Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Anat Rec (Hoboken) ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030913

ABSTRACT

Cartilaginous fishes have large and elaborate olfactory organs, but only a small repertoire of olfactory receptor genes. Here, we quantitatively analyze the olfactory system of 21 species of sharks and rays, assessing many features of the olfactory organ (OOR) (number of primary lamellae, branches of the secondary folds, sensory surface area, and density and number of sensory neurons) and the olfactory bulb (OB) (number of neurons and non-neuronal cells), and estimate the ratio between the number of neurons in the two structures. We show that the number of lamellae in the OOR does not correlate with the sensory surface area, while the complexity of the lamellar shape does. The total number of olfactory receptor neurons ranges from 30.5 million to 4.3 billion and the total number of OB neurons from 1.5 to 90 million. The number of neurons in the olfactory epithelium is 16 to 158 times higher (median ratio is 46) than the number of neurons in the OB. These ratios considerably exceed those reported in mammals. High convergence from receptor neurons to neurons processing olfactory information, together with the remarkably small olfactory receptor repertoire, strongly suggests that the olfactory system of sharks and rays is well adapted to detect a limited number of odorants with high sensitivity.

2.
Anat Rec (Hoboken) ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924302

ABSTRACT

Batoids (rays and skates) are cartilaginous fishes whose jaws are not articulated directly to the neurocranium. The only point of contact between them are the hyomandibular cartilages, resulting in a unique mandibular suspension called euhyostyly. Due to this decoupling of the jaws from the skull, muscles play an essential role in modulating mandibular movements during the feeding process, especially during mandibular protrusion. The main objectives of our study were: (1) to examine the mandibular musculature of eight batoid species from different orders in the Batoidea and (2) establish a standardized musclulature terminology for future comparative myological studies in batoids. For each muscle bundle, the general characteristics of each cranial muscle were described and their origin and insertions were identified. The number of muscle bundles differed intraspecifically. On the dorsal surface, we reported the first evidence of the presence of the precranial muscle (PCM) in U. halleri, as well as the ethmoideo-parethmoidalis muscle (ETM) in R. velezi, P. glaugostigma and Z. exasperata; in addition, the insertion of the spiracularis muscle (SP) extended to the ventral surface of the oropharyngeal tract in myliobatiforms. On the ventral surface of the head, both N. entemedor and M. californica exhibited additional muscles in the mandibular area. These muscles were renamed as part of the standardization of mandibular terminology: the depressor mandibularis minor (DMM) in N. entemedor and the adductor mandibulae profundus (AMP) in M. californica. The standardization of terminology is essential for futures studies of the mandibular apparatus in batoids, to facilitate the morphological description of muscles in species without anatomical accounts and for continuity in broader comparative analyses.

3.
Biology (Basel) ; 13(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38927285

ABSTRACT

A remarkable new deep-water skate, Leucoraja longirostris n. sp., is described based on eight specimens caught during different expeditions to the southern Madagascar Ridge in the southwestern Indian Ocean. The new species differs from all congeners by its remarkably long and acutely angled snout (horizontal preorbital length 17.2-22.6% TL vs. 8.5-11.9% TL and 4.2-6.1 vs. 1.7-3.5 times orbit length, snout angle 65-85° vs. 90-150°). Furthermore, it is apparently endemic to the Madagascar Ridge, distant from the known distribution areas of all congeners. In addition to L. fullonica and L. pristispina, L. longirostris n. sp. is also the only species with plain dorsal coloration. Furthermore, the new species is the only Leucoraja species with an external clasper component dike and, besides L. wallacei, the only one with four dorsal terminal (dt) cartilages. The shape of the accessory terminal 1 (at1) cartilage with four tips is also unique within the genus. A new approach for the visualization of the clasper characters is introduced based on 3D models of all skeletal and external features. This enables a much easier and much more precise interpretation of every single clasper component, of the entire structure, and, in particular, the relationship between external features and skeletal cartilages. A new English translation of the first diagnosis of Leucoraja is provided, along with a revised generic diagnosis and a key to the species of Leucoraja in the Indian Ocean.

