Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Sci Rep ; 14(1): 15666, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977845

ABSTRACT

Inter-cellular signaling, referred to as quorum sensing (QS), regulates the production of virulence factors in numerous gram-negative bacteria, such as the human pathogens Pseudomonas aeruginosa and Chromobacterium violaceum. QS inhibition may provide an opportunity for the treatment of bacterial infections. This represents the initial study to examine the antibiofilm and antivirulence capabilities of rose absolute and its primary component, phenylethyl alcohol. QS inhibition was assessed by examining extracellular exopolysaccharide synthesis, biofilm development, and swarming motility in P. aeruginosa PAO1, along with violacein production in C. violaceum ATCC 12472. Molecular docking analysis was conducted to explore the mechanism by which PEA inhibits QS. Our results indicate that rose absolute and PEA caused decrease in EPS production (60.5-33.5%), swarming motility (94.7-64.5%), and biofilm formation (98.53-55.5%) in the human pathogen P. aeruginosa PAO1. Violacein production decreased by 98.1% and 62.5% with an absolute (0.5 v/v %) and PEA (2 mM). Moreover, the molecular docking analysis revealed a promising competitive interaction between PEA and AHLs. Consequently, this study offers valuable insights into the potential of rose absolute and PEA as inhibitors of QS in P. aeruginosa and C. violaceum.


Subject(s)
Biofilms , Chromobacterium , Molecular Docking Simulation , Phenylethyl Alcohol , Pseudomonas aeruginosa , Quorum Sensing , Quorum Sensing/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Chromobacterium/drug effects , Chromobacterium/physiology , Biofilms/drug effects , Biofilms/growth & development , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Indoles/pharmacology , Indoles/metabolism
2.
Front Chem ; 12: 1286675, 2024.
Article in English | MEDLINE | ID: mdl-38867763

ABSTRACT

Chromobacterium violaceum an opportunistic human pathogenic bacterium, exhibits resistance to conventional antibiotics by exploiting its quorum sensing mechanism to regulate virulence factor expression. In light of this, disrupting the quorum sensing mechanism presents a promising avenue for treating infections caused by this pathogen. The study focused on using the cytoplasmic quorum sensing receptor CviR from C. violaceum as a model target to identify novel quorum sensing inhibitors from P. quassioides through in silico computational approaches. Molecular docking analyses unveiled that several phytochemicals derived from Picrasma quassioides exhibit the potential to inhibit quorum sensing by binding to CviR protein. Notably, the compounds such as Quassidine I (- 8.8 kcal/mol), Quassidine J (- 8.8 kcal/mol), Kumudine B (- 9.1 kcal/mol) and Picrasamide A (- 8.9 kcal/mol) exhibited high docking scores, indicating strong binding affinity to the CviR protein. The native ligand C6-HSL (N-hexanoyl-L-homoserine lactone) as a positive control/co-crystal inhibitor also demonstrated a significant binding energy of-7.7 kcal/mol. The molecular dynamics simulation for 200 ns showed the thermodynamic stability and binding affinity refinement of the top-ranked CviR inhibitor (Kumudine B) with its stable binding and minor fluctuations compared to positive control (C6-HSL). Pharmacokinetic predictions indicated that Kumudine B possesses favourable drug-like properties, which suggest its potential as a drug candidate. The study highlight Kumudine B as a potential agent for inhibiting the CviR protein in C. violaceum. The comprehensive evaluation of Kumudine B provides valuable insights into its pharmacological profiles, facilitating its assessment for diverse therapeutic applications and guiding future research activities, particularly as antibacterial agents for clinical drug development.

