Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Sustain Chem Environ ; 6: 100092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947873

ABSTRACT

Untreated tannery wastewater contains a large amount of toxic metals, dyes, and other pollutants, which pose adverse effects on the ecosystem and public health. In this work, a calcium alginate-poly vinyl alcohol-graphene oxide (CA-PVA-GO) composite was prepared to remove metals and dyes, particularly Cr(Ⅲ) and CI acid violet 54 (AV54) dye, from tannery wastewater. FESEM, FTIR, and XRD analyses were applied to characterize the GO and CA-PVA-GO. Different operational variables, viz. pH (3.0-5.5 for Cr(III) and 2-7 for dye), dosage (0.164-2.46 g/L), contact time (10-60 min), initial concentration (39, 65, 98, and 201 ppm for Cr(III) and 21.5, 38.5, 54.5, and 61.75 ppm for dye), and temperature (298, 308, 318, and 328 K) were studied to evaluate the efficiency of the CA-PVA-GO composite. The optimum conditions for Cr(Ⅲ) and AV54 dye adsorption were found to be pH (5.0 and 3.0), dosage (0.82 g/L for both), and time (45 and 60 min), respectively, with 35.35 ± 1.43% and 84.63 ± 2.54% removal efficiency. The experimental data was analyzed through the Langmuir and Freundlich isotherms. The maximum adsorption capacity (qm) was observed at 173.01 and 74.68 mg/g for Cr(Ⅲ) and AV54 dye, respectively. The pseudo-second-order kinetic model was fitted better (R2 = 0.981, 0.995, 0.92, and 0.995) than first-order for AV54 dye adsorption. Thermodynamic analyses revealed that the Cr(Ⅲ) and AV54 dye adsorption processes were spontaneous and exothermic. The value of Gibbs free energy (ΔG) for Cr(III) adsorption was obtained at -7.433, -4.508, -2.626, and -1.311 kJ/mol, whereas it was -5.178, -4.867, -4.628, and -4.555 kJ/mol for dye. The values of ΔH and ΔS were -67.257 and -0.198 kJ/mol for Cr(III) and -10.852 and -0.019 kJ/mol for the dye removal. The regenerated CA-PVA-GO composite was reused successfully. Different physicochemical parameters, viz., concentration, pH, TDS, EC, BOD5, and COD of chrome tanning and dyeing effluents, were analyzed before and after the adsorption. The results of chromium and dye removal from tannery wastewater were 53.18% and 93.91%, revealing that the developed eco-friendly CA-PVA-GO composite could be an operative adsorbent for tannery wastewater treatment and possibly scaled up to an industrial level.

2.
J Prosthodont ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822528

ABSTRACT

PURPOSE: Bilayered restorations have both the strength of the substructure material and the esthetics of the veneer material; however, they should have appropriate bonding between the two materials. This study aimed to evaluate the shear bond strength (SBS) according to the substructure material and veneering technique used in bilayered restorations. MATERIALS AND METHODS: The experimental group was divided into four groups (n = 15 per group) based on the substructure materials (cobalt-chromium [Co-Cr] alloy and 3 mol% yttrium-stabilized tetragonal zirconia polycrystal [3Y-TZP]) and veneering techniques (pressing and layering). Veneering was performed with disk shape (diameter: 5 mm, height: 2 mm) on a substructure using each veneering technique. Shear stress was applied to the interface of the substructure and the veneering ceramic using a universal testing machine. The shear bond strength, according to the substructure and veneering technique, was analyzed using a two-way analysis of variance with a post-hoc Tukey's honestly significant difference test. The failure mode was observed, and the surface was analyzed using a scanning electron microscope and energy-dispersive spectroscopy. RESULTS: The shSBS of the Co-Cr alloy and 3Y-TZP substructure was not different (p > 0.05); however, the pressing technique showed a higher SBS than the layering technique (p < 0.05). The SBS did not differ depending on the veneering technique in the Co-Cr alloys (p > 0.05), whereas the SBS in the pressing technique was higher than that in the layering technique for 3Y-TZP (p < 0.05). In the layering technique, the Co-Cr alloy showed a higher SBS than 3Y-TZP (p < 0.05). In the failure mode, mixed failure occurred most frequently in all groups. Extensive elemental interdiffusion was observed through the opaque layer in the Co-Cr alloy, regardless of the veneering technique. In 3Y-TZP, a wider range of elemental interdiffusion was observed in the pressing technique than in the layering technique. CONCLUSIONS: In bilayered restorations with a 3Y-TZP substructure, the pressing technique yielded higher bonding strength than layering. Using the layering technique, 3Y-TZP showed a lower SBS than the Co-Cr alloy. In bilayered restorations using 3Y-TZP as a substructure, the veneering technique and thermal compatibility of the materials must be considered.