4.
J Morphol ; 285(6): e21744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850202

ABSTRACT

Leptocharias smithii has been poorly explored in anatomical terms. This species bears a mosaic of morphological characters and is considered to represent an intermediate condition between other carcharhiniform clades. In the present paper, the anatomy of the appendicular skeleton of the species is thoroughly investigated and compared with other representatives of the order Carcharhiniformes. Leptocharias bears exclusive characteristics, such as the visible separation of the pro- and mesopterygia but it also has an aplesodic pectoral fin, a condition shared with carcharhiniforms placed at the base of the phylogenetic tree and at the same time a chevron-shaped coracoid bar, a condition characteristic of charcharhiniforms placed at the apex of the phylogenetic tree. Additionally, in an attempt to understand the evolution of its appendicular skeleton and of other carcharhiniforms, 20 characters of the paired fins and girdles are explored and discussed in light of two recent phylogenetic hypotheses. Most of these characters were not previously explored and support not only the monophyly of Carcharhiniformes, such as the mesopterygium overlapping the metapterygium in ventral view, but also the monophyly of the less inclusive clade Hemigaleidae + (Galeocerdonidae + (Carcharhinidae+Sphyrnidae)), such as the morphology and arrangement of the distal radials, which are pointed and spaced.


Subject(s)
Phylogeny , Sharks , Animals , Sharks/anatomy & histology , Sharks/classification , Animal Fins/anatomy & histology , Male , Female , Biological Evolution
5.
Zookeys ; 1202: 1-110, 2024.
Article in English | MEDLINE | ID: mdl-38800563

ABSTRACT

Based on several field investigations, many molluscan shells and chondrichthyan teeth, together with other invertebrate and actinopterygian remains were found from the marine Bangkok Clay deposits in Ongkharak, Nakhon Nayok, at a depth of ~ 5-7 m below the topsoil surface. Animal macrofossils recovered from these Holocene marine deposits were identified and their chronological context was investigated in order to reconstruct the paleoenvironments of the area at that time. The majority of marine fossils recovered from the site consist of molluscs, with a total of 63 species identified. Other invertebrate species include a stony coral, a mud lobster, barnacles, and a sea urchin. The vertebrates are represented by fish remains, including carcharhinid shark teeth from at least nine species, stingray and trichiurid teeth, and one sciaenid otolith. The molluscan fauna indicates that the paleoenvironments of the area corresponded to intertidal to sublittoral zones, where some areas were mangrove forests and intertidal mudflats. The fish fauna is dominated by the river shark Glyphis, indicating freshwater influences and possibly occasional brackish conditions. The carbon-14 analysis of mollusc and charcoal remains shows that deposition of the marine sediment sequence began during the mid-Holocene, spanning approximately from 8,800 to 5,300 cal yr BP. This study provides in-depth insights into the diversity of fishes, marine molluscs, and other invertebrates from the Bangkok Clay deposits, supporting the existence of a marine transgression onto the Lower Central Plain of Thailand during the mid-Holocene.

6.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654646

ABSTRACT

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Subject(s)
Fossils , Phylogeny , Sharks , Animals , Fossils/anatomy & histology , Mexico , Sharks/anatomy & histology , Sharks/classification , Sharks/physiology , Biological Evolution , Tooth/anatomy & histology
7.
Biol Rev Camb Philos Soc ; 99(4): 1314-1356, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38562006