3.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38794143

ABSTRACT

The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing the challenge of treating infections due to antibacterial resistance involves the use of plant metabolites. In recent years, there has been increasing recognition of different phytochemicals as potential modulators. In our study, we evaluated the synergistic effect of chloroform and methanol extracts from Inula species against key virulence factors, including biofilm formation, violacein production, and swarming motility. Each of the 11 examined plant extracts demonstrated the ability to reduce biofilms and pigment synthesis in C. violaceum. Two of the extracts from I. britannica exhibited significant anti-biofilm and anti-quorum-sensing effects with over 80% inhibition. Their inhibitory effect on violacein synthesis indicates their potential as anti-QS agents, likely attributed to their high concentration of terpenoids (triterpenoids, sesquiterpene lactones, and diterpenoids). Scanning electron microscopy revealed a notable reduction in biofilm biomass, along with changes in biofilm architecture and cell morphology. Additionally, fluorescence microscopy revealed the presence of metabolically inactive cells, indicating the potent activity of the extracts during treatment. These new findings underscore the effectiveness of the plant extracts from the genus Inula as potential anti-virulent agents against C. violaceum. They also propose a promising strategy for preventing or treating its biofilm formation.

4.
Ann Clin Microbiol Antimicrob ; 23(1): 34, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637789

ABSTRACT

BACKGROUND: Chromobacterium is a genus of fourteen species with validly published names, most often found in soil and waters in tropical and subtropical regions around the world. The most well-known species of the genus, C. violaceum, occasionally causes clinically relevant infections; cases of soft tissue infections with septicemia and fatal outcomes have been described. CASE PRESENTATION: Here, we present a clinical case report of a 79-year-old man from Sweden with a soft-tissue infection and septicemia. The pathogen was identified as a strain of Chromobacterium species, but not C. violaceum. The patient was treated with clindamycin and ciprofloxacin and recovered well. CONCLUSIONS: This case report demonstrates the potential of Chromobacterium species as infectious agents in immunocompetent patients. It also indicates the existence of a novel species.


Subject(s)
Gram-Negative Bacterial Infections , Sepsis , Male , Humans , Aged , Chromobacterium , Sweden , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/microbiology , Ciprofloxacin/therapeutic use , Clindamycin/therapeutic use , Gram-Negative Bacterial Infections/microbiology
5.
Front Med (Lausanne) ; 11: 1342706, 2024.
Article in English | MEDLINE | ID: mdl-38596787

ABSTRACT

Chromobacterium violaceum (C. violaceum) is a gram-negative bacillus that is widespread in tropical and subtropical areas. Although C. violaceum rarely infects humans, it can cause critical illness with a mortality rate above 50%. Here, we report the successful treatment of a 15-year-old male who presented with bloodstream infection of C. violaceum along with sepsis, specific skin lesions, and liver abscesses. Cardiogenic shock induced by sepsis was reversed by venoarterial extracorporeal membrane oxygenation (VA ECMO). Moreover, C. violaceum-related purpura fulminans, which is reported herein for the first time, was ameliorated after treatment. This case report demonstrates the virulence of C. violaceum with the aim of raising clinical awareness of this disease.

6.
Avicenna J Med Biotechnol ; 16(1): 49-56, 2024.
Article in English | MEDLINE | ID: mdl-38605736

ABSTRACT

Background: The aim of this study was to determination of Anti-Quorum Sensing (AQS) and anti-biofilm potential of the methanol extract of ginger (Zingiber officinale) rhizomes against multidrug-resistant clinical isolates of Pseudomonas aeruginosa (P. aeruginosa). Methods: The AQS activity of ginger was determined against Chromobacterium violaceum (C. violaceum) ATCC 12472 (CV12472), a biosensor strain, in qualitative manner using the agar well diffusion method. The violacein pigment inhibition was assessed to confirm AQS activity of ginger. The AQS potential of sub-minimum Inhibitory Concentrations (sub-MICs) of the ginger extract was determined by targeting different QS regulated virulence factors, including swarming motility (using swarm diameter measurement method), pyocyanin pigment (using chloroform extraction method), Exopolysaccharide (EPS) (using phenol-sulphuric acid method), and biofilm formation (using microtiter plate assay), against clinical isolates (CIs 2, 3, and 4) and standard reference strain of P. aeruginosa (PA01). Results: The AQS activity of methanol extract of ginger was confirmed against C. violaceum (CV12472) as inhibition of violacein pigment formation without effecting the growth of CIs and PA01 of P. aeruginosa. The ginger extract exhibited concentration-dependent inhibition of virulence factors and biofilm formation. The maximum reduction was found in swarming motility, pyocyanin, EPS and biofilm formation against PA01 (51.38%), CI3 (57.91%), PA01 (63.29%) and CI2 (64.37%), respectively at 1/2 MIC of ginger extract. Conclusion: The results of present study revealed the effective AQS and anti-biofilm potential of Zingiber officinale rhizome methanol extract at a reduced dose (sub-MICs). The extract may be explored as an agent of antimicrobial compounds having AQS and anti-biofilm activity for controlling microbial infection and also for reducing the chances of emergence of resistance in P. aeruginosa.