3.
J Arthroplasty ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754707

ABSTRACT

BACKGROUND: Failure due to trunnionosis with adverse local tissue reaction (ALTR) has been reported with cobalt-chrome (CoCr) heads in total hip arthroplasty (THA); however, there are limited data on the use of these heads in the revision setting. The purpose of this study was to analyze the outcomes of patients who underwent revision THA with a retained femoral component and received a CoCr femoral head on a used trunnion. METHODS: In this retrospective review, we identified all patients who underwent revision THA with a retained femoral component and received a CoCr femoral head between February 2006 and March 2014. Demographic factors, implant details, and postoperative complications, including the need for repeat revisions, were recorded. In total, 107 patients were included (mean age 67 years, 74.0% women). Of the 107 patients, 24 (22.4%) required repeat revisions. RESULTS: Patients who required repeat revision were younger than those who did not (mean age: 62.9 versus 69, P = .03). The most common indications for repeat revision were instability (8 of 24, 33.3%), ALTR (5 of 24, 20.8%), and infection (4 of 18, 16.7%). Evidence of ALTR or metallosis was identified at the time of reoperation in 10 of the 24 patients who underwent re-revision (41.7%). CONCLUSIONS: The placement of a new CoCr femoral head on a used trunnion during revision THA with a retained femoral component carries a significant risk of complication (22.4%) and should be avoided when possible.

4.
Environ Sci Pollut Res Int ; 31(18): 26567-26579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446300

ABSTRACT

Amid mounting pressure on the long-term recyclability of chromium in tanned leather and the associated environmental hazards, the quest for an alternative, cleaner tanning system has gained tremendous momentum. In this context, our study explores the remarkable potential of silicates as a versatile platform for skin/hide tanning, circumventing the inherent risks and ecological threats posed by chromium exposure and leaching. We present an alternative approach of using a silica-based tanning system, employing a Taguchi model, to optimize a masked silica (MaSil) tanning product/process for achieving effective collagen stabilization. Our results demonstrate the significant advancements made in hydrothermal denaturation temperature, reaching an impressive 79 °C through precise Taguchi parameters-5% SiO2, masked with 0.3 mole of citrate salt, and a tanning process fixation pH of 4.5. Notably, the mechanical strength analysis reveals compliance with the stringent upper leather recommendation standards, validating the practicality and quality of MaSil crust leather. Moreover, our research highlights the unprecedented environmental benefits of the first reported application of Taguchi's approach to the MaSil tanning system. The developed tanning system remarkably reduces total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and overall water load by 68.4%, 25.4%, 59.5%, and 33.7%, respectively, heralding a promising era of water and environmental sustainability in the leather sector. This study holds the potential to transform leather production, wherein the envisioned future on the use of the Taguchi model and optimized MaSil tanning system could find a place in shaping a cleaner, greener, and more sustainable leather industry.


Subject(s)
Silicon Dioxide , Tanning , Silicon Dioxide/chemistry
5.
Int J Biol Macromol ; 265(Pt 2): 131133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537851

ABSTRACT

The low chrome uptake by collagen in the conventional tanning process leads to the pollution of the wastewater. Due to environmental concerns, leather scientists are already searching for innovative ways to produce pre-tanning agents as a high exhaustion chrome tanning auxiliary. Herein, a novel kind of pre-tanning agent is engineered by converting carboxymethyl cellulose (CMC) to oxidized carboxymethyl cellulose (OCMC) via the hydrogen peroxide process. FT-IR and carboxyl content analysis demonstrated the increase in carboxyl content after oxidation. After that, the obtained OCMC was utilized as a pre-tanning agent, resulting in a high exhaustion of chrome (92.76 %) which is 27.76 % more than conventional chrome tanning (65 %), and the amount of chrome in wastewater reduced to 7.24 %. The hydrothermal stability of wet-blue increased by increasing the uptake of chrome (Ts = 118 °C). The obtained crust leather represented excellent mechanical properties (Tensile strength: 305.68 kg/cm2; tear strength: 50 kg/cm) and desirable organoleptic properties. The environmental analysis signifies a significant step towards a cleaner and sustainable tanning process (COD = 1600, BOD5 = 560 mg/L) compared to the conventional chrome tanning process. Consequently, the obtained results offer a green pre-tanning agent to meet the requirements of the sustainable development of the leather industry.


