Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Environ Pollut ; 351: 124042, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38679128

ABSTRACT

Chlorinated hydrocarbons (CHs) pose significant health risks due to their suspected carcinogenicity, necessitating urgent remediation efforts. While the combination of zero-valent iron (Fe0) and microbial action shows promise in mitigating CH contamination, field studies on this approach are scarce. We devised a novel three-layer permeable reactive barrier (PRB) material incorporating Fe0 and coconut shell biochar, effectively implemented at a typical CH-contaminated site. Field monitoring data revealed conducive conditions for reductive dechlorination of CHs, characterized by low oxygen levels and a relatively neutral pH in the groundwater. The engineered PRB material consistently released organic carbon and iron, fostering the proliferation of CH-dechlorinating bacteria. Over a 250-day operational period, the pilot-scale PRB demonstrated remarkable efficacy in CH removal, achieving removal efficiencies ranging from 21.9% to 99.6% for various CH compounds. Initially, CHs were predominantly eliminated through adsorption and iron-mediated reductive dechlorination. However, microbial reductive dechlorination emerged as the predominant mechanism for sustained and long-term CHs removal. These findings underscore the economic viability and effectiveness of our approach in treating CH-contaminated groundwater, offering promising prospects for broader application in environmental remediation efforts.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Water Pollutants, Chemical , Groundwater/chemistry , Hydrocarbons, Chlorinated/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Environmental Restoration and Remediation/methods , Iron/chemistry , Charcoal/chemistry
2.
J Hazard Mater ; 469: 133887, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38417369

ABSTRACT

Surfactant-enhanced in-situ chemical oxidation (S-ISCO) is widely applied in soil and groundwater remediation. However, the role of surfactants in the reactive species (RSs) transformation remains inadequately explored. This work introduced nonionic surfactant Tween-80 (TW-80) into a nano zero-valent iron (nZVI) activated persulfate (PS) system. The findings indicate that PS/nZVI/TW-80 system can realize the concurrent removal of trichloroethylene (TCE), tetrachloroethene (PCE), and carbon tetrachloride (CT), whereas CT cannot be eliminated without TW-80 presence. Further analysis unveiled that hydroxyl (HO•) and sulfate radicals (SO4-•) were the primary species for TCE and PCE degradation, while CT was reductively eliminated by surfactant radicals generated from TW-80. Moreover, the surfactant radicals were found to accelerate Fe(III)/Fe(II) cycle, reduce the production of iron sludge, and increase PS decomposition. The possible degradation routes of mixed chlorinated hydrocarbons (CHCs) and the decomposition pathways of TW-80 were proposed through the density function theory (DFT) calculation and intermediates analysis. Additionally, the effects of other nonionic surfactants on the simultaneous removal of TCE, PCE, and CT, and the practical applications using the actual contaminated groundwater were also evaluated. This study provides theoretical support for the simultaneous removal of CHCs, particularly those containing perchlorinated contaminants, using the S-ISCO techniques.

3.
Chemosphere ; 350: 141000, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135124

ABSTRACT

Pollution with chloroethenes threaten groundwater resources worldwide. Cis-Dichloroethene (cDCE) and Trichloroethene (TCE) are widespread pollutants that often occur together at contaminated sites, either as primary discharges or as degradation products of anaerobic dechlorination. In this study, comprehensive microcosm experiments were conducted with groundwater samples of seven sites contaminated with chloroethenes. In total, twelve wells with different pollutant concentrations and chloroethene compositions were sampled, and aerobic microcosms including sterile controls were set up. The results revealed interactions as well as interferences between cDCE and TCE. First, co-metabolic cDCE degradation with TCE as growth substrate was detected for the first time in this work. Transformation yields Ty' (molar ratio of co-substrate degraded to primary substrate degraded) of the degradation process were determined and showed a linear relationship with the cDCE/TCE concentration ratio. At low cDCE/TCE ratio, aerobic metabolic TCE degradation can result in complete cDCE removal due to co-metabolic degradation. Secondly, interfering effects were detected at notable cDCE levels resulting in deceleration of TCE degradation and residual concentrations which were also correlating linearly with the cDCE/TCE concentration ratio. These findings are significant for investigating chloroethene contaminated sites and planning remediation strategies. In particular, the efficiency biological remediation methods in the presence of both pollutants can be evaluated more precisely through the knowledge of interactions and interferences. Our study emphasizes that co-contaminants and possible effects of contaminant mixtures on the degradation rates of individual substances should be considered in general.