7.
Mar Drugs ; 22(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667794

ABSTRACT

An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 µg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.


Subject(s)
Anti-Bacterial Agents , Chromobacterium , Indoles , Molecular Docking Simulation , Quorum Sensing , Quorum Sensing/drug effects , Chromobacterium/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Actinobacteria/chemistry , Cinnamates/pharmacology , Cinnamates/isolation & purification , Cinnamates/chemistry , Biofilms/drug effects , Geologic Sediments/microbiology , Aquatic Organisms , China
8.
Infect Drug Resist ; 17: 1003-1010, 2024.
Article in English | MEDLINE | ID: mdl-38500637

ABSTRACT

Background: Chromobacterium violaceum (C. violaceum) is a Gram-negative bacterium capable of causing severe infections in both humans and specific animals. Despite its infrequency, C. violaceum infections exhibit a notably high mortality rate. The timely and precise detection of this pathogen stands as a critical factor in achieving effective diagnosis and treatment. Traditional diagnostic approaches possess limitations, particularly in terms of their time-consuming nature and the range of pathogens they can identify. Metagenomic next-generation sequencing (mNGS) testing has emerged as a highly promising diagnostic tool for infectious diseases. Methods: Within this case report, we present a patient who developed a C. violaceum infection subsequent to a lower limb infection, leading to the progression of sepsis, a liver abscess, septic shock, multi-organ dysfunction, and altered mental status. Samples of the patient's blood and tissue from the lower limb skin are collected, and the infection is swiftly diagnosed through mNGS, allowing for the immediate initiation of suitable treatment. Results: The mNGS results revealed the patient's infection with C. violaceum. Subsequent conventional bacterial culture results were concordant with the mNGS findings. Following comprehensive management measures, including prompt and effective anti-infective treatment, the patient achieved cure and was successfully discharged. Conclusion: This case underscores the significance of employing advanced diagnostic methodologies like mNGS for the early detection of uncommon pathogens such as C. violaceum. The expedited diagnosis and timely intervention hold the potential to substantially enhance patient outcomes in cases of severe infections instigated by this bacterium.

9.
mSystems ; 9(4): e0139723, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501880

ABSTRACT

Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.


Subject(s)
Chromobacterium , Iron , Siderophores , Humans , Siderophores/genetics , Bacteria/metabolism , Homeostasis/genetics , Anti-Bacterial Agents/chemistry , Peptide Hydrolases
10.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38352492

ABSTRACT

Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2 -/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.