ABSTRACT

The reproductive diversity of extant cartilaginous fishes (class Chondrichthyes) is extraordinarily broad, reflecting more than 400 million years of evolutionary history. Among their many notable reproductive specialisations are viviparity (live-bearing reproduction) and matrotrophy (maternal provision of nutrients during gestation). However, attempts to understand the evolution of these traits have yielded highly discrepant conclusions. Here, we compile and analyse the current knowledge on the evolution of reproductive diversity in Chondrichthyes with particular foci on the frequency, phylogenetic distribution, and directionality of evolutionary changes in their modes of reproduction. To characterise the evolutionary transformations, we amassed the largest empirical data set of reproductive parameters to date covering nearly 800 extant species and analysed it via a comprehensive molecular-based phylogeny. Our phylogenetic reconstructions indicated that the ancestral pattern for Chondrichthyes is 'short single oviparity' (as found in extant holocephalans) in which females lay successive clutches (broods) of one or two eggs. Viviparity has originated at least 12 times, with 10 origins among sharks, one in batoids, and (based on published evidence) another potential origin in a fossil holocephalan. Substantial matrotrophy has evolved at least six times, including one origin of placentotrophy, three separate origins of oophagy (egg ingestion), and two origins of histotrophy (uptake of uterine secretions). In two clades, placentation was replaced by histotrophy. Unlike past reconstructions, our analysis reveals no evidence that viviparity has ever reverted to oviparity in this group. Both viviparity and matrotrophy have arisen by a variety of evolutionary sequences. In addition, the ancestral pattern of oviparity has given rise to three distinct egg-laying patterns that increased clutch (brood) size and/or involved deposition of eggs at advanced stages of development. Geologically, the ancestral oviparous pattern arose in the Paleozoic. Most origins of viviparity and matrotrophy date to the Mesozoic, while a few that are represented at low taxonomic levels are of Cenozoic origin. Coupled with other recent work, this review points the way towards an emerging consensus on reproductive evolution in chondrichthyans while offering a basis for future functional and evolutionary analyses. This review also contributes to conservation efforts by highlighting taxa whose reproductive specialisations reflect distinctive evolutionary trajectories and that deserve special protection and further investigation.


Subject(s)
Phylogeny , Viviparity, Nonmammalian , Animals , Female , Viviparity, Nonmammalian/physiology , Reproduction/physiology , Biological Evolution
8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38486350

ABSTRACT

AIMS: Although elasmobranchs are consumed worldwide, bacteriological assessments for this group are still sorely lacking. In this context, this study assessed bacteria of sharks and rays from one of the most important landing ports along the Rio de Janeiro coast. METHODS AND RESULTS: Bacteria were isolated from the cloacal swabs of the sampled elasmobranchs. They were cultured, and Vibrio, Aeromonas, and Enterobacterales were isolated and identified. The isolated bacteria were then biochemically identified and antimicrobial susceptibility assays were performed. Antigenic characterizations were performed for Salmonella spp. and Polymerase Chain Reaction (PCR) assays were performed to identify Escherichia coli pathotypes. Several bacteria of interest in the One Health context were detected. The most prevalent Enterobacterales were Morganella morganii and Citrobacter freundii, while Vibrio harveyi and Vibrio fluvialis were the most prevalent among Vibrio spp. and Aeromonas allosacharophila and Aeromonas veronii bv. veronii were the most frequent among Aeromonas spp. Several bacteria also displayed antimicrobial resistance, indicative of Public Health concerns. A total of 10% of Vibrio strains were resistant to trimethoprim-sulfamethoxazole and 40% displayed intermediate resistance to cefoxitin. Salmonella enterica strains displayed intermediate resistance to ciprofloxacin, nalidixic acid and streptomycin. All V. cholerae strains were identified as non-O1/non-O139. The detected E. coli strains did not exhibit pathogenicity genes. This is the first study to perform serology assessments for S. enterica subsp. enterica isolated from elasmobranchs, identifying the zoonotic Typhimurium serovar. Salmonella serology evaluations are, therefore, paramount to identify the importance of elasmobranchs in the epidemiological salmonellosis chain. CONCLUSIONS: The detection of several pathogenic and antibiotic-resistant bacteria may pose significant Public Health risks in Brazil, due to high elasmobranch consumption rates, indicating the urgent need for further bacteriological assessments in this group.


