Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Front Cell Infect Microbiol ; 14: 1283737, 2024.
Article in English | MEDLINE | ID: mdl-38529471

ABSTRACT

Gallstones are crystalline deposits in the gallbladder that are traditionally classified as cholesterol, pigment, or mixed stones based on their composition. Microbiota and host metabolism variances among the different types of gallstones remain largely unclear. Here, the bile and gallstone microbial species spectra of 29 subjects with gallstone disease (GSD, 24 cholesterol and 5 pigment) were revealed by type IIB restriction site-associated DNA microbiome sequencing (2bRAD-M). Among them (21 subjects: 18 cholesterol and 3 pigment), plasma samples were subjected to liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics. The microbiome yielded 896 species comprising 882 bacteria, 13 fungi, and 1 archaeon. Microbial profiling revealed significant enrichment of Cutibacterium acnes and Microbacterium sp005774735 in gallstone and Agrobacterium pusense and Enterovirga sp013044135 in the bile of cholesterol GSD subjects. The metabolome revealed 2296 metabolites, in which malvidin 3-(6''-malonylglucoside), 2-Methylpropyl glucosinolate, and ergothioneine were markedly enriched in cholesterol GSD subjects. Metabolite set enrichment analysis (MSEA) demonstrated enriched bile acids biosynthesis in individuals with cholesterol GSD. Overall, the multi-omics analysis revealed that microbiota and host metabolism interaction perturbations differ depending on the disease type. Perturbed gallstone type-related microbiota may contribute to unbalanced bile acids metabolism in the gallbladder and host, representing a potential early diagnostic marker and therapeutic target for GSD.


Subject(s)
Gallstones , Humans , Gallstones/chemistry , Gallstones/metabolism , Gallstones/microbiology , Bile Acids and Salts/analysis , Bile/chemistry , Bile/metabolism , Cholesterol/metabolism
2.
J Clin Endocrinol Metab ; 109(4): 912-923, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37668355

ABSTRACT

Cholesterol gallstone disease (CGD) is one of the most common digestive diseases, and it is closely associated with hepatic cholesterol metabolism. Cholesterol gallstones may be caused by abnormal hepatic cholesterol metabolism, such as excessive cholesterol biosynthesis within the liver, interfering with the uptake or export of cholesterol in the liver, and abnormal hepatic cholesterol esterification. In this review, we begin with a brief overview of the clinical diagnosis and treatment of gallstone disease (GSD). Then, we briefly describe the major processes of hepatic cholesterol metabolism and summarize the key molecular expression changes of hepatic cholesterol metabolism in patients with gallstones. We review and analyze the recent advances in elucidating the relationships between these key molecules and CGD, and some targets significantly impacting on CGD via hepatic cholesterol metabolism are also listed. We also provide a significant discussion on the relationship between CGD and nonalcoholic fatty liver disease (NAFLD). Finally, the new discoveries of some therapeutic strategies associated with hepatic cholesterol metabolism to prevent and treat CGD are summarized.


Subject(s)
Gallstones , Non-alcoholic Fatty Liver Disease , Humans , Gallstones/complications , Gallstones/diagnosis , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , Cholesterol/metabolism , Lipid Metabolism
3.
Metabolism ; 145: 155610, 2023 08.
Article in English | MEDLINE | ID: mdl-37277061

ABSTRACT

OBJECTIVE: Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS: We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS: We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly altered bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION: Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.


Subject(s)
Gallstones , Animals , Mice , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Gallstones/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glutaredoxins/pharmacology , Lipid Metabolism/genetics , Liver/metabolism , Mice, Inbred C57BL , Protein S/metabolism , Protein S/pharmacology , Proteomics
4.
Heliyon ; 9(5): e15757, 2023 May.
Article in English | MEDLINE | ID: mdl-37159680