11.
Front Microbiol ; 15: 1303595, 2024.
Article in English | MEDLINE | ID: mdl-38328423

ABSTRACT

Chromobacterium is a rod-shaped, Gram-negative, facultatively anaerobic bacteria with a cosmopolitan distribution. Just about 160 Chromobacterium violaceum incidents have been reported globally, but then once infected, it has the ability to cause deadly septicemia, and infections in the lungs, liver, brain, spleen, and lymphatic systems that might lead to death. C. violaceum produces and utilizes violacein to kill bacteria that compete with it in an ecological niche. Violacein is a hydrophobic bisindole that is delivered through an efficient transport route termed outer membrane vesicles (OMVs) through the aqueous environment. OMVs are small, spherical segments detached from the outer membrane of Gram-negative bacteria. C. violaceum OMV secretions are controlled by a mechanism called the quorum sensing system CviI/CviR, which enables cell-to-cell communication between them and regulation of various virulence factors such as biofilm formation, and violacein biosynthesis. Another virulence factor bacterial type 3 secretion system (T3SS) is divided into two types: Cpi-1 and Cpi-2. Cpi-1's needle and rod effector proteins are perhaps recognized by NAIP receptors in humans and mice, activating the NLRC4 inflammasome cascade, effectively clearing spleen infections via pyroptosis, and cytotoxicity mediated by IL-18-driven Natural killer (NK) cells in the liver. In this paper, we attempt to interrelate quorum-controlled biofilm formation, violacein production, violacein delivery by OMVs and T3SS effector protein production and host mediated immunological effects against the Cpi1 of T3SS. We suggest a research path with natural bioactive molecule like palmitic acid that can act as an anti-quorum agent by reducing the expression of virulence factors as well as an immunomodulatory agent that can augment innate immune defense by hyperactivation of NLRC4 inflammasome hence dramatically purge C. violaceum infections.

12.
Int Microbiol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342794

ABSTRACT

Quorum sensing (QS) is pivotal in coordinating virulence factors and biofilm formation in various pathogenic bacteria, making it a prime target for disrupting bacterial communication. Pseudomonas aeruginosa is a member of the "ESKAPE" group of bacterial pathogens known for their association with antimicrobial resistance and biofilm formation. The current antibiotic arsenal falls short of addressing biofilm-related infections effectively, highlighting the urgent need for novel therapeutic agents. In this study, we explored the anti-QS and anti-biofilm properties of theophylline against two significant pathogens, Chromobacterium violaceum and P. aeruginosa. The production of violacein, pyocyanin, rhamnolipid, and protease was carried out, along with the evaluation of biofilm formation through methods including crystal violet staining, triphenyl tetrazolium chloride assay, and fluorescence microscopy. Furthermore, computational analyses were conducted to predict the targets of theophylline in the QS pathways of P. aeruginosa and C. violaceum. Our study demonstrated that theophylline effectively inhibits QS activity and biofilm formation in C. violaceum and P. aeruginosa. In P. aeruginosa, theophylline inhibited the production of key virulence factors, including pyocyanin, rhamnolipid, protease, and biofilm formation. The computational analyses suggest that theophylline exhibits robust binding affinity to CviR in C. violaceum and RhlR in P. aeruginosa, key participants in the QS-mediated biofilm pathways. Furthermore, theophylline also displays promising interactions with LasR and QscR in P. aeruginosa. Our study highlights theophylline as a versatile anti-QS agent and offers a promising avenue for future research to develop novel therapeutic strategies against biofilm-associated infections.

13.
BMC Res Notes ; 16(1): 305, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919800

ABSTRACT

OBJECTIVE: The objectives of this research were to screen the anti-quorum sensing and antibiofilm activity of marine actinobacteria, isolated from several aquatic environments in Indonesia against several pathogenic bacteria, such as Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa. RESULTS: Ten out of 40 actinobacteria were found to have anti-quorum sensing activity against wild-type Chromobacterium violaceum (ATCC 12472); however, the validation assay showed that only eight of 10 significantly inhibited the quorum sensing system of Chromobacterium violaceum CV026. The crude actinobacteria extracts inhibited and disrupted biofilm formation produced by pathogens. The highest antibiofilm inhibition was discovered in isolates 11AC (90%), 1AC (90%), CW17 (84%), TB12 (94%), 20PM (85%), CW01 (93%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. The highest biofilm destruction activity was observed for isolate 1AC (77%), 20PM (85%), 16PM (72%), CW01 (73%), 18PM (82%), 16PM (63%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. Actinobacteria isolates demonstrated promising anti-quorum and/or antibiofilm activity, interfering with the biofilm formation of tested pathogens. Appropriate formulations of these extracts could be developed as effective disinfectants, eradicating biofilms in many industries.