Subject(s)
Aeromonas , Sharks , Vibrio cholerae , Animals , Escherichia coli , Brazil , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aeromonas/genetics
9.
Ecol Evol ; 14(3): e11163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500855

ABSTRACT

While sexual size dimorphism (SSD) is abundant in nature, there is huge variation in both the intensity and direction of SSD. SSD results from a combination of sexual selection for large male size, fecundity selection for large female size and ecological selection for either. In most vertebrates, it is variation in the intensity of male-male competition that primarily underlies variation in SSD. In this study, we test four hypotheses regarding the adaptive value of SSD in sharks-considering the potential for each of fecundity, sexual, ecological selection and reproductive mode as the primary driver of variation in SSD between species. We also estimate past macroevolutionary shifts in SSD direction/intensity through shark phylogeny. We were unable to find evidence of significant SSD in early sharks and hypothesise that SSD is a derived state in this clade, that has evolved independently of SSD observed in other vertebrates. Moreover, there is no significant relationship between SSD and fecundity, testes mass or oceanic depth in sharks. However, there is evidence to support previous speculation that reproductive mode is an important determinant of interspecific variation in SSD in sharks. This is significant as in most vertebrates sexual selection is thought to be the primary driver of SSD trends, with evidence for the role of fecundity selection in other clades being inconsistent at best. While the phylogenetic distribution of SSD among sharks is superficially similar to that observed in other vertebrate clades, the relative importance of selective pressures underlying its evolution appears to differ.

10.
J Morphol ; 285(2): e21673, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361272

ABSTRACT

Recent studies have uncovered mosaic patterns of allometric and isometric growth underlying ontogenetic shifts in the body form of elasmobranch species (shark and rays). It is thought that shifts in trophic and spatial ecology through ontogeny drive these morphological changes; however, additional hypotheses relating to developmental constraints have also been posed. The bull shark (Carcharhinus leucas) is a large-bodied coastal shark that exhibits strong ontogenetic shifts in trophic and spatial ecology. In this study, we utilise a large data set covering a large number of morphological structures to reveal ontogenetic shifts in the body form of C. leucas, stratifying analyses by sex and size classes to provide fine-scale, more ecomorphologically relevant results. Our results indicate shifts in functional demands across the body through ontogeny, driven by selective pressures relating to trophic and spatial ecology driving the evolution of allometry. We also find significant differences in scaling trends between life stages, and between the sexes, highlighting the importance of utilising large, diverse datasets that can be stratified in this way to improve our understanding of elasmobranch morphological evolution. Ultimately, we discuss the implications of these results for existing ecomorphological hypotheses regarding the evolution of specific morphological structures, and pose novel hypotheses where relevant.


Subject(s)
Sharks , Animals
11.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38280187

ABSTRACT

Marine vertebrate biodiversity is fundamental to ocean ecosystem health but is threatened by climate change, overharvesting, and habitat degradation. High-quality reference genomes are valuable foundational scientific resources that can inform conservation efforts. Consequently, global consortia are striving to produce reference genomes for representatives of all life. Here, we summarize the current landscape of available marine vertebrate reference genomes, including their phylogenetic diversity and geographic hotspots of production. We discuss key logistical and technical challenges that remain to be overcome if we are to realize the vision of a comprehensive reference genome library of all marine vertebrates.