ABSTRACT

Cholesterol gallstone disease (CGD) is associated with bile cholesterol supersaturation. The Niemann-Pick C1-like 1 (NPC1L1), the inhibitory target of ezetimibe (EZE), is a critical sterol transporter of cholesterol absorption. Intestinal NPC1L1 facilitates the absorption of cholesterol, whereas hepatic NPC1L1 promotes cholesterol uptake by hepatocytes and reduces bile cholesterol supersaturation. The potential of hepatic NPC1L1 to prevent CGD has yet to be established due to its absence in the mice model. In this study, we generated mice expressing hepatic NPC1L1 using adeno-associated virus (AAV) gene delivery. The biliary cholesterol saturations and gallstone formations were explored under chow diet and lithogenic diet (LD) with or without EZE treatment. The long-term (8-week) LD-fed AAV-mNPC1L1 mice exhibited no significant differences in biliary cholesterol saturation and gallstone formation compared to WT mice. EZE effectively prevented CGD in both WT and AAV-mNPC1L1 mice. Mechanistically, prolonged LD feeding induced the degradation of hepatic NPC1L1, whereas short-term (2-week) LD feeding preserved the expression of hepatic NPC1L1. In conclusion, our findings suggest that hepatic NPC1L1 is unable to prevent CGD, whereas EZE functions as an efficient bile cholesterol desaturator during CGD development.

5.
World J Gastroenterol ; 29(10): 1589-1601, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36970590

ABSTRACT

Cholelithiasis is a common digestive disease affecting 10% to 15% of adults. It imposes significant global health and financial burdens. However, the pathogenesis of cholelithiasis involves several factors and is incompletely elucidated. In addition to genetic predisposition and hepatic hypersecretion, the pathogenesis of cholelithiasis might involve the gastrointestinal (GI) microbiome, consisting of microorganisms and their metabolites. High-throughput sequencing studies have elucidated the role of bile, gallstones, and the fecal microbiome in cholelithiasis, associating microbiota dysbiosis with gallstone formation. The GI microbiome may drive cholelithogenesis by regulating bile acid metabolism and related signaling pathways. This review examines the literature implicating the GI microbiome in cholelithiasis, specifically gallbladder stones, choledocholithiasis, and asymptomatic gallstones. We also discuss alterations of the GI microbiome and its influence on cholelithogenesis.


Subject(s)
Choledocholithiasis , Gastrointestinal Microbiome , Liver , Humans , Bile Acids and Salts/metabolism , Liver/metabolism
7.
Front Pharmacol ; 14: 1291236, 2023.
Article in English | MEDLINE | ID: mdl-38357365

ABSTRACT

Introduction: Cholesterol gallstone (CGS) is a biliary tract disorder requiring treatment in approximately 20% of patients. The efficacy of Chaihu Shugan in preventing CGS recurrence after successful treatment remains uncertain. Methods: We examined the in vivo preventive efficacy of Chaihu Shugan using a CGS mouse model and used multi-omics to study the interplay between gut microbiota, metabolism, and gene expression. Results: The intestinal microbiota was severely dysregulated during the formation of CGS, showing a marked decrease in the abundance of beneficial microbiota, especially Lactobacillus and Akkermansia. Chaihu Shugan prevented CGS formation by restoring the composition of the gut microbiota and reversing the metabolic disturbances caused by dysbiosis. This preventive effect of Chaihu Shugan was paralleled by changes in the expression of metabolism-related genes in the liver. A network pharmacology analysis of Chaihu Shugan revealed that obacunone may be the key active metabolite in regulating bile acid metabolism. Multi-omics and correlation analyses elucidated the interplay between gut microbiota, metabolism, and gene alterations in the dose-dependent effect of Chaihu Shugan. Conclusion: Our data show that Chaihu Shugan can prevent CGS and indicate its mechanisms of action.

8.
Lipids Health Dis ; 21(1): 97, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209166

ABSTRACT

BACKGROUND: Cholesterol gallstone disease (CGD) is accompanied by biliary cholesterol supersaturation. Hepatic Niemann-Pick C1-like 1 (NPC1L1), which is present in humans but not in wild-type (WT) mice, promotes hepatocyte cholesterol uptake and decreases biliary cholesterol supersaturation. In contrast, intestinal NPC1L1 promotes intestinal cholesterol absorption, increasing biliary cholesterol supersaturation. Ezetimibe (EZE) can inhibit both hepatic and intestinal NPC1L1. However, whether hepatic NPC1L1 can affect CGD progress remains unknown. METHODS: Mice expressing hepatic NPC1L1 (NPC1L1hepatic-OE mice) were generated using Adeno-associated viruses (AAV) gene delivery. The protein level and function of hepatic NPC1L1 were examined under chow diet, high fat-cholesterol diet (HFCD), and lithogenic diet (LD) feeding. Gallstone formation rates were examined with or without EZE treatment. Fibroblast growth factor 15 (FGF15) treatment and inhibition of fibroblast growth factor receptor 4 (FGFR4) were applied to verify the mechanism of hepatic NPC1L1 degradation. RESULTS: The HFCD-fed NPC1L1hepatic-OE mice retained the biliary cholesterol desaturation function of hepatic NPC1L1, whereas EZE treatment decreased biliary cholesterol saturation and did not cause CGD. The ubiquitination and degradation of hepatic NPC1L1 were discovered in LD-fed NPC1L1hepatic-OE mice. Treatment of FGF15 during HFCD feeding and inhibition of FGFR4 during LD feeding could affect the protein level and function of hepatic NPC1L1. CONCLUSIONS: LD induces the ubiquitination and degradation of hepatic NPC1L1 via the FGF15-FGFR4 pathway. EZE may act as an effective preventative agent for CGD.