Subject(s)
Biofilms , Quorum Sensing , Bacteria , Plant Extracts/pharmacology , Staphylococcus aureus , Complex Mixtures/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa
14.
Molecules ; 28(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570836

ABSTRACT

Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS (Pseudomonas quinolone signal)-dependent quorum sensing (QS) of Pseudomonas aeruginosa that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole. Their antibiofilm activities were first pre-screened using Gram-negative Chromobacterium violaceum-based reporter, which identified compounds 15-19 and 23 with the highest anti-QS and minimal bactericidal effects in a single experiment. These five compounds were then evaluated against P. aeruginosa PAO1 to assess their ability to prevent biofilm formation, eradicate pre-formed biofilms, and inhibit virulence using pyocyanin as a representative marker. Compound 15 displayed the most potent antibiofilm effect, reducing biofilm formation by nearly 50% and pre-formed biofilm masses by 25%. On the other hand, compound 23 exhibited the most significant antivirulence effect, reducing pyocyanin synthesis by over 70%. Thus, our study highlights the potential of 1,3,4-oxadiazoles 15 and 23 as promising scaffolds to combat P. aeruginosa. Additionally, interactive QS systems should be considered to achieve maximal anti-QS activity against this clinically relevant species.


Subject(s)
Quinolines , Quorum Sensing , Pyocyanine/pharmacology , Biofilms , Virulence , Anti-Bacterial Agents/pharmacology , Virulence Factors , Quinolines/pharmacology , Pseudomonas aeruginosa , Chromobacterium
15.
Antibiotics (Basel) ; 12(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37370305

ABSTRACT

In recent years, bacterial pathogens have developed resistance to antimicrobial agents that have created a global threat to human health and environment. As a novel approach to combating antimicrobial resistance (AMR), targeting bacteria's virulent traits that can be explained by quorum sensing (QS) is considered to be one of the most promising approaches. In the present study, biologically synthesized silver nanoparticles derived from Lactobacillus rhamnosus (AgNPs-LR) were tested against three Gram-negative bacteria to determine whether they inhibited the formation of biofilms and triggered the virulence factors controlled by QS. In C. violaceum and S. marcescens, a remarkable inhibition (>70%) of QS-mediated violacein and prodigiosin production was recorded, respectively. A dose-dependent decrease in virulence factors of P. aeruginosa (pyocyanin, pyoverdine, LasA protease, LasB elastase and rhamnolipid production) was also observed with AgNPs-LR. The biofilm development was reduced by 72.56%, 61.70%, and 64.66% at highest sub-MIC for C. violaceum, S. marcescens and P. aeruginosa, respectively. Observations on glass surfaces have shown remarkable reductions in biofilm formation, with less aggregation of bacteria and a reduced amount of extra polymeric materials being formed from the bacteria. Moreover, swimming motility and exopolysaccharides (EPS) was also found to reduce in the presence of AgNPs-LR. Therefore, these results clearly demonstrate that AgNPs-LR is highly effective in inhibiting the development of biofilms and the QS-mediated virulent traits of Gram-negative bacteria. In the future, AgNPs-LR may be used as an alternative to conventional antibiotics for the treatment of bacterial infections after careful evaluation in animal models, especially for the development of topical antimicrobial agents.