Subject(s)
Ecosystem , Vertebrates , Animals , Phylogeny , Vertebrates/genetics , Biodiversity , Conservation of Natural Resources
12.
J Vet Dent ; : 8987564231226163, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295355

ABSTRACT

The shortfin mako shark (Isurus oxyrinchus) is a large pelagic predator that inhabits coastal and ocean waters. It has several teeth arranged in rows that run from the rostral to the lingual face. These teeth are in several stages of maturation, where the teeth closest to the rostral face are more mature and functional and the teeth closest to the lingual face are still in development. The tooth supply of the shark is unlimited throughout its life. The mechanism of tooth replacement follows that, when the front teeth are discarded physiologically, the posterior teeth replace it. This study us used a head and dental arch of I. oxyrinchus. Intraoral radiographs were obtained with the aim to show details of the pulp cavity. The study concluded that the pulp diameter varies according to the stage of dental maturation.

13.
Dev Dyn ; 253(4): 370-389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37837337

ABSTRACT

A previously unknown reference to the Russian ethnologist, biologist, and traveler Nikolai N. Miklucho-Maclay (1846-1888) was discovered in correspondence between Charles Darwin (1809-1882) and Ernst Haeckel (1834-1919). This reference has remained unknown to science, even to Miklucho-Maclay's biographers, probably because Darwin used the Russian nickname "Mikluska" when alluding to this young scientist. Here, we briefly outline the story behind the short discussion between Darwin and his German counterpart Haeckel, and highlight its importance for the history of science. Miklucho-Maclay's discovery of a putative swim bladder anlage in sharks, published in 1867, was discussed in four letters between the great biologists. Whereas, Haeckel showed enthusiasm for the finding because it supported (his view on) evolutionary theory, Darwin was less interested, which highlights the conceptual differences between the two authorities. We discuss the scientific treatment of Miklucho-Maclay's observation in the literature and discuss the homology, origin, and destiny of gas organs-swim bladders and lungs-in vertebrate evolution, from an ontogenetic point of view. We show that the conclusions reached by Miklucho-Maclay and Haeckel were rather exaggerated, although they gave rise to fundamental insights, and we illustrate how tree-thinking may lead to differences in the conceptualization of evolutionary change.


Subject(s)
Embryonic Development , European People , Humans , Biological Evolution
14.
Data Brief ; 52: 109836, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059002

ABSTRACT

Chondrichthyans comprise a diverse group of vertebrate species with extraordinary ecological relevance. Yet, multiple members of this evolutionary lineage are associated with significant extinction risk. The sailfin roughshark Oxynotus paradoxus is a deep-water benthic shark currently listed as vulnerable due to population declines in parts of its range. Here we provide the first complete mitochondrial genome of O. paradoxus, comprising also the first record for the genus and family Oxynotidae. These data can facilitate future monitoring of the genetic diversity in this and related species. Genomic DNA was extracted from O. paradoxus collected in the eastern North Atlantic off western Portugal (37.59°N, 9.51°W) and sent for Illumina Paired-End (2 × 150 bp) library construction and whole genome sequencing on a Novaseq6000 platform. Trimmomatic (version 0.38) was used to remove adapters and MitoZ (version 3.4) to assemble and annotate the mitogenome. This mitogenome with 17 100 bp has a total of 38 genes, 13 of which are protein-coding genes, 23 transfer RNA genes, and 2 ribosomal RNA genes. Eight transfer RNAs and 1 protein-coding gene (NADH dehydrogenase subunit 6, NAD6) are in the complementary strand. In the provided phylogenetic inference, with all available and verified Squalomorphii mitogenomes, the four orders are well separated, and as expected, O. paradoxus is placed in the Squaliformes order. This data reinforces the need for more genomic resources for the Oxynotidae family.