Subject(s)
Carboxymethylcellulose Sodium , Tanning , Peroxides , Spectroscopy, Fourier Transform Infrared , Wastewater , Industrial Waste/analysis , Chromium
6.
Environ Pollut ; 345: 123472, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38320686

ABSTRACT

Leather is produced by a multi-step process among which the tanning phase is the most relevant, transforming animal skin collagen into a stable, non-putrescible material used to produce a variety of different goods, for the footwear, automotive, garments, and sports industry. Most of the leather produced today is tanned with chromium (III) salts or alternatively with aldehydes or synthetic tannins, generating high environmental concern. Over the years, high exhaustion tanning systems have been developed to reduce the environmental impact of chromium salts, which nevertheless do not avoid the use of metals. Chrome-free alternatives such as aldehydes and phenol based synthetic tannins, are suffering from Reach restrictions due to their toxicity. Thus, the need for environmentally benign and economically sustainable tanning agents is increasingly urgent. In this review, the synthesis, use and tanning mechanism of a new class of tanning agents, 1,3,5-triazines derivatives, have been reported together with organoleptic, physical mechanical characteristics of tanned leather produced. Additionally environmental performance and economic data available for 1,3,5-triazines have been compared with those of a standard basic chromium sulphate tanning process, evidencing the high potentiality for sustainable, metal, aldehyde, and phenol free leather manufacturing.


Subject(s)
Tanning , Tannins , Animals , Aldehydes , Chromium/toxicity , Chromium/analysis , Industrial Waste/analysis , Industry , Phenol , Phenols , Salts , Triazines/analysis , Triazines/chemistry
7.
Molecules ; 29(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257214

ABSTRACT

The enhanced hydrothermal stability of leather, imparted by little Cr(III), has traditionally been ascribed to strong coordinate bonds. However, this explanation falls short when considering that the heat-induced shrinking of collagen fiber is predominantly driven by rupturing weak H-bonds. This study explored the stability source via adsorption thermodynamics using collagen fiber as an adsorbent. Eleven isotherm models were fitted with the equilibrium dataset. Nine of these models aptly described Cr(III) adsorption based on the physical interpretations of model parameters and error functions. The adsorption equilibrium constants from six models could be transformed into dimensionless thermodynamic equilibrium constants. Based on the higher R2 of the van't Hoff equation, thermodynamic parameters (∆G°, ∆H°, ∆S°) from the Fritz-Shluender isotherm model revealed that the adsorption process typifies endothermic and spontaneous chemisorption, emphasizing entropy increase as the primary driver of Cr(III) bonding with collagen. Thus, the release of bound H2O from collagen is identified as the stability source of collagen fiber modified by Cr(III). This research not only clarifies the selection and applicability of the isotherm model in a specific aqueous system but also identifies entropy, rather than enthalpy, as the principal stability source of Cr-leather. These insights facilitate the development of novel methods to obtain stable collagen-based material.