16.
Microorganisms ; 11(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375095

ABSTRACT

The aim of this study is to compare the efficacy of selected food disinfectants on planktonic populations of Staphylococcus aureus and Escherichia coli and on the same microorganisms (MOs) incorporated in a biofilm. Two disinfectants were used for treatment: peracetic acid-based disinfectant (P) and benzalkonium chloride-based disinfectant (D). Testing of their efficacy on the selected MO populations was performed using a quantitative suspension test. The standard colony counting procedure was used to determine their efficacy on bacterial suspensions in tryptone soy agar (TSA). The germicidal effect (GE) of the disinfectants was determined based on the decimal reduction ratio. For both MOs, 100% GE was achieved at the lowest concentration (0.1%) and after the shortest exposure time (5 min). Biofilm production was confirmed with a crystal violet test on microtitre plates. Both E. coli and S. aureus showed strong biofilm production at 25 °C with E. coli showing significantly higher adherence capacity. Both disinfectants show a significantly weaker GE on 48 h biofilms compared to the GE observed after application of the same concentrations on planktonic cells of the same MOs. Complete destruction of the viable cells of the biofilms was observed after 5 min of exposure to the highest concentration tested (2%) for both disinfectants and MOs tested. The anti-quorum sensing activity (anti-QS) of disinfectants P and D was determined via a qualitative disc diffusion method applied to the biosensor bacterial strain Chromobacterium violaceum CV026. The results obtained indicate that the disinfectants studied have no anti-QS effect. The inhibition zones around the disc therefore only represent their antimicrobial effect.

17.
J Med Case Rep ; 17(1): 171, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37120580

ABSTRACT

BACKGROUND: The genus Chromobacterium, of which 12 species have been recognized, comprises bacteria that reside in tropical and subtropical environments. Of these species, Chromobacterium violaceum and Chromobacterium haemolyticum are known to cause infections in humans. There have been few reports of infections caused by Chromobacterium haemolyticum. CASE PRESENTATION: Chromobacterium haemolyticum was detected in spinal fluid and blood samples isolated from a 73-year-old Japanese male patient who fell into a canal in Kyoto City, Japan and developed bacteremia and meningitis. Although meropenem and vancomycin were administered, this patient died 9 days after admission. Although the infection was misidentified as being caused by Chromobacterium violaceum by conventional identification methods, average nucleotide identity analysis revealed that the causative pathogen was Chromobacterium haemolyticum. The same bacteria were also detected in the canal in which the accident occurred. Phylogenetic analysis of the strain isolated from the patient and the strain isolated from the canal suggested that the two strains were very closely related. CONCLUSIONS: Chromobacterium haemolyticum can be misidentified as Chromobacterium violaceum by conventional identification methods and tends to be more resistant to ß-lactams than Chromobacterium violaceum. Pigment production and ß-hemolysis on blood sheep agar can provide clues for the early identification of Chromobacterium haemolyticum.


Subject(s)
Gram-Negative Bacterial Infections , Meningitis , Humans , Male , Animals , Sheep , Aged , Chromobacterium , Phylogeny , Japan , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology
18.
J Biosci Bioeng ; 135(5): 369-374, 2023 May.
Article in English | MEDLINE | ID: mdl-36934040

ABSTRACT

(S)-4-(Hydroxymethyl)cyclopent-2-enone is a key intermediate in the synthesis of chiral five-membered carbasugars, which can be used to synthesize a large number of pharmacologically relevant carbocyclic nucleosides. Herein, CV2025 ω-transaminase from Chromobacterium violaceum was selected based on substrate similarity to convert ((1S,4R)-4-aminocyclopent-2-enyl)methanol to (S)-4-(hydroxymethyl)cyclopent-2-enone. The enzyme was successfully cloned, expressed in Escherichia coli, purified and characterized. We show that it has R configuration preference in contrast with the conventional S preference. The highest activity was obtained below 60 °C and at pH 7.5. Cations Ca2+ and K+ enhanced activity by 21% and 13%, respectively. The conversion rate reached 72.4% within 60 min at 50 °C, pH 7.5, using 0.5 mM pyridoxal-5'-phosphate, 0.6 µM CV2025, and 10 mM substrate. The present study provides a promising strategy for preparing five-membered carbasugars economically and efficiently.