Subject(s)
Environmental Pollutants , Groundwater , Trichloroethylene , Vinyl Chloride , Water Pollutants, Chemical , Biodegradation, Environmental , Trichloroethylene/chemistry , Water Pollutants, Chemical/analysis , Groundwater/chemistry
4.
ACS Appl Mater Interfaces ; 15(31): 37602-37608, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37504065

ABSTRACT

Chloroform is a volatile organic solvent and a contaminant that is slightly soluble in water, making the reversible separation of chloroform from water a critical and challenging task within the chemical and environmental industries. In this study, we present a newly developed coordination framework, [Zn(4-pmntd)(opa)] [4-pmntd, N,N'-bis(4-pyridylmethyl)naphthalene diimide; opa, o-phthalic acid], which demonstrates a high adsorption capacity for chloroform (2.5 mmol/g) and an excellent ability to separate chloroform from water. The effectiveness of chloroform extraction by Zn(4-pmntd)(opa) was confirmed through vapor sorption, grand canonical Monte Carlo simulation, and 1H nuclear magnetic resonance spectroscopy. The porous framework was also utilized to create a filtration film using natural rubber, which successfully separated chloroform from water with a minimum test concentration of approximately 1 × 10-6 mol/L and a chloroform purity of 99.2%. [Zn(4-pmntd)(opa)] therefore has significant potential for low-energy separation and recycling of chloroform from water under ambient conditions.

5.
Sci Total Environ ; 879: 163011, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36965728

ABSTRACT

Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.

6.
Environ Toxicol Chem ; 42(6): 1199-1211, 2023 06.
Article in English | MEDLINE | ID: mdl-36942360

ABSTRACT

Commercially available headspace solid-phase microextraction (HS-SPME) fibers have been used for years to extract pesticides and polychlorinated biphenyls from aqueous samples at the expected ultratrace levels (picograms per liter or parts per quadrillion) in alpine lakes. Several variables of the HS-SPME technique have been adequately evaluated, including water temperature, pH, salt content, fiber type and coating thickness, length of fiber-sample exposure, and liquid immersion versus headspace exposure; but surprisingly, analyte recovery as a function of analyte concentration and storage time has not been included in previous studies, which can be important for remote sampling sites. Seven hydrophobic chlorinated pollutants were identified in alpine lake water (out of 54 analyzed); but recovery using the common SPME technique was found to be inconsistent as the analyte concentration decreases, and the recovery trend as a function of concentration varies on a compound-to-compound basis that could result in a large underestimation of analyte concentrations in field samples. Of the 54 compounds surveyed, o,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-DDT, p,p'-dichlorodiphenyldichloroethylene (DDE), o,p'-DDE, chlorthal-dimethyl, endosulfan I, γ-hexachlorocyclohexane, heptachlor, and trans-nonachlor were generally measured at concentrations between 1 and 150 pg/L (parts per quadrillion). No study to date has evaluated this commonly used but unstandardized technique for analyte recovery as a function of analyte concentration or storage time of aqueous samples. Environ Toxicol Chem 2023;42:1199-1211. © 2023 SETAC.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , DDT/analysis , Environmental Pollutants/analysis , Lakes , Solid Phase Microextraction , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Dichlorodiphenyl Dichloroethylene/analysis , Water
7.
Sci Total Environ ; 869: 161743, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36690102

ABSTRACT

Vapour intrusion (VI) is the process through which volatile organic compounds migrate from the subsurface source to the soil predominantly by diffusion, entering the overlying buildings through joints, cracks or other openings. This activity poses potentially serious health hazards for the occupants. Because of these health risks, recommendations for site closure are often made by quantifying the VI risks using mathematical models known as 'vapour intrusion models' (VIM). Most of these VIMs seem to overlook the role of preferred pathways like utility lines, high conductivity zones of soil or rocks, etc., which act as the path of least resistance for vapour transport thereby increasing vapour intrusion risks. This study presents a two-dimensional (2-D) chlorinated vapour intrusion (CVI) model which seeks to estimate the source-to-indoor air concentration attenuation. It takes into account the effects of a highly permeable utility line embedment as a preferential pathway. The transport of 2-D soil gas is described using the finite difference method where advection serves as the dominant transport mechanism in the preferential pathway layer, while diffusion applies to the rest of the vadose zone. The model returned results comparable with other models for the same input parameters, and was found to closely replicate the results of 3-D models. The simulations indicate that the presence of highly permeable utility line embedment and backfill layers do trigger a higher indoor air concentration compared to a no preferential pathway scenario.