Subject(s)
Membrane Transport Proteins , Receptor, Fibroblast Growth Factor, Type 4 , Animals , Cholesterol/metabolism , Diet, High-Fat , Ezetimibe/pharmacology , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Receptor, Fibroblast Growth Factor, Type 4/metabolism
9.
Lipids Health Dis ; 21(1): 109, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36303150

ABSTRACT

BACKGROUND: Hepatic caveolin-1 (CAV1) is reduced in cholesterol gallstone disease (CGD). Mice with CAV1 deficiency were prone to develop CGD. However, it remains unknown whether restored hepatic CAV1 expression prevents the development of CGD. METHODS: C57BL/6 mice were injected with adeno-associated virus 2/8 (AAV2/8) vectors carrying the CAV1 gene (AAV2/8CAV1) via intravenous (i.v.) or intraperitoneal (i.p.) route and then subjected to a lithogenic diet (LD) for 8 weeks. Uninjected mice were used as controls. The functional consequences of rescuing CAV1 expression by either i.v. or i.p. AAV2/8CAV1 treatment for CGD prevention and its subsequent molecular mechanisms were examined. RESULTS: CAV1 expression was reduced in the liver and gallbladder of LD-fed CGD mice. We discovered that AAV2/8CAV1 i.p. delivery results in higher transduction efficiency in the gallbladder than tail vein administration. Although either i.v. or i.p. injection of AAV2/8CAV1 improved liver lipid metabolic abnormalities in CGD mice but did not affect LD feeding-induced bile cholesterol supersaturation. In comparison with i.v. administration route, i.p. administration of AAV2/8CAV1 obviously increased CAV1 protein levels in the gallbladder of LD-fed mice, and i.p. delivery of AAV2/8CAV1 partially improved gallbladder cholecystokinin receptor (CCKAR) responsiveness and impeded bile cholesterol nucleation via the activation of adenosine monophosphate-activated protein kinase (AMPK) signaling, which induced a reduction in gallbladder mucin-1 (MUC1) and MUC5ac expression and gallbladder cholesterol accumulation. CONCLUSION: CGD prevention by i.p. AAV2/8CAV1 injection in LD-fed mice was associated with the improvement of gallbladder stasis, which again supported the notion that supersaturated bile is required but not sufficient for the formation of cholesterol gallstones. Additionally, AAV treatment via the local i.p. injection offers particular advantages over the systemic i.v. route for much more effective gallbladder gene delivery, which will be an excellent tool for conducting preclinical functional studies on the maintenance of normal gallbladder function to prevent CGD.


Subject(s)
Caveolin 1 , Gallstones , Animals , Mice , Caveolin 1/genetics , Caveolin 1/metabolism , Cholesterol/metabolism , Cholesterol, Dietary , Dependovirus/genetics , Dependovirus/metabolism , Gallbladder/metabolism , Gallstones/genetics , Gallstones/prevention & control , Liver/metabolism , Mice, Inbred C57BL
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940547

