound 1 could responsively release 5-Fu at pH 5.0, with a cumulative release rate of 60.3% within 24 h. It exhibited much higher phototoxicity against melanoma B16-F10 and liver cancer HepG2 cells than talaporfin and its precursor compound 3, with IC50 value being 0.73 μmol/L for B16-F10 cells and 0.90 μmol/L for HepG2 cells, respectively. Upon light irradiation, it also could significantly induce cell apoptosis and intracellular ROS level and block cell cycle in S phase. Its structure was confirmed by UV, 1H-NMR, ESI-MS and elemental analysis data. Conclusion The conjugate compound 1 of compound 3 and 5-Fu has the advantages of strong PDT anticancer activity, high therapeutic index (i.e. dark toxicity/phototoxicity ratio) and responsively release 5-Fu at pH 5.0 etc. which shows “unimolecular” dual antitumor effects of PDT and chemotherapy and is worthy of further research and development.

SELECTION OF CITATIONS
SEARCH DETAIL
...