8.
Ecotoxicol Environ Saf ; 247: 114262, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36327786

ABSTRACT

Volatile chlorinated hydrocarbons (VCHs) contaminated groundwater has a low indigenous microorganism population, and lack of nutrient substrates involved in degradation reactions, resulting in a weak natural remediation ability of groundwater ecosystems. In this study, based on the principle of degradation of VCHs by indigenous microorganisms in groundwater, and combined with biostimulation and controlled-release technology, we developed a starch-based encapsulated targeted bionutrient (YH-1) with easy uptake, good stability, controllable slow-release migration, and long timeliness for the remediation of groundwater contaminated by VCHs by indigenous microorganisms. The results showed that YH-1 is easily absorbed by microorganisms and can rapidly initiate itself to stimulate the microbial degradation of VCHs, and the degradation rate of various VCH components within 7 days was 82.38-92.38 %. The release rate of nutrient components in YH-1 increases with increasing VCH concentrations in groundwater; this could effectively prolong the action time of nutrient components, while also improving the degradation efficiency of pollutants with a sustained effect of more than 15 days. Simultaneously, owing to the fluidity, water solubility, and biodegradability of YH-1 in lithologic media, YH-1 injection did not cause blockage of the lithologic media in the aquifer. Through YH-1 stimulation, indigenous microorganisms grew rapidly in the underground environment, the diversity of microbial communities and the total number of species increased, and the correlation between genera strengthened. Simultaneously, YH-1 improved the ability of microbial community to convert inorganic electron donors/acceptors, thereby strengthening the co-metabolic mechanism between microorganisms. Additionally, there was a significant increase in the percentage of many microorganisms (e.g., Sphingomonas, Janthinobacterium, Duganella, etc.) that mediated the reductive dechlorination process and were redox inorganic electron donors/acceptors. This was conducive to the reductive dechlorination process of VCHs and achieved the efficient degradation of VCHs.


Subject(s)
Antineoplastic Agents , Groundwater , Hydrocarbons, Chlorinated , Microbiota , Starch , Delayed-Action Preparations , Nutrients , Oxidants
9.
J Hazard Mater ; 439: 129595, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35850066

ABSTRACT

Natural attenuation of contaminants has been increasingly applied as a strategy to manage the retired pesticide manufacturing sites due to the increasing restrictions on the reuse of contaminated sites in China. However, the influencing factors to enhance natural attenuation for chlorinated hydrocarbons in retired pesticide sites were not well studied. In this paper, monitoring of pollutants, environmental factors and microbial community was conducted from 2016 to 2021 in a retired pesticide site in Jiangsu Province undergoing natural attenuation, where the groundwater was severely contaminated with chlorinated hydrocarbons. The spatial variation of main pollutants, including chlorinated ethenes and ethanes, indicated that the site could be divided into the source area, diffusion area, and the end of diffusion area, where organohalide-respiring bacteria (OHRB) were detected. Pollutants and environmental factors influenced the OHRB community structure, which explained 7.6% and 33.2% of the variation, respectively. The abundances of obligate and facultative OHRB were affected in opposite ways by pollutants and environmental factors. Dehalococcoides and Dehalogenimonas in obligate OHRB were significantly inhibited by sulfate (r = -0.448, p < 0.05). The spatial-temporal characteristics of pollutants and the reveal of microbial community structure and its restricting factors in different areas make the foundation for strengthening the implementation of natural attenuation.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Bacteria , Biodegradation, Environmental , Groundwater/chemistry , Hydrocarbons, Chlorinated/analysis , Water Pollutants, Chemical/chemistry
10.
Biosensors (Basel) ; 11(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34821631

