Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Oral Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696357

ABSTRACT

OBJECTIVE: This study aimed to clarify the relationship between FADD amplification and overexpression and the tumor immune microenvironment. METHODS: Immunohistochemical staining and bioanalysis were used to analyze the association between FADD expression in tumor cells and cells in tumor microenvironment. RNA-seq analysis was used to detect the differences in gene expression upon FADD overexpression. Flow cytometry and multicolor immunofluorescence staining (mIHC) were used to detect the differences in CD8+ T-cell infiltration in FADD-overexpressed cells or tumor tissues. RESULTS: Overexpression of FADD significantly promoted tumor growth. Cells with high FADD expression presented high expression of CD276 and FGFBP1 and low expression of proinflammatory factors (such as IFIT1-3 and CXCL8), which reduced the percentage of CD8+ T cells and created a "cold tumor" immune microenvironment, thus promoting tumor progression. In vivo and in vitro experiment confirmed that tumor tissues with excessive FADD expression exhibited CD8+ T-cell exclusion in the microenvironment. CONCLUSION: Our preliminary investigation has discovered the association between FADD expression and the immunosuppressive microenvironment in HNSCC. Due to the high frequent amplification of the chromosomal region 11q13.3, where FADD is located, targeting FADD holds promise for improving the immune-inactive state of tumors, subsequently inhibiting HNSCC tumor progression.

2.
J Integr Plant Biol ; 62(11): 1703-1716, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32396248

ABSTRACT

Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi-subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early-flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA-seq analysis indicated that the fha2 mutant affects a subset of RLT1/2-regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , Nuclear Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Nuclear Proteins/genetics , Nucleosomes/metabolism , Plant Infertility/genetics , Plant Infertility/physiology
3.
BMC Med Genomics ; 12(1): 192, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831008

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor found in children. The frequent gain/loss of many chromosome bands in tumor cells and absence of mutations found at diagnosis suggests that NB is a copy number-driven cancer. Despite the previous work, a systematic analysis that investigates the relationship between such frequent gain/loss of chromosome bands and patient prognosis has yet to be implemented. METHODS: First, we analyzed two NB CNV datasets to select chromosomal bands with a high frequency of gain or loss. Second, we applied a computational approach to infer sample-specific CNVs for each chromosomal band selected in step 1 based on gene expression data. Third, we applied univariate Cox proportional hazards models to examine the association between the resulting inferred copy number values (iCNVs) and patient survival. Finally, we applied multivariate Cox proportional hazards models to select chromosomal bands that remained significantly associated with prognosis after adjusting for critical clinical variables, including age, stage, gender, and MYCN amplification status. RESULTS: Here, we used a computational method to infer the copy number variations (CNVs) of sample-specific chromosome bands from NB patient gene expression profiles. The resulting inferred CNVs (iCNVs) were highly correlated with the experimentally determined CNVs, demonstrating CNVs can be accurately inferred from gene expression profiles. Using this iCNV metric, we identified 58 frequent gain/loss chromosome bands that were significantly associated with patient survival. Furthermore, we found that 7 chromosome bands were still significantly associated with patient survival even when clinical factors, such as MYCN status, were considered. Particularly, we found that the chromosome band chr11p14 has high potential as a novel candidate cytogenetic biomarker for clinical use. CONCLUSION: Our analysis resulted in a comprehensive list of prognostic chromosome bands supported by strong statistical evidence. In particular, the chr11p14 gain event provided additional prognostic value in addition to well-established clinical factors, including MYCN status, and thereby represents a novel candidate cytogenetic biomarker with high clinical potential. Additionally, this computational framework could be readily extended to other cancer types, such as leukemia.


Subject(s)
Biomarkers, Tumor/genetics , Computational Biology/methods , Cytogenetic Analysis , Neuroblastoma/diagnosis , Neuroblastoma/genetics , DNA Copy Number Variations , Humans , Prognosis , Survival Analysis
4.
J Tissue Eng Regen Med ; 13(8): 1482-1496, 2019 08.
Article in English | MEDLINE | ID: mdl-31148385

ABSTRACT

During the generation of induced pluripotent stem cell (iPSC) lines from cord blood CD34+ cells, a line having complete trisomy of Chromosome 1 and deletion of q23 to qTer of Chromosome 11 was accidentally developed in our lab. The abnormality was consistently detected even at higher passages. These chromosomal anomalies are known to manifest neurological developmental defects. In order to examine if such defects occur during in vitro differentiation of the cell line, we set up a protocol for neural differentiation. Valproic acid (VPA) was earlier reported by us to enhance neural differentiation of placental mesenchymal stem cells. Here, we induced normal and abnormal iPSC lines to neural lineage with/without VPA. Neural differentiation was observed in all four sets, but for both the iPSCs lines, VPA sets performed better. The characteristics tested were morphology, neural filament length, detection of neural markers, and electrophysiology. In summary, the karyotypically abnormal line exhibited efficient neural differentiation. This iPSC line may serve as a useful tool to study abnormalities associated with trisomy 1 and deletion of q23 to qTer of Chromosome 11.


Subject(s)
Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Valproic Acid/pharmacology , Cell Line , Cell Lineage/drug effects , Cellular Reprogramming/drug effects , Chromosome Deletion , Dopaminergic Neurons/cytology , Dopaminergic Neurons/drug effects , Electrophysiological Phenomena/drug effects , Endoderm/cytology , Fetal Blood/cytology , Humans , Induced Pluripotent Stem Cells/drug effects , Karyotype , Mesoderm/cytology , Neurons/drug effects , Signal Transduction/drug effects , Trisomy/pathology
5.
Genomics & Informatics ; : 74-79, 2005.
Article in English | WPRIM (Western Pacific) | ID: wpr-62314

ABSTRACT

The H19 gene, located at human chromosome 11p15.5, is imprinted in most normal human tissues. However, imprinting is often lost in tumors suggesting H19 is a putative tumor suppressor. We analyzed the single nucleotide polymorphisms (SNPs) of a 16 kb region that includes the H19 gene and its imprinting control region (ICR) in the Korean population. To identify SNPs, we directly sequenced this region in 18 Korean subjects. We identified 64 SNPs, of which 7 were in the exons of H19, 2 were in the introns, 14 were in the 3' intergenic region and 41 were in the 5' intergenic region. Of the 64 SNPs, 21 had not previously been reported and thus appear to be unique to the Korean population. The identified SNPs of H19 in the Korean population may eventually be useful as genetic markers associated with various diseases. In this study, 7 of the 64 identified SNPs were at CTCF binding sites in the ICR and may affect regulation of H19 gene imprinting. Thus, several genetic variations of the H19 gene may be important markers in human diseases that involve genomic imprinting, including cancer.


Subject(s)
Humans , Humans , Binding Sites , Chromosomes, Human , DNA, Intergenic , Exons , Genetic Markers , Genetic Variation , Genomic Imprinting , Haplotypes , Introns , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...