15.
PeerJ ; 11: e16598, 2023.
Article in English | MEDLINE | ID: mdl-38111662

ABSTRACT

Background: Coprolites, i.e., fossilized faeces, are an important source of knowledge on the diet and food processing mechanisms in the fossil record. Direct and indirect evidences for the dietary preferences of extinct sharks are rare in the fossil record. The first coprolite attributable to Ptychodus containing prey remains from the European Cretaceous is documented here. Methods: A coprolite from the Late Cretaceous of Opole (southern Poland) was scanned using micro-computed tomography to show the arrangement of the inclusions. In addition, the cross-section was examined under the SEM/EDS to analyse the microstructure and chemical composition of the inclusions. Results: Brachiopod shell fragments and foraminiferan shells are recognized and identified among the variously shaped inclusions detected through the performed analysis. Conclusions: The extinct shell-crushing shark Ptychodus has been identified as the likely producer of the examined coprolite. The presence of brachiopod shell fragments indicates that at least some species of this durophagous predatory shark may have preyed on small benthic elements on the sea bottom.


Subject(s)
Sharks , Animals , Poland , X-Ray Microtomography , Invertebrates , Diet
16.
Mar Pollut Bull ; 196: 115647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832499

ABSTRACT

The deep-sea can act as a sink for legacy contaminants such as organochlorines (OCs), causing damages in its inhabitants for their persistence and their prolonged effects in the organisms. HCB, DDT and its isomers, and 28 PCBs congeners were detected in muscle and embryonic tissues of three deep-sea chondrichthyes Chimaera monstrosa (n = 16), Dalatias licha (n = 12) and Etmopterus spinax (n = 51) sampled in Ligurian and Tyrrhenian Sea (Mediterranean Sea). Contaminant distribution in E. spinax and C. monstrosa was PCBs > DDTs â‰« HCB while in D. licha was DDTs > PCBs â‰« HCB. Statistically significant differences were highlighted in OC levels among the species, but no such differences were found among sexes. Ratios between DDT isomers highlighted an historical input of the pesticide in the environment. For the first time was also demonstrated maternal transfer in deep water chondrichthyes, specifically in E. spinax where was highlighted that transfer of contaminants increases with increasing compound's Log Kow.


Subject(s)
Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Polychlorinated Biphenyls/analysis , Mediterranean Sea , Persistent Organic Pollutants , DDT , Hydrocarbons, Chlorinated/analysis , Fishes , Water Pollutants, Chemical/analysis , Environmental Monitoring
17.
Biology (Basel) ; 12(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37508405

ABSTRACT

Sampling efforts on the Saya de Malha Bank (part of the Mascarene Plateau, western Indian Ocean) unveiled three unusual small juvenile angel shark specimens, that were a much paler color than the only known western Indian Ocean species, Squatina africana Regan, 1908. However, it took many years before further specimens, including adults of both sexes, and tissue samples were collected. The present manuscript contains a redescription of S. africana based on the holotype and additional material, as well as the formal description of the new species of Squatina. All specimens of the new species, hereafter referred to as Squatina leae sp. nov., were collected in the western Indian Ocean off southwestern India and on the Mascarene Plateau at depths of 100-500 m. The new species differs from S. africana in a number of characteristics including its coloration when fresh, smaller size at birth, size at maturity, and adult size, genetic composition, and distribution. Taxonomic characteristics include differences in the morphology of the pectoral skeleton and posterior nasal flap, denticle arrangement and morphology, vertebral counts, trunk width, pectoral-pelvic space, and clasper size. A key to the species of Squatina in the Indian Ocean is provided.

18.
J Morphol ; 284(8): e21608, 2023 08.
Article in English | MEDLINE | ID: mdl-37458085

ABSTRACT

The central tenet of ecomorphology links ecological and morphological variation through the process of selection. Traditionally used to rationalise morphological differences between taxa, an ecomorphological approach is increasingly being utilised to study morphological differences expressed through ontogeny. Elasmobranchii (sharks, rays and skates) is one clade in which such ontogenetic shifts in body form have been reported. Such studies are limited to a relatively small proportion of total elasmobranch ecological and morphological diversity, and questions remain regarding the extent to which ecological selection are driving observed morphometric trends. In this study, we report ontogenetic growth trajectories obtained via traditional linear morphometrics from a large data set of the brown smoothhound shark (Mustelus henlei). We consider various morphological structures including the caudal, dorsal and pectoral fins, as well as several girth measurements. We use an ecomorphological approach to infer the broad ecological characteristics of this population and refine understanding of the selective forces underlying the evolution of specific morphological structures. We suggest that observed scaling trends in M. henlei are inconsistent with migratory behaviour, but do not contradict a putative trophic niche shift. We also highlight the role of predation pressure and sex-based ecological differences in driving observed trends in morphometry, a factor which has previously been neglected when considering the evolution of body form in sharks.