8.
J Arthroplasty ; 39(4): 896-903, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37852451

ABSTRACT

BACKGROUND: Polished baseplates were introduced into total knee arthroplasty (TKA) systems to reduce the incidence of backside wear. In 2004, a fixed-bearing knee arthroplasty system underwent a change in baseplate material from matt titanium to polished cobalt-chrome (CoCr) with the intention to reduce backside wear. Other design aspects were left unchanged. The aim of this study was to compare these implants with each baseplate using data from the Australian Orthopaedic Association National Joint Replacement Registry. METHODS: Primary TKA procedures performed between January 2010 and December 2021 for osteoarthritis, using a single design with cross-linked polyethylene inserts and matt titanium or polished CoCr baseplates, were analyzed. The primary outcome was all-cause revision, summarized using Kaplan-Meier estimates, with age- and sex-adjusted hazard ratios estimated from Cox proportional hazards models. In total, there were 2,091 procedures with matt titanium and 2,519 procedures with polished CoCr baseplates. RESULTS: The 9-year cumulative percent revision was 2.5% (95% confidence interval [CI] 1.8 to 3.5%) and 4.2% (95% CI 3.1 to 5.6%) for the matt titanium and CoCr groups, respectively. Compared to matt titanium, the revision rate of CoCr baseplates was not significantly higher (hazard ratio 1.44; 95% CI 0.96 to 2.15; P = .076). CONCLUSIONS: Polished CoCr baseplates in a single TKA system were not associated with reduced all-cause revision rates compared to matt titanium up to 11 years post-TKA. Our results suggest that the predicted reduction in wear particle debris production from polished CoCr baseplates may not correlate with reduced revision rates in vivo, but further evaluation is required.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Humans , Titanium , Reoperation , Prosthesis Design , Australia , Polyethylene , Registries , Cobalt , Prosthesis Failure
9.
São José dos Campos; s.n; 2024. 61 p. ilus, tab.
Thesis in Portuguese | BBO - Dentistry | ID: biblio-1552251

ABSTRACT

Este estudo investigou a eficácia biomecânica de infraestruturas de próteses feitas de cobalto-cromo (CoCr) e compósito de fibra de vidro (FVRC), implantadas em mandíbulas edêntulas. A distribuição de densidade foi investigada utilizando um modelo ósseo sintético, equipado com extensômetros, para simular condições anatômicas e biomecânicas humanas. Os implantes de conexão interna cone morse fabricados pela Conexão Sistemas de Próteses, Arujá, São Paulo, Brasil, têm diâmetro e comprimento de 4.0mm e 13mm, respectivamente, e os intermediários protéticos selecionados foram Micro Unit Sólidos da mesma marca para plataforma cone morse, com altura de transmucoso 2,5 mm, foram utilizados para suportar as infraestruturas de próteses híbridas. Por meio de extensometria, mediu-se a deformação óssea sob carga ao redor dos quatro implantes, comparando as performances das infraestruturas CoCr e FVRC. Os resultados revelaram informações importantes sobre a seleção de materiais para infraestruturas de próteses, com foco específico nas barras de FVRC e CoCr. Os testes "in vitro" e análises estatísticas destacaram que as barras de FVRC produziram menores microdeformações em comparação com as de CoCr sob carga. Essa diferença foi estatisticamente significativa, indicando que a FVRC possui uma capacidade superior de absorver e distribuir carga de maneira mais eficiente. No entanto, ressalta-se a necessidade de estudos futuros, incluindo pesquisas clínicas, para explorar totalmente as implicações desses achados e aprimorar ainda mais as práticas de reabilitação oral com implantes (AU)


This study investigated the biomechanical effectiveness of prosthetic infrastructures made of cobalt-chromium (CoCr) and fiberglass composite (FGC), implanted in edentulous jaws. The density distribution was investigated using a synthetic bone model, equipped with strain gauges, to simulate human anatomical and biomechanical conditions. The morse cone internal connection implants manufactured by Conexão Sistemas de Próteses, Arujá, São Paulo, Brazil, have a length of 4.0mm and 13mm, respectively, and the prosthetic intermediates selected were Micro Unit Solids of the same brand for a morse cone platform, with a transmucosal height of 2.5 mm, were used to support hybrid prosthetic infrastructures. Using extensometry, bone deformation under load around the four implants was measured, comparing with the performance of the CoCr and FGC infrastructures. The results revealed important information about the selection of materials for prosthetic infrastructures, with a specific focus on FGC and CoCr bars. "In vitro" tests and statistical analyzes highlighted that FGC bars produced smaller microdeformations compared to CoCr bars under load. This difference was statistically significant, demonstrating that FGC has a superior capacity to absorb and distribute load more efficiently. However, the need for future studies, including clinical research, is highlighted to fully explore the implications of these findings and further improve oral rehabilitation practices with implants. (AU)


Subject(s)
Casts, Surgical , Chromium Alloys
10.
Biol Trace Elem Res ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064039