ABSTRACT

Toxic organochloride molecules are widely used in industry for various purposes. With their high volatility, the direct detection of organochlorides in environmental samples is challenging. Here, a new organochloride detection mechanism using 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) is introduced to simplify a sensing method with higher detection sensitivity. Three types of organochloride compounds-trichloroethylene (TCE), dichloromethane (DCM), and dichlorodiphenyltrichloroethane (DDT)-were targeted to understand DCM conjugation chemistry by using nuclear magnetic resonance (NMR) and liquid chromatography with a mass spectrometer (LC-MS). 13C-NMR spectra and LC-MS data indicated that DBN can be labeled on these organochloride compounds by chlorine-nitrogen interaction. Furthermore, to demonstrate the organochloride sensing capability, the labeling yield and limit of detection were determined by a colorimetric assay as well as micellar electrokinetic chromatography (MEKC). The interaction with DBN was most appreciable for TCE, among other organochlorides. TCE was detected at picomolar levels, which is two orders of magnitude lower than the maximum contaminant level set by the United States Environmental Protection Agency. MEKC, in conjunction with this DBN-labeling method, enables us to develop a field-deployable sensing platform for detecting toxic organochlorides with high sensitivity.


Subject(s)
Amidines , Chlorides , Biosensing Techniques , Chlorides/analysis , United States
11.
Sci Total Environ ; 794: 148717, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34323754

ABSTRACT

In this study, we investigated a fractured karst aquifer polluted by chlorinated hydrocarbons to determine the contamination characteristics of the main hydrocarbon components. The natural attenuation processes of representative components were simulated and forecasted using TMVOC and hydro-chemical components (NO3-, SO42-, HCO3- Cl- and δ13CDIC). The impact of hydrocarbon compounds on the hydro-chemical ions were estimated, and their historical contamination characteristics were also reconstructed. Results showed that the dynamic characteristics of Trichloromethane and 1,1,2-Trichlorethane can indicate those of chlorinated hydrocarbons, where the rate of natural attenuation was observed to decrease with decreasing concentrations of hydrocarbon compounds. Additionally, the long-term variation characteristics in groundwater levels showed that the relatively stable hydrodynamic field conditions enabled the simulation of the natural attenuation processes of chlorinated hydrocarbons. The simulation which also considered the biodegradation processes showed that the use of TMVOC and hydro-chemical parameters may better describe natural attenuation processes. Over 3 years (from 2017 to 2019), the average percentage of biodegradation in the total natural attenuation was estimated to be 88.35%. Similarly, Trichloromethane and 1,1,2-Trichlorethane are forecasted to have no health hazards in 10 and 15 years, respectively. The contribution rates of biodegradation to HCO3- and Cl- in the fractured karst aquifer varied with the concentrations of chlorinated hydrocarbons. Overall, the findings and methods in this work have significant contributions for advancing remediation developments of petroleum hydrocarbons, especially in karst environments that are highly susceptible to contamination.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Hydrocarbons , Water Pollutants, Chemical/analysis
12.
Chemosphere ; 282: 131018, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34119725

ABSTRACT

Nanoscale zero-valent iron (nZVI) based (nano)composites supported by clay mineral substrates are a promising technology for the in-situ remediation of groundwater and (sub)soils contaminated with chlorinated hydrocarbons, such as trichloroethene (TCE). However, the physicochemical processes and interaction mechanisms between nZVI particles, clay minerals and TCE are poorly understood, yet. We immobilized nZVI particles on a commercial bentonite substrate to prepare a novel nZVI-B nanocomposite and tested its performance for TCE removal from solution against pure nZVI in batch reactors. The nZVI-B exhibited a higher reactivity (2.2·10-3 L h-1·m-2) and efficiency (94%) for TCE removal than nZVI (2.2·10-4 L h-1·m-2; 45%). Sorption of TCE onto the clay surfaces and reductive de-chlorination in "micro-reactors" developing within the nZVI-B controlled the kinetics and the magnitude of TCE loss from solution. Contrary to pure nZVI, no signs of nZVI particle agglomeration or inactivation due to oxide shell formation were found in nZVI-B. We attribute this to the uptake of dissolved Fe species that are liberated via progressing nZVI particle corrosion by the bentonite substrate to form Fe-smectite (nontronite domains), which prevented from a deterioration of the properties and reactivity of the nZVI-B. The use of nZVI-B in permeable reactive barriers at contaminated field sites could be feasible, where a system-inherent reduction of the soil-bearing capacity has to be minimized.