Subject(s)
Sharks , Skates, Fish , Animals , Sharks/anatomy & histology , Skates, Fish/anatomy & histology
19.
J Proteome Res ; 22(7): 2477-2492, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37290099

ABSTRACT

Spermatogenesis is a highly specialized process of cell proliferation and differentiation leading to the production of spermatozoa from spermatogonial stem cells. Due to its testicular anatomy, Scyliorhinus canicula is an interesting model to explore stage-based changes in proteins during spermatogenesis. The proteomes of four testicular zones corresponding to the germinative niche and to spermatocysts (cysts) with spermatogonia (zone A), cysts with spermatocytes (zone B), cysts with young spermatids (zone C), and cysts with late spermatids (zone D) have been analyzed by nanoLC-ESI-MS/MS. Gene ontology and KEGG annotations were also performed. A total of 3346 multiple protein groups were identified. Zone-specific protein analyses highlighted RNA-processing, chromosome-related processes, cilium organization, and cilium activity in zones A, D, C, and D, respectively. Analyses of proteins with zone-dependent abundance revealed processes related to cellular stress, ubiquitin-dependent degradation by the proteasome, post-transcriptional regulation, and regulation of cellular homeostasis. Our results also suggest that the roles of some proteins, such as ceruloplasmin, optineurin, the pregnancy zone protein, PA28ß or the Culling-RING ligase 5 complex, as well as some uncharacterized proteins, during spermatogenesis could be further explored. Finally, the study of this shark species allows one to integrate these data in an evolutionary context of the regulation of spermatogenesis. Mass spectrometry data are freely accessible via iProX-integrated Proteome resources (https://www.iprox.cn/) for reuse purposes.


Subject(s)
Proteome , Tandem Mass Spectrometry , Male , Animals , Proteome/genetics , Proteome/metabolism , Spermatogenesis , Testis , Spermatozoa , Spermatogonia/metabolism
20.
J Fish Biol ; 103(2): 235-246, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37129570

ABSTRACT

Body condition is an important proxy for the overall health and energetic status of fishes. The classically used Fulton's condition factor requires length and mass measurements, but mass can be difficult to obtain in large species. Girth measurements can replace mass for wild pelagic sharks. However, girth-calculated condition has not been validated against Fulton's condition factor intraspecifically, across ontogeny or reproduction, or in a controlled setting. We used the epaulette shark (Hemiscyllium ocellatum), because they are amenable to captive reproduction, to track fine-scale body condition changes across life stages, oviparous reproduction and between condition indices. We measured four girths, total length and mass of 16 captive epaulette sharks across 1 year and tracked female reproduction daily. We also collected length and mass data from an additional 72 wild-caught sharks and 155 sharks from five previous studies and two public aquaria to examine the relationship between length and mass for this species. Even though data were derived from a variety of sources, a predictable length-mass relationship (R2 = 0.990) was achievable, indicating that combining data from a variety of sources could help overcome knowledge gaps regarding basic life history characteristics. We also found that condition factor decreased during early life stages, then increased again into adulthood, with predictable changes across the female reproductive cycle. Finally, we determined that both Fulton's and girth condition analyses were comparable. Outcomes from this study uniquely provide body condition changes across the complete life history, including fine-scale female reproductive stages, and validate the use of girths as a nonlethal whole-organism energetic assessment for fishes.


Subject(s)
Life History Traits , Sharks , Female , Animals , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...