ABSTRACT

This study investigated the toxic effects of low-dose hexavalent chromium (Cr(VI)) on rat liver. Male specific pathogen-free (SPF) Sprague-Dawley (SD) rats (4-5 weeks of age) were randomly divided into groups: saline, 0.05 mg/kg Cr(VI), and 0.25 mg/kg Cr(VI). The rats were subjected to intratracheal instillation of K2Cr2O7 suspensions or saline once weekly, for a total of five times. The results showed that the accumulation of Cr(VI) in the blood of the 0.25 mg/kg K2Cr2O7 group was significantly higher than that in the saline group. Transmission electron microscopy (TEM) showed that exposure to hexavalent chromium caused endoplasmic reticulum (ER) oedema and a disordered arrangement. The levels of endoplasmic reticulum stress (ERS)-related proteins (ATF6, P-PERK, P-IRE1, Grp78, and CHOP) in the 0.25 mg/kg K2Cr2O7 group were significantly higher than those in the saline group. The expression of apoptosis-inhibitory protein Bcl-2 was significantly lower in the 0.25 mg/kg K2Cr2O7 group than that in the saline group, and the expression of apoptosis protein Bax was significantly higher in the 0.25 mg/kg K2Cr2O7 group than that in the saline group, indicating that Cr(VI) increased apoptosis. These findings revealed that Cr(VI) may be involved in rat liver injury by initiating ERS-mediated apoptosis. The expression of ATF6, P-PERK, P-IRE1, and Bax in the 0.05 mg/kg K2Cr2O7 group was not significantly different from that in the saline group, and the different effects produced by the two different dose groups provide a possible experimental basis for further study of occupational exposure limits.

11.
J Clin Med ; 12(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959259

ABSTRACT

Several studies showed the role of trace elements in the increase in human susceptibility to cardiovascular diseases. Carotid artery stenosis is a leading cause of ischemic neurological events. We aimed to analyze the potential role of trace elements in hair as biomarkers of atherosclerotic carotid artery disease. Materials and Methods: Fifty-seven (n = 31 (54%) men and n = 26 (46%) women) individuals with a mean age of 67.7 ± 7.7 years who were white, European, non-Hispanic, and non-Latino were diagnosed and treated in hypertensiology/internal medicine and surgical departments over three consecutive months. Of these patients, forty were diagnosed with advanced carotid artery disease, and seventeen comprised a group of healthy controls. Inflammatory and oncological diseases were exclusion criteria. Hair samples were collected, and 14 trace elements were analyzed. Clinical and laboratory data were compared and revealed differences in the co-existence of diabetes (p = 0.036) and smoking history (p = 0.041). In the multivariable analysis, zinc, chrome, and copper revealed predictive value for the occurrence of carotid artery disease, and their combined receiver operating curve showed area under the curve of 0.935, with a sensitivity of 95% and a specificity of 82.4%. Conclusion: Our report shows the significance of trace elements analyses in patients with advanced carotid artery disease. We revealed that zinc, copper, and chrome concentrations are of particular importance in differentiating atherosclerotic disease and may serve as biomarkers of carotid atherosclerosis. Hair samples represent an easily obtained and beneficial biomatrix for the assessment of biomarkers.

12.
Materials (Basel) ; 16(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38005144

ABSTRACT

Tribological tests in real conditions enable obtaining full data on the life of interacting machine parts. This article presents the results of operational tests on the elements of the support ring guidance system in a vertical ball-race mill. The guide and active armour operate under abrasive wear conditions with moderate-impact loads. The wear resistance of elements with overlay welding layers deposited with flux cored wire with a structure of high-alloy chrome cast iron and with a coating flame-sprayed with nickel-based powder was compared. The wear intensity of the overlay weld deposits was much lower than that of the sprayed coatings. The scope of this study also included the analysis of the chemical and phase composition, macro- and microscopic metallographic examinations, and the measurement of the hardness of the deposited layers and coatings.

13.
AAPS PharmSciTech ; 24(7): 209, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817056

ABSTRACT

Sticking to tablet punches is a major issue during drug product manufacturing. Research has shown that sticking involves the interrelationship of powder properties, compression force, length of manufacturing runs and punch quality. Here, we present a novel non-destructive methodology to study the surface metrology of punches to monitor them over their lifetime. This investigation used a non-contact laser interferometer to characterise roughness of commercial standard S7 steel punches coated with chrome that were originally used for commercial scale production that developed a sticking issue. During the development, this phenomenon had not been observed and was not considered a scale-up risk. The profilometer was used to examine the complete surface of these punches to investigate whether they met the acceptability criteria based on BS_ISO_18804 tooling standard. To improve data analysis during changeover, a 3D-printed holder was designed to enable analysis with minimal set-up requirements. Upon investigation, the punches were found to be of an unacceptable roughness and, particularly rough areas of the punch surface profiled, correlated well with areas of visually pronounced sticking. This non-destructive method can be used to produce a more detailed characterisation of punch roughness to ensure surfaces are of an acceptable quality after treatment with coatings.