Subject(s)
Groundwater , Nanocomposites , Trichloroethylene , Water Pollutants, Chemical , Bentonite , Iron
13.
Water Res ; 201: 117328, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34171646

ABSTRACT

Sulfidated nanoscale zerovalent iron (S-nZVI) is a promising reductant for trichloroethylene in groundwater, yet a comprehensive understanding of its degradation efficiency for other chlorinated hydrocarbons (CHCs) is lacking. In this study, we assessed the benefits of using S-nZVI for the degradation of two chlorinated methanes, three chlorinated ethanes, and four chlorinated ethenes compared to unamended nZVI, by analyzing the degradation rate constants, the maximum degradation quantity, and the degradation pathways and products under both stoichiometrically electron excess and limited conditions. The improvement in rate constants induced by sulfidation was compound specific and was more significant for chlorinated ethenes (57-707 folds) than for the other CHCs (1.0-17 folds). This is likely because of the different reduction mechanisms of each CHC and sulfidation may favor specific mechanisms associated with the reduction of chlorinated ethenes more than the others. Sulfidation of nZVI enabled either higher (3.1-24.4 folds) or comparable (0.78-0.91) maximum degradation quantity, assessed under electron limited conditions, for all the CHCs investigated, indicating the promise of S-nZVI for remediation of groundwater contaminated by CHC mixtures. Furthermore, we proposed the degradation pathways of various CHCs based on the observed degradation intermediates and products and found that sulfidation suppressed the generation of partially dechlorinated products, particularly for chlorinated methanes and ethanes, and favor degradation pathways leading to the non-chlorinated benign products. This is the first comprehensive study on the efficacy of sulfidation in improving the degradation of a suite of CHCs and the results provide valuable insight to the assessment of applicability and benefits of S-nZVI for CHC remediation.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Iron
14.
Food Chem ; 353: 129441, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33725544

ABSTRACT

Although DDT, γ-HCH and PCBs have been almost completely withdrawn from world production and use, they are still present in the environment. Mushrooms are eagerly collected and consumed local raw material in north-eastern part of Poland. The aim of the study was to determine the content of DDT, γ-HCH and PCB residues in popular species (Boletus badius, Boletus edulis, Cantharellus cibarius) and to estimate the human exposure of uptaking of these compounds with mushrooms. The content of γ-HCH, DDT and PCB was determined using gas chromatography. The presence of analyzed compounds was observed in all the species under study. The highest content of γ-HCH and ΣDDT was determined in C. cibarius - 7.19 and 180.37 µg/kg of lipids, respectively, whereas the highest amount of ΣPCB was observed in B. edulis - 20.89 µg/kg of lipids. The contents were low and did not pose a threat to human health.


Subject(s)
Basidiomycota/chemistry , Food Contamination/analysis , Hydrocarbons, Chlorinated/analysis , Polyporaceae/chemistry , Chromatography, Gas , DDT/analysis , Dietary Exposure , Environmental Pollutants/analysis , Hexachlorocyclohexane/analysis , Humans , Insecticides/analysis , Poland , Polychlorinated Biphenyls/analysis
15.
Chemosphere ; 265: 128764, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33183783

ABSTRACT

Electric field assisted remediation using nano iron has shown outstanding results as well as economic benefits during pilot applications (Cerníková et al., 2020). This method is based on donating electrons to the zero-valent iron that possess an inherently strong reductive capacity. The reduction of chlorinated hydrocarbons may be characterized by a decrease in contaminants or better still by the evolution of ethene and ethane originating from the reduction of chlorinated ethenes. The evolution of ethene and ethane was observed predominantly in the vicinity of the anode despite reduction processes being expected near the cathode - the electron donor. The reduction near the anode occurred due to dissolved Fe2+ ions, whose presence was suggested by a Pourbaix diagram that combines Eh/pH values to characterize electrochemical stabilities between different species. No products of dechlorination were observed in the area of the cathode due to presence of oxidized Fe in the form of Fe3+ or Fe(OH)4-. The experimental work described in this research provides a deeper view of the processes of electrochemical reductive dechlorination using zero-valent iron and DC. It also showed an increase in the efficiency compared to the method using zero-valent iron only.