ABSTRACT

ObjectiveTo observe the effect of modified Da Chaihutang on cholesterol gallstone (CS) in mice due to damp-heat based on the farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15)/fibroblast growth factor receptor 4 (FGFR4) pathway and explore the molecular biological mechanisms of CS differentiated into damp-heat syndrome from the perspective of correspondence between prescription and syndrome. MethodForty-eight six-week-old mice were randomly divided into the blank group, model group, modified Da Chaihutang (23.4 g·kg-1) group, and ursodeoxycholic acid (0.12 g·kg-1) group, with 12 mice in each group. The ones in the latter three groups were exposed to "internal dampness + external dampness + high-cholesterol diet" for 12 weeks for inducing CS due to damp-heat. Mice in the modified Da Chaihutang group and ursodeoxycholic acid group were gavaged with the corresponding drugs, while those in the model and blank groups with the same amount of normal saline for a total of four weeks. Before and after modeling, mice in each group were subjected to open field tests for determining their activities and mental states. Such general conditions as body mass, food intake, fur, and urine and stool of mice in each group were observed and recorded weekly for judging the damp-heat syndrome. After the intervention, the sampled liver and gallbladder tissues of mice in each group were stained with hematoxylin-eosin (HE) staining, and the serum γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), and total bilirubin (TBIL) were determined. The total cholesterol (TC) and total bile acid (TBA) contents in bile were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression levels of FXR, FGF15, FGFR4, and cholesterol 7α-hydroxylase gene (CYP7A1) were assayed by real-time fluorescence quantitative polynucleotide chain reaction (Real-time PCR) and Western blot. ResultCompared with the blank group, the model group exhibited enlarged gallbladder, brown turbid bile with flocculent precipitation visible to the naked eye, obvious damp-heat syndrome, lipoid degeneration in the liver tissue, rough and thickened gallbladder wall, elevated ALP, GGT, and TBIL in serum (P<0.01) and TC in bile (P<0.01), reduced TBA (P<0.01), up-regulated FXR, FGF15, and FGFR4 mRNA and protein expression in ileum (P<0.05, P<0.01), and down-regulated CYP7A1 mRNA and protein expression (P<0.01). Compared with the model group, the two medication groups displayed improved bile turbidity, and the bile in the modified Da Chaihutang group became clearer. After intervention, the damp-heat syndrome of mice in the modified Da Chaihutang group was significantly alleviated. The liver and gallbladder lesions of mice in the two medication groups were significantly relieved, manifested as reduced serum ALP, GGT, and TBIL (P<0.01). The reduction in ALP and TBIL of the modified Da Chaihutang group was more significant (P<0.01). The TC contents in the bile of mice from the two medication groups were significantly lowered, whereas the TBA contents were elevated (P<0.01), with more significant changes present in the modified Da Chaihutang group (P<0.01). The mRNA and protein expression levels of FXR, FGF15, and FGFR4 in the modified Da Chaihutang group were down-regulated (P<0.05, P<0.01), while the mRNA and protein expression levels of CYP7A1 rose (P<0.05), except that the elevation in FGF15 and FGFR4 protein expression and reduction in CYP7A1 protein expression were not significant. The mRNA and protein expression levels of FXR, FGF15, and FGFR4 in the ursodeoxycholic acid group all decreased, among which the reduction in FXR was remarkable (P<0.05), and the mRNA and protein expression levels of CYP7A1 were significantly up-regulated (P<0.05). ConclusionModified Da Chaihutang significantly improves the stone, liver function, bile composition, abnormal cholesterol-bile acid metabolism, and damp-heat syndrome in the model mice of CS differentiated into damp-heat syndrome, which may be related to its regulation of key factors FXR, FGF15, FGFR4, and CYP7A1 mRNA and protein expression in the cholesterol-bile acid metabolism pathway.

11.
Front Cell Dev Biol ; 9: 714271, 2021.
Article in English | MEDLINE | ID: mdl-34650971

ABSTRACT

Gallstone disease is a worldwide common disease. However, the knowledge concerning the gallbladder in the pathogenesis of cholesterol gallstone formation remains limited. In this study, using single-cell RNA sequencing (scRNA-seq) to obtain the transcriptome of gallbladder cells, we showed cellular heterogeneity and transcriptomic dynamics in murine gallbladder cells during the process of lithogenesis. Our results indicated gallbladder walls were subjected to remodeling during the process of lithogenesis. The major molecular events that happened included proliferation of epithelial cells, infiltration of immune-cells, activation of angiogenesis, and extracellular matrix modulation. Furthermore, we observed partial reversal of gallbladder cell transcriptomes by ursodeoxycholic acid treatment. This work thus provides novel and integral knowledges on the cellular changes during lithogenesis, which is of great significance to the understanding of pathogenesis and treatment of cholesterol gallstone.