Subject(s)
Mechanical Phenomena , Adhesiveness , Tablets , Pressure , Surface Properties , Drug Compounding/methods
14.
Microbiol Immunol ; 67(11): 480-489, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37740512

ABSTRACT

Two Gram-negative facultative anaerobes were isolated from a sepsis patient with pancreatic cancer (strain PAGU 2156T ) and soil at the bottom of a pond (strain PAGU 2198T ), respectively. These two strains formed haloes around the colonies on chrome azurol S agar plates, indicating the production of siderophores. Two isolates assigned to the genus Pantoea based on the 16S rRNA gene were differentiated from established species by using polymorphic taxonomies. Phylogenetic analysis using four housekeeping genes (gyrB, rpoB, atpD, and infB) showed that strain PAGU 2156T is closely related to Pantoea cypripedii LMG 2657T (89.9%) or Pantoea septica LMG 5345T (95.7%). Meanwhile, strain PAGU 2198T formed a single clade with Pantoea rodasii DSM 26611T (93.6%) and Pantoea rwandensis DSM 105076T (93.3%). The average nucleotide identity values obtained from the draft genome assembly showed ≤90.2% between strain PAGU 2156T and closely related species and ≤81.5% between strain PAGU 2198T and closely related species. Based on various phenotypes, biochemical properties, and whole-cell fatty acid composition compared with related species, it was concluded that each strain should be classified as a new species of the genus Pantoea. In this manuscript, Pantoea ferrattrahens sp. nov. and Pantoea ferramans sp. nov. with strain PAGU 2156T (=NBRC 115930T = CCUG 76757T ) and strain PAGU 2198T (=NBRC 114265T = CCUG 75151T ) are proposed as each type strain.


Subject(s)
Pantoea , Humans , Pantoea/genetics , Sequence Analysis, DNA , Siderophores , Phylogeny , RNA, Ribosomal, 16S/genetics , Ponds , Soil , Bacterial Typing Techniques , Fatty Acids/chemistry , DNA, Bacterial/genetics , Nucleic Acid Hybridization
15.
Rev. ADM ; 80(4): 190-196, jul.-ago. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1525858

ABSTRACT

Introducción: la adaptación marginal e interna de nuestras restauraciones fabricadas por fundición sistemas de fresado y sinterización láser es uno de los factores clínicos más importantes para el éxito de las prótesis fijas, previniendo el riesgo de microfiltración y enfermedad periodontal. Objetivo: evaluar la adaptación marginal e interna de cofias metálicas en aleación Cr-Co confeccionadas por técnicas convencionales, CAD/ CAM de fresado y sinterizado por láser. Material y métodos: estudio de tipo experimental, comparativo e in vitro. Se imprimió un modelo maestro en Cr-Co, proveniente del escaneo de un premolar preparado para corona completa, sobre el cual se diseñaron 30 cofias divididas en tres grupos: el primero que corresponde al grupo cofias fundidas fresadas en disco de cera A (A = 10), el segundo grupo cofias fresadas en disco de metal presinterizado B (B = 10) y el tercer grupo cofias impresas por sinterización láser C (C = 10). Se empleó la réplica de silicona, colocando silicona al interior de cada cofia, sobre el modelo maestro, simulando al cemento, mediante una máquina de ensayo universal se realizó una compresión de 50 N. Luego de retirar cada cofia se rellenaron con silicona pesada de adición, obteniendo una réplica de silicona. Se efectuaron dos cortes transversales en sentido vestíbulolingual y mesiodistal. Se observó el espesor de silicona VPS (vinil poliéter silicona) mediante un estereomicroscopio (Nikon SMZ745T), obteniendo valores en micrómetros. Para el análisis estadístico se utilizó el software SPSS 25 con el fin de realizar la prueba de normalidad y ANOVA de dos vías bajo un nivel de confianza del 95%. Resultados: el menor gap lo obtuvo el grupo de fresadas, seguido de las impresas y por último las fundidas por métodos convencionales. ANOVA de dos vías reveló diferencias estadísticamente significativas entre los tres grupos (p < 0.0001). Conclusiones: se encontró que el gap varía con cada método de fabricación, la técnica convencional de fundido mostró un mayor gap, ninguna excediendo el rango clínicamente aceptable (AU)