Subject(s)
Carbasugars , Transaminases , Transaminases/genetics , Phenylacetates , Chromobacterium/genetics
19.
Clin Oral Investig ; 27(5): 2175-2186, 2023 May.
Article in English | MEDLINE | ID: mdl-36809354

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the potential protective effect of Chromobacterium violaceum and violacein against periodontitis, in experimental models. MATERIALS AND METHODS: A double-blind experimental study on the exposure to C. violaceum or violacein in experimentally ligature-induced periodontitis, as preventive factors against alveolar bone loss by periodontitis. Bone resorption was assessed by morphometry. Antibacterial potential of violacein was assessed in an in vitro assay. Its cytotoxicity and genotoxicity were evaluated using the Ames test and SOS Chromotest assay, respectively. RESULTS: The potential of C. violaceum to prevent/limit bone resorption by periodontitis was confirmed. Daily exposure to 106 cells/ml in water intake since birth and only during the first 30 days of life significantly reduced bone loss from periodontitis in teeth with ligature. Violacein extracted from C. violaceum was efficient in inhibiting or limiting bone resorption and had a bactericidal effect against Porphyromonas gingivalis in the in vitro assay. CONCLUSIONS: We conclude that C. violaceum and violacein have the potential to prevent or limit the progression of periodontal diseases, in an experimental model. CLINICAL RELEVANCE: The effect of an environmental microorganism with potential action against bone loss in animal models with ligature-induced periodontitis represents the possibility of understanding the etiopathogenesis of periodontal diseases in populations exposed to C. violaceum and the possibility of new probiotics and antimicrobials. This would imply new preventive and therapeutic possibilities.


Subject(s)
Alveolar Bone Loss , Anti-Bacterial Agents , Periodontitis , Animals , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/etiology , Anti-Bacterial Agents/administration & dosage , Disease Models, Animal , Periodontitis/drug therapy , Periodontitis/prevention & control , Periodontitis/complications , Indoles/administration & dosage , Double-Blind Method , Porphyromonas gingivalis/drug effects
20.
J Trace Elem Med Biol ; 77: 127139, 2023 May.
Article in English | MEDLINE | ID: mdl-36791625

ABSTRACT

Boronic acid compounds and the natural flavonoid compound quercetin were handled to synthesize two novel ligands encoded as B1(2,2'-(1,4-phenylenebis (benzo [1,3,2] dioxaborole-2,5-diyl)) bis (3,5,7-trihydroxy-4H- chromen-4-one) and B2(3.3.6. 3,5,7-trihydroxy-2-(2-(6-methoxypyridin-3-yl)benzo[d][1,3,2]dioxaborol-5-yl)- 4 H-chromene-4). Antioxidant activities of ligands were investigated by DPPH, ABTS and CUPRAC methods. Cholinesterase inhibition effects of ligands were determined by acetylcholinesterase and butyrylcholinesterase enzyme inhibition methods, cytotoxic effects of ligands were applied to healthy breast and colon cancer cell lines by MTT method, and urease and tyrosinase enzyme activities were determined. Antimicrobial properties of the compounds were analyzed by detecting their anti-QS potentials on Chromobacterium violaceum biosensor strain. Both compounds were found to have significant antioxidant effects compared to controls. It was determined that the compound B1 at 1-10 µg/mL was more active than the reference compounds (α-TOC and BHT). Moreover, the enzyme activity studies on ligands demonstrated that acetylchoinesterase and butyrylcholinesterase enzyme inhibitions were higher than the reference compounds. As expected, boron derivatives exhibited respectable activity against the biofilms of Escherichia coli (E. coli) and P. aeruginosa (P. aeruginosa). These results demonstrate the potential applicability of boron derivatives in the treatment of biofilm-associated infections and provide a practical strategy for the design of new boron-based antimicrobial materials. In silico molecular docking studies were performed on ligands to identify newly synthesized compounds. The binding parameter values and binding sites of the compounds were also determined. In conclusion, our studies showed that newly synthesized hybrid compounds could be solutions for antimicrobial resistance and enzyme-related disorders.


Subject(s)
Butyrylcholinesterase , Quercetin , Quercetin/pharmacology , Boron/pharmacology , Acetylcholinesterase , Molecular Docking Simulation , Escherichia coli , Biofilms , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa
SELECTION OF CITATIONS
SEARCH DETAIL
...