Subject(s)
Hydrocarbons, Chlorinated , Water Pollutants, Chemical , Iron , Thermodynamics , Water Pollutants, Chemical/analysis
16.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32591384

ABSTRACT

Cometabolic degradation plays a prominent role in bioremediation of commingled groundwater contamination (e.g., chlorinated solvents and the solvent stabilizer 1,4-dioxane [dioxane]). In this study, we untangled the diversity and catalytic functions of multicomponent monooxygenases in Azoarcus sp. strain DD4, a Gram-negative propanotroph that is effective in degrading dioxane and 1,1-dichloroethylene (1,1-DCE). Using a combination of knockout mutagenesis and heterologous expression, a toluene monooxygenase (MO) encoded by the tmoABCDEF gene cluster was unequivocally proved to be the key enzyme responsible for the cometabolism of both dioxane and 1,1-DCE. Interestingly, in addition to utilizing toluene as a primary substrate, this toluene MO can also oxidize propane into 1-propanol. Expression of this toluene MO in DD4 appears inducible by both substrates (toluene and propane) and their primary hydroxylation products (m-cresol, p-cresol, and 1-propanol). These findings coherently explain why DD4 can grow on propane and express toluene MO for active cooxidation of dioxane and 1,1-DCE. Furthermore, upregulation of tmo transcription by 1-propanol underlines the implication potential of using 1-propanol as an alternative auxiliary substrate for DD4 bioaugmentation. The discovery of this toluene MO in DD4 and its degradation and induction versatility can lead to broad applications, spanning from environmental remediation and water treatment to biocatalysis in green chemistry.IMPORTANCE Toluene MOs have been well recognized given their robust abilities to degrade a variety of environmental pollutants. Built upon previous research efforts, this study ascertained the untapped capability of a toluene MO in DD4 for effective cooxidation of dioxane and 1,1-DCE, two of the most prevailing yet challenging groundwater contaminants. This report also aligns the induction of a toluene MO with nontoxic and commercially accessible chemicals (e.g., propane and 1-propanol), extending its implications in the field of environmental microbiology and beyond.


Subject(s)
Azoarcus/enzymology , Bacterial Proteins/metabolism , Dichloroethylenes/metabolism , Dioxanes/metabolism , Mixed Function Oxygenases/metabolism , Oxidation-Reduction
17.
Chemosphere ; 245: 125576, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31855757

ABSTRACT

Over the past two decades, the use of nanoscale zero-valent iron (nZVI) has emerged as a standard method of contaminated groundwater remediation. The effectiveness of this method depends on key intrinsic hydrogeological parameters, which can affect both reactivity of the nanoparticles and their migration in the aquifer. In the case of low hydraulic permeability, the migration of nanoparticles is limited, which negatively influences remediation. An application of nZVI reinforced with a DC electric field led to a significant increase in the efficiency of remediation, as demonstrated by long-term monitoring at a former industrial site in Horice (Czech Republic). For the method testing, a 12 × 9 m polygon was defined around well IS4, where the original contamination was predominantly composed of DCE (7300 µg/l), and with a total concentration of chlorinated ethenes of 8880 µg/l. During the first stage of the activities, 49 kg of nZVI was injected and monitored for two years. Subsequently, the electrodes were installed, and for three years, the synergistic action of nZVI within an applied DC field was monitored. Based on 32 monitoring campaigns performed over the six years, the combined method was compared with an application of the only nZVI in technical, environmental and economic terms. Technically, the method requires annual reinstallation of anodes as a result of their oxidative disintegration. Environmentally, the method provides significantly improved chlorinated ethane reduction, remediation of low permeable zones, and extended efficiency. Economically, the method is five times cheaper when compared to the nZVI used alone.