Introduction: the marginal and internal adaptation of our restorations manufactured by casting, milling systems and laser sintering is one of the most important clinical factors for the success of fixed prostheses, preventing the risk of microleakage and periodontal disease. Objective: evaluate the marginal and internal adaptation of metal copings in Cr-Co alloy made by conventional techniques, CAD/CAM milling and laser sintering. Material and methods: an experimental, comparative and in vitro study, a Cr-Co master model was printed from the scan of a premolar prepared for a full crown. An experimental, comparative and in vitro study, a Cr-Co master model was printed from the scan of a premolar prepared for a full crown, on which 30 caps divided into three groups were designed; the first group corresponds to the cast copings milled on a wax disc A (A = 10), the second group milled copings on a presintered metal disc B (B = 10) and the third group printed by laser sintering copings C (C = 10). The silicone replica was used, placing silicone inside each coping, on the master model, simulating cement, using a universal testing machine, a 50 N compression was performed. After removing each coping, they were filled with heavy addition silicone, obtaining a silicone replica. Two cross-sections were made in the buccolingual and mesiodistal direction., observing the thickness of the VPS (vinyl polyeter silicone) silicone using a stereomicroscope (Nikon SMZ745T), obtaining values in micrometers. For the statistical analysis, the SPSS 25 software was used in order to perform the normality and two-way ANOVA tests under a 95% confidence level. Results: the smallest gap was obtained by the milled group, followed by the printed ones and finally those cast by conventional methods. Two-way ANOVA revealed statistically significant differences between the three groups (p < 0.0001). Conclusions: the gap was found to vary with each fabrication method, the conventional casting technique showed a larger gap, none exceeding the clinically acceptable range (AU)


Subject(s)
Chromium Alloys , Computer-Aided Design , Dental Marginal Adaptation , Crowns , Lasers , In Vitro Techniques , Analysis of Variance
16.
Chemosphere ; 337: 139419, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37419156

ABSTRACT

Fluorinated chrome mist suppressants (CMSs) have been widely used in the electroplating industry globally, including China. In compliance with the Stockholm Convention on Persistent Organic Pollutants, China has phased out perfluorooctane sulfonate (PFOS) as CMS, except for closed-loop systems, before March 2019. Since then, several alternatives have been introduced to replace PFOS, but many of them still belong to the per- and polyfluoroalkyl substances (PFASs) family. In this study, for the first time, we collected and analyzed CMS samples from the Chinese market in 2013, 2015, and 2021 to determine their PFAS composition. For products with relatively few PFAS targets, we performed a total fluorine (TF) screening test and suspect and non-target analysis. Our findings suggest that 6:2 fluorotelomer sulfonate (6:2 FTS) has become the primary alternative on the Chinese market. Surprisingly, we identified 8:2 chlorinated polyfluorinated ether sulfonate (8:2 Cl-PFAES) as the primary ingredient in a CMS product (F-115B), which is the longer chain modification of the classical CMS product (F-53B). Furthermore, we identified three novel PFASs as PFOS alternatives, including hydrogen-substituted perfluoroalkyl sulfonates (H-PFSAs) and perfluorinated ether sulfonates (O-PFSAs). We also screened and identified six hydrocarbon surfactants in PFAS-free products as the primary ingredients. Despite this, some PFOS-based CMSs remain on the Chinese market. To prevent the opportunistic use of PFOS for illegal purposes, it is essential to enforce regulations strictly and ensure that such CMSs are used only in closed-loop chrome plating systems.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Alkanesulfonates/analysis , Ether , Ethers , China
17.
ACS Appl Mater Interfaces ; 15(23): 28772-28780, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37267454