12.
BMC Complement Med Ther ; 21(1): 199, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261471

ABSTRACT

BACKGROUND: Our current study aimed to evaluate the effect of an Glechoma hederacea extract (Hitrechol®) in normal rats and gallstone diseased mice to explore its underlying mechanisms. Normal rats and C57BL/6 mice with/without cholesterol gallstone were used in this study. METHODS: To monitor the effect of Hitrechol® on bile secretion, bile flow rates at 15 min interval until 2 h post-dosing in normal rats treated with vehicle and Hitrechol® were compared using multiple t-test with a p < 0.05 considered as statistically significant different. To further evaluate the effect of Hitrechol® against the development of gallstone in lithogenic diet treated mice, mice were treated with vehicle or Hitrechol® (QD-once daily or TID-three times daily) for 3 weeks followed by comparing the levels of bile composition among the treatment groups. In addition, the anti-oxidative biomarkers in liver and anti-inflammatory biomarkers in serum were detected and compared among all the treatment groups to evaluate the hepato-protective effect of Hitrechol®. The obtained levels of biomarkers and bile composition were compared among different treatment groups using one-way ANOVA tests followed by Tukey's multiple comparisons with p < 0.05 considered as statistically significant. RESULTS: Despite no significant impact on the bile flow rate, Hitrechol® TID treatment dramatically decreased size and amount of gallstone crystals and total cholesterol level (p < 0.05), as well as total bile acid (p < 0.05) and several types of bile acid (p < 0.05) levels in gallstone disease model mice. Hitrechol® TID treatment could significantly decrease the frequencies of hepatocyte necrosis and lipid aggregation notably as well as increase the antioxidant enzyme level (p < 0.05) in the liver. CONCLUSIONS: Our findings for the first time demonstrated the beneficial effect of Hitrechol® against gallstone via its litholytic, liver-protective and antioxidant activities.


Subject(s)
Antioxidants/pharmacology , Gallstones/prevention & control , Lamiaceae/metabolism , Plant Extracts/pharmacology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Rats , Rodentia
13.
Eur J Pharmacol ; 908: 174341, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34273384

ABSTRACT

Cholesterol overloading and bile acid metabolic disorders play an important role in the onset of cholesterol gallstone (CGS). Short-chain fatty acids (SCFAs) can regulate bile acid metabolism by modulating the gut microbiota. However, the role and mechanism by which sodium butyrate (NaB) targets bile acids to attenuate CGS are still unknown. In this study, continuous administration of 12 mg/day for 8 weeks was decreased the incidence of gallstones induced by lithogenic diet (LD) from 100% to 25%. NaB modulated SCFAs and improved the gut microbiota. The remodeling of the gut microbiota changed the bile acid compositions and decreased cecal tauro-α-muricholic acid (T-α-MCA) and tauro-ß-muricholic acid (T-ß-MCA) which are effective farnesoid X receptor (FXR) antagonists. The quantitative real-time PCR examination showed that NaB significantly increased levels of ileal Fxr, fibroblast growth factor-15 (Fgf-15) and small heterodimer partner (Shp) mRNA and subsequently inhibited bile acid synthesis. In addition, NaB enhanced bile acid excretion by increasing the levels of hepatic multidrug resistance protein 2 (Mdr2) and bile salt export pump (Bsep) mRNA, and it enhanced bile acid reabsorption in the intestine by increasing the levels of ileal bile acid transporter (Ibat) mRNA. In addition, NaB reduced the absorption of cholesterol in the intestine and inhibited the excretion of cholesterol in the liver, which reduced the cholesterol concentration in serum and bile. Furthermore, the protective effects of NaB administration were abolished by FXR antagonists. Taken together, our results suggest that NaB mitigates CGS by modulating the gut microbiota to regulate the FXR-FGF-15/SHP signaling pathway.


Subject(s)
Butyric Acid , Gallstones , Receptors, Cytoplasmic and Nuclear , ATP Binding Cassette Transporter, Subfamily B, Member 11 , Bile Acids and Salts
14.
Food Sci Anim Resour ; 41(2): 343-352, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33987554

ABSTRACT

The objective of this study was to evaluate the effects of Lactobacillus acidophilus ATCC 43121 and L. fermentum MF27 on biochemical indices in the serum, cholesterol metabolism in the liver and mucin expression in the gallbladder in lithogenic diet (LD)-induced C57BL/6J mice to determine the preventive effects of lactobacilli on gallstone formation. By the end of 4 wk of the experimental period, mice fed on a LD with high-fat and high-cholesterol exhibited higher levels of total and low-density lipoprotein cholesterol in the serum compared to mice fed on control diet or LD with L. acidophilus ATCC 43121 (LD+P1; p<0.05). Cholesterol-lowering effects observed in the LD+P1 and LD with L. fermentum MF27 (LD+P2) groups were associated with reduced expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver compared to the LD group (p<0.05). Furthermore, expression of the gel-forming mucin, including MUC5AB and MUC5B, was suppressed in the LD+P1 and LD+P2 groups compared to the LD group (p<0.05). Therefore, steady intake of both L. acidophilus ATCC 43121 and L. fermentum MF27 may have the ability to prevent the formation of cholesterol gallstones in LD-induced C57BL/6J mice.