Subject(s)
Environmental Restoration and Remediation , Ethylenes/analysis , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Czech Republic , Ethylenes/chemistry , Groundwater , Halogenation , Iron , Water Pollutants, Chemical/analysis
18.
China Occupational Medicine ; (6): 470-474, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-881927

ABSTRACT

OBJECTIVE: To establish a headspace gas chromatography-mass spectrometry method for the determination of 14 chlorinated hydrocarbons in urine. METHODS: The urine sample 4.00 mL and anhydrous sodium sulfate 3.00 g were added into a 10.00 mL headspace bottle, then the headspace bottle was maintained at 70 ℃ for 40.0 min. After headspace pretreatment, 14 chlorinated hydrocarbons in headspace air were separated in the DB-5 MS capillary column of the gas chromatography and detected by mass spectrometer. RESULTS: There was a good linear relationship of 14 chlorinated hydrocarbons in urine in the range of 0.62-1 630.00 μg/L. The linear correlation coefficient was greater than 0.999 0.The minimum detectable concentration was 0.19-0.43 μg/L and the minimum quantitative concentration was 0.62-1.44 μg/L. The average recovery rate was 89.8%-107.1%. The within-run relative standard deviation(RSD) was 4.0%-8.5% and the between-run RSD was 6.3%-9.1%. Urine samples can be stored at 4 ℃ or-8 ℃ for 3 days and below-20 ℃ for 7 days. CONCLUSION: This method is rapid, simple, sensitive, accurate and has little interference,which can be used as a method for detecting 14 kinds of chlorinated hydrocarbons in urine samples of patients with occupational poisoning.

19.
Environ Pollut ; 255(Pt 3): 113339, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31627052

ABSTRACT

A total of 152 groundwater samples were collected around a contaminated site to evaluate the carcinogenic and noncarcinogenic risks of exposure to twelve volatile chlorinated hydrocarbons (VCHs) by oral ingestion, dermal contact and inhalation absorption during showering. Although toxicity data of some VCHs are fragmentary, the results showed that the carcinogenic and noncarcinogenic risks of exposure to VCHs in contaminated drinking groundwater for local residents needs immediate attention. The main risk contributors for the carcinogenic and noncarcinogenic risks are carbon tetrachloride and 1,1,2-trichloroethane through inhalation exposure pathway, respectively. The health risk contribution rates associated with three exposure pathways for a specific VCH were intrinsic to the compound, and the dermal contact corresponded to a negligible contribution for almost every VCH species. Although most of the evaluated VCHs had a higher risk contribution by inhalation than by oral ingestion pathway, the integrated multi-VCH health risk contributions of the three exposure pathways were mainly dependent on the VCH compositions. Drinking boiled water not only decreased the exposure risk but also affected the risk contribution rates of three exposure pathways, which indicates that it is feasible to reduce the risk of VCH exposure during daily activities based on the risk contribution of the exposure pathways. In addition to the VCHs included in the drinking water standards, species such as 1,1,2,2-tetrachloroethane and hexachloroethane also showed a remarkable exposure health risk according to the standardized health risk calculation, which implied that improved drinking water standards are urgently required.


Subject(s)
Hydrocarbons, Chlorinated/analysis , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Ethane/analogs & derivatives , Groundwater/chemistry , Humans , Hydrocarbons, Chlorinated/toxicity , Risk Assessment
20.
J Chromatogr A ; 1598: 183-195, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31047659

ABSTRACT

The Sample Analysis at Mars (SAM) instrument is a gas chromatograph-mass spectrometer onboard the NASA Curiosity rover, currently operating on the surface of Mars. Organic compounds are of major importance with regard to questions of habitability and the potential presence of life on Mars, and one of the mission's main objectives is to analyze the organic content of soil and rock samples. In SAM's first chromatographic measurements, however, unexpected chlorine-bearing organic molecules were detected. These molecules have different origins but the presence of perchlorates and chlorates detected at the surface of Mars suggests that reactivity between organic molecules and thermal decomposition products from oxychlorines is one of the major sources of the chlorinated organic molecules. Here we perform a comprehensive and systematic study of the separation of volatile chlorohydrocarbons with the chromatographic columns used in the SAM instrument. Despite the constrained operating conditions of the flight instrument, we demonstrate that SAM's capillary chromatographic columns allow for effective separation and identification of a wide range of chlorine-bearing species. We also show that instrumental limitations prevent the detection of certain molecules, obscuring our ability to make definitive conclusions about the origin of these organic materials.


Subject(s)
Environmental Monitoring/instrumentation , Extraterrestrial Environment/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation , Hydrocarbons, Chlorinated/analysis , Mars , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...