ABSTRACT

Decorative chrome plating (DCP) continues to be ubiquitous in creating highly appealing metal finishings and coatings, beating out other organic dye-based finishes. However, the hazardous chrome plating process is fraught with adverse health effects for the workers involved and causes significant environmental damage. In this work, we present a multilayer thin film structure to mimic the chrome appearance. To find a design efficiently, we employ a reinforcement learning (RL) algorithm to perform an automatic inverse design. This results in structures composed of environmentally friendly materials that not only have the chrome color but can also achieve additional functions beyond decoration. As an example, one structure is designed to have high transmission in the radio frequency regime, a property that general metals cannot have, which can broaden the decorative chrome applications to include microwave operating devices. The experimental structures are fabricated by physical vapor deposition to demonstrate the indistinguishable chrome color and validate the effectiveness of the RL inverse design approach.

18.
J Funct Biomater ; 14(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37233372

ABSTRACT

Cemented polished tapered femoral stems (PTS) made of cobalt-chrome alloy (CoCr) are a known risk factor for periprosthetic fracture (PPF). The mechanical differences between CoCr-PTS and stainless-steel (SUS) PTS were investigated. CoCr stems having the same shape and surface roughness as the SUS Exeter® stem were manufactured and dynamic loading tests were performed on three each. Stem subsidence and the compressive force at the bone-cement interface were recorded. Tantalum balls were injected into the cement, and their movement was tracked to indicate cement movement. Stem motions in the cement were greater for the CoCr stems than for the SUS stems. In addition, although we found a significant positive correlation between stem subsidence and compressive force in all stems, CoCr stems generated a compressive force over three times higher than SUS stems at the bone-cement interface with the same stem subsidence (p < 0.01). The final stem subsidence amount and final force were greater in the CoCr group (p < 0.01), and the ratio of tantalum ball vertical distance to stem subsidence was significantly smaller for CoCr than for SUS (p < 0.01). CoCr stems appear to move more easily in cement than SUS stems, which might contribute to the increased occurrence of PPF with the use of CoCr-PTS.

19.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176174

ABSTRACT

High chromium cast iron (HCCI) has been widely used as wear-resistant material in the industry. Alloying is an effective way to improve the microstructure and mechanical properties of HCCI. This paper added multi-component V-Fe-Ti-Nb-C-Zr-B alloy (VFC) to HCCI, showing a significant synergistic solution-strengthening effect. The results show that the added V-Ti-Nb-B are dissolved in M7C3 carbide to form the (Cr, Fe, V, Ti, Nb)7(C, B)3 alloy carbide, and a small amount of V and all Zr are dissolved in austenite and martensite. Adding VFC into HCCI improved the hardenability of HCCI, decreased the residual austenite content from 6.0 wt% to 0.9 wt%, increased the martensite content from 70.7 wt% to 82.5 wt%, and changed the structure and content of M7C3 carbide. These changes increased the hardness of as-cast and heat-tread HCCI by 1.4% and 4.1%, increased the hardness of austenite and martensite by 7.9% and 7.0%, increased the impact toughness by 16.9%, and decreased the friction coefficient and wear loss by 2.3 % and 7.0 %, respectively. Thus, the hardness, toughness, wear resistance, and friction resistance of HCCI alloy are improved simultaneously.

20.
Curr Med Chem ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37132140

ABSTRACT

BACKGROUND: Lipid metabolism is a complex process that includes lipid uptake, transport, synthesis, and degradation. Trace elements are vital in maintaining normal lipid metabolism in the human body. This study explores the relationship between serum trace elements and lipid metabolism Methods: In this study, we reviewed articles on the relationship between alterations in somatic levels of zinc, iron, calcium, copper, chrome, manganese, selenium, and lipid metabolism. In this systematic review and mate-analysis, databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), Wanfang was searched for articles on the relationship published between January 1, 1900, and July 12, 2022. The meta-analysis was performed using Review Manager5.3 (Cochrane Collaboration). RESULTS: No significant association was found between serum zinc and dyslipidemia, while other serum trace elements (Iron, selenium, copper, chromium, and manganese) were associated with hyperlipidemia. CONCLUSION: The present study suggested that the human body's zinc, copper, and calcium content may be related to lipid metabolism. However, findings on lipid metabolism and Iron, Manganese have not been conclusive. In addition, the relationship between lipid metabolism disorders and selenium levels still needs to be further studied. Further research is needed on treating lipid metabolism diseases by changing trace elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...