15.
PeerJ ; 9: e10803, 2021.
Article in English | MEDLINE | ID: mdl-33665015

ABSTRACT

BACKGROUND: Cholesterol gallstone (CG) is the most common gallstone disease, which is induced by biliary cholesterol supersaturation. The purpose of this study is to investigate the pathogenesis of CG. METHODS: Sixteen mice were equally and randomly divided into model group and normal control group. The model group was fed with lithogenic diets to induce CG, and then gallbladder bile lipid analysis was performed. After RNA-seq library was constructed, differentially expressed mRNAs (DE-mRNAs) and differentially expressed lncRNAs (DE-lncRNAs) between model group and normal control group were analyzed by DESeq2 package. Using the cluster Profiler package, enrichment analysis for the DE-mRNAs was carried out. Based on Cytoscape software, the protein-protein interaction (PPI) network and competing endogenous RNA (ceRNA) network were built. Using quantitative real-time reverse transcription-PCR (qRT-PCR) analysis, the key RNAs were validated. RESULTS: The mouse model of CG was suc cessfully established, and then 181 DE-mRNAs and 33 DE-lncRNAs between model and normal groups were obtained. Moreover, KDM4A was selected as a hub node in the PPI network, and lncRNA MEG3 was considered as a key lncRNA in the regulatory network. Additionally, the miR-107-5p/miR-149-3p/miR-346-3-MEG3 regulatory pairs and MEG3-PABPC4/CEP131/NUMB1 co-expression pairs existed in the regulatory network. The qRT-PCR analysis showed that KDM4A expression was increased, and the expressions of MEG3, PABPC4, CEP131, and NUMB1 were downregulated. CONCLUSION: These RNAs might be related to the pathogenesis of CG.

16.
Metabolism ; 118: 154728, 2021 05.
Article in English | MEDLINE | ID: mdl-33581130

ABSTRACT

BACKGROUND & AIMS: Cholesterol gallstone disease (CGD) is a common gastrointestinal disease. Liraglutide, an analogue of glucagon-like peptide 1, has been approved to treat type 2 diabetes. Clinical studies have suggested a potential role of liraglutide in CGD. METHODS: Mice were subcutaneously injected with liraglutide, then fed a lithogenic diet. Bile duct cannulation was performed to collect bile output in mice. Intestinal-specific ablation or pharmacological inhibition of farnesoid X receptor (FXR) was used to study its functions in CGD. RESULTS: Liraglutide could protect mice against CGD. Liraglutide treatment increased the biliary concentration of cholesterol, phospholipids and bile acids and thereby decreased the cholesterol saturation index. The resistance to CGD conferred by liraglutide is likely a result of increased bile acid synthesis and efficient bile acid transport. The expression of a key bile acid synthetic enzyme, Cyp7a1, was significantly increased in liraglutide-treated mice. The increased expression of Cyp7a1 resulted from a relieved suppression signal of Fgf15 from the ileum. Mechanistically, liraglutide treatment altered bile acid composition and suppressed FXR activity in the ileum. Genetic ablation or pharmacological inhibition of FXR in the intestine protected mice against CGD. More importantly, intestinal FXR was required for liraglutide-mediated regulation of hepatic expression of Cyp7a1. CONCLUSION: Liraglutide improved CGD by increasing bile acid secretion and decreasing cholesterol saturation index. Liraglutide attenuates the negative feedback inhibition of bile acids through inhibiting intestinal FXR activity. Our results suggest that liraglutide may represent a novel way for treating or preventing cholesterol gallstones in individuals with high risk of CGD.


Subject(s)
Cholesterol/metabolism , Gallstones/prevention & control , Intestinal Mucosa/metabolism , Liraglutide/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/biosynthesis , Cholesterol 7-alpha-Hydroxylase/biosynthesis , Cholesterol 7-alpha-Hydroxylase/metabolism , Diet , Enzyme Induction , Fibroblast Growth Factors/metabolism , Gallstones/metabolism , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/enzymology , Signal Transduction
17.
Magn Reson Med Sci ; 20(4): 359-370, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-33390560

ABSTRACT

PURPOSE: Non-calcified cholesterol stones that are small in size are hard to be depicted on CT or magnetic resonance cholangiopancreatography. This institutional review board (IRB)-approved retrospective in vitro study aims to characterize contrast behaviors of 3 main components of the gallstones, i.e., cholesterol component (CC), bilirubin calcium component (BC) and CaCO3 (CO) on 3D radial scan with ultrashort TE (UTE) MRI, and to test the capability of depicting CC of gallstones as bright signals as compared to background saline. METHODS: Fourteen representative gallstones from 14 patients, including 15 CC, 6 BC and 4 CO, were enrolled. The gallstones underwent MRI including fat-saturated T1-weighted image (fs-T1WI) and UTE MRI with dual echoes. The contrast-to-noise ratio (CNR) and the chemical analysis for the 25 portions of the stones were compared. RESULTS: BC was bright on fs-T1WI, which did not change dramatically on UTE MRI and the signal did not remain on UTE subtraction image between dual echoes. Whereas the CC was negative or faintly positive signal on fs-T1WI, bright signal on UTE MRI and the contrast remained even higher on the UTE subtraction, which reflected their short T2 values. Median CNRs and standard errors of the segments on each imaging were as follows: on fs-T1WI, -10.2 ± 4.2 for CC, 149.7 ± 27.6 for BC and 37.9 ± 14.3 for CO; on UTE MRI first echo, 16.7 ± 3.3 for CC, 74.9 ± 21.3 for BC and 17.7 ± 8.4 for CO; on UTE subtraction image, 30.2 ±2.0 for CC, -11.2 ± 5.4 for BC and 17.8 ± 10.7 for CO. Linear correlations between CNRs and cholesterol concentrations were observed on fs-T1WI with r = -0.885, (P < 0.0001), UTE MRI first echo r = -0.524 (P = 0.0072) and UTE subtraction with r = 0.598 (P = 0.0016). CONCLUSION: UTE MRI and UTE subtraction can depict CC bright.


Subject(s)
Gallstones , Cholesterol , Gallstones/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Retrospective Studies
18.
Front Endocrinol (Lausanne) ; 11: 578536, 2020.
Article in English | MEDLINE | ID: mdl-33281743

ABSTRACT

There are gender differences between men and women in many physiological functions and diseases, which indicates that female sex hormones may be important. Traditionally, estrogen exerts its biological activities by activating two classical nuclear estrogen receptors, ESR1 and ESR2. However, the roles of estrogen in the regulation of physiological functions and the pathogenesis of diseases become more complicated with the identification of the G protein-coupled estrogen receptor (GPER1). Although many GPER1-specific ligands have been developed, the therapeutic mechanisms of exclusively targeting GPER1 are not yet well understood. Translational applications and clinical trial efforts for the identified GPER1 ligands have been focused primarily on the reproductive, cardiovascular, nervous, endocrine, and immune systems. More recently, research found that GPER1 may play an important role in regulating the digestive system. Cholesterol gallstone disease, a major biliary disease, has a higher prevalence in women than in men worldwide. Emerging evidence implies that GPER1 could play an important role, independent of the classical ESR1, in the pathophysiology of cholesterol gallstones in women. This review discusses the complex signaling pathways of three estrogen receptors, highlights the development of GPER1-specific ligands, and summarizes the latest advances in the role of GPER1 in the pathogenesis of gallstone formation.


Subject(s)
Cholesterol/metabolism , Gallstones/prevention & control , Molecular Targeted Therapy , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Gallstones/metabolism , Gallstones/pathology , Humans
19.
Lipids Health Dis ; 19(1): 158, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32615989

ABSTRACT

BACKGROUND: Many studies indicate that gallstone formation has genetic components. The abnormal expression of lipid-related genes could be the basis for particular forms of cholesterol gallstone disease. The aim of this study was to obtain insight into lipid metabolism disorder during cholesterol gallstone formation and to evaluate the effect of ursodeoxycholic acid (UDCA) on the improvement of bile lithogenicity and its potential influence on the transcription of lipid-related genes. METHODS: Gallstone-susceptible mouse models were induced by feeding with a lithogenic diet (LD) for 8 weeks. Bile and liver tissues were obtained from these mouse models after 0, 4 and 8 weeks. Bile lipids were measured enzymatically, and the cholesterol saturation index (CSI) was calculated to evaluate the bile lithogenicity by using Carey's critical tables. Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression levels of farnesoid X receptor (FXR), liver X receptor (LXR), adenosine triphosphate-binding cassette subfamily G member 5/8 (ABCG5/8), cholesterol 7-α hydroxylase (CYP7A1), oxysterol 7-α hydroxylase (CYP7B1), sterol 27-α hydroxylase (CYP27A1), peroxisome proliferator-activated receptor alpha (PPAR-α) and adenosine triphosphate-binding cassette subfamily B member 11 (ABCB11). RESULTS: The rate of gallstone formation was 100% in the 4-week group but only 30% in the UDCA-treated group. The UDCA-treated group had a significantly lower CSI compared with other groups. Of special note, the data on the effects of UDCA showed higher expression levels of ABCG8, ABCB11 and CYP27A1, as well as lower expression levels of LXR and PPAR-α, compared to the model control group. CONCLUSIONS: UDCA exhibits tremendously potent activity in restraining lipid accumulation, thus reversing the lithogenic effect and protecting hepatocytes from serious pathological damage. The abnormal expression of ABCG8, CYP7A1, CYP27A1, LXR and PPAR-α might lead to high lithogenicity of bile. These results are helpful in exploring new lipid metabolism pathways and potential targets for the treatment of cholesterol stones and for providing some basis for the study of the pathogenesis and genetic characteristics of cholelithiasis. Research on the mechanism of UDCA in improving lipid metabolism and bile lithogenicity may be helpful for clinical treatment and for reducing the incidence of gallstones.


Subject(s)
Bile/metabolism , Gallstones/etiology , Lipid Metabolism/genetics , Ursodeoxycholic Acid/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Animals , Bile Acids and Salts/metabolism , Cholestanetriol 26-Monooxygenase/genetics , Cholesterol 7-alpha-Hydroxylase/genetics , Diet/adverse effects , Disease Models, Animal , Gallstones/pathology , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Lipoproteins/genetics , Liver/drug effects , Liver/pathology , Liver/physiology , Male , Mice, Inbred C57BL , PPAR alpha/genetics , Ursodeoxycholic Acid/metabolism
20.
J Physiol Biochem ; 76(3): 427-435, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32557227

ABSTRACT

Dysfunction of the Na+/H+ exchanger 3 (NHE3) contributes to the formation of cholesterol gallstones. We aimed to investigate whether NHE3 dysfunction is associated with abnormalities in NHE3 complex formation. We fed C57BL/6 mice with control or lithogenic diet and study the expression of NHE3, ezrin, and Na+/H+ exchanger regulatory factor 1 (NHERF1) in the gallbladder (GB) using RT-PCR and western blot. Immunofluorescence and immunoprecipitation were performed to investigate the interactions of NHE3 with ezrin or NHERF1. To explore the initiating factor that leads to NHE3 dysfunction, we stimulated cholangiocarcinoma cells with taurochenodeoxycholate (TCDC) and/or forskolin. The effects of TCDC on the expression of NHE3 regulatory proteins, as well as their bindings to NHE3, were detected by western blot and immunoprecipitation. Enzyme-linked immunosorbent assay was used to study the regulation of cAMP production by TCDC. The expression of NHERF1 and ezrin phosphorylation level were increased in the gallbladder epithelial cells (GBECs) of C57BL/6 mice with cholesterol gallstones. Immunofluorescence studies demonstrated that the subcellular localization of ezrin and NHERF1 were similar to that of NHE3 in GBECs. Immunoprecipitation revealed that ezrin formed macrocomplex with NHE3, which were enhanced after gallstone formation. TCDC increased forskolin-induced cAMP accumulation, and NHERF1 and PKCα expression in cholangiocarcinoma cells. Under the synergistic effect of forskolin, TCDC stimulated ezrin phosphorylation, with enhanced interaction between ezrin and NHE3. The formation of cholesterol gallstones is associated with abnormal formation of NHE3 complexes. Decreased biliary TCDC may be an initiating factor that leads to abnormal GB absorption.


Subject(s)
Gallbladder/metabolism , Gallstones/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Animals , Cell Line, Tumor , Cytoskeletal Proteins/metabolism , Gallbladder/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...