Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Insects ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786868

ABSTRACT

The Maculipennis subgroup of malaria mosquitoes includes both dominant malaria vectors and non-vectors in Eurasia. Understanding the genetic factors, particularly chromosomal inversions, that differentiate Anopheles species can provide valuable insights for vector control strategies. Although autosomal inversions between the species in this subgroup have been characterized based on the chromosomal banding patterns, the number and positions of rearrangements in the X chromosome remain unclear due to the divergent banding patterns. Here, we identified two large X chromosomal inversions, approximately 13 Mb and 10 Mb in size, using fluorescence in situ hybridization. The inversion breakpoint regions were mapped by hybridizing 53 gene markers with polytene chromosomes of An. messeae. The DNA probes were designed based on gene sequences from the annotated An. atroparvus genome. The two nested inversions resulted in five syntenic blocks. Only two small syntenic blocks, which encompass 181 annotated genes in the An. atroparvus genome, changed their position and orientation in the X chromosome. The analysis of the An. atroparvus genome revealed an enrichment of gene ontology terms associated with immune system and mating behavior in the rearranged syntenic blocks. Additionally, the enrichment of DNA transposons was found in sequences homologous to three of the four breakpoint regions. This study demonstrates the successful application of the physical genome mapping approach to identify rearrangements that differentiate species in insects with polytene chromosomes.

2.
Cytogenet Genome Res ; 163(3-4): 154-162, 2023.
Article in English | MEDLINE | ID: mdl-37573786

ABSTRACT

Radioiodine (131I) is widely used in the treatment of hyperthyroidism and as an effective ablative therapy for differentiated thyroid cancer. Radioiodine (131I) constitutes 90% of the currently used therapies in the field of nuclear medicine. Here, we report the cytogenetic findings of a long-term follow-up study of 27 years on a male patient who received two rounds of radioiodine treatment within a span of 26 months between 1992 and 1994 for his papillary thyroid cancer. A comprehensive cytogenetic follow-up study utilizing cytokinesis blocked micronucleus assay, dicentric chromosome assay, genome wide translocations and inversions was initiated on this patient since the first administration of radioiodine in 1992. Frequencies of micronuclei (0.006/cell) and dicentric chromosomes (0.008/cell) detected in the current study were grossly similar to that reported earlier in 2019. The mFISH analysis detected chromosome aberrations in 8.6% of the cells in the form of both unbalanced and balanced translocations. Additionally, a clonal translocation involving chromosomes 14p; 15q was observed in 2 of the 500 cells analyzed. Out of the 500 cells examined, one cell showed a complex translocation (involving chromosomes 9, 10, and 16) besides 5 other chromosome rearrangements. Collectively, our study indicates that the past radioiodine exposure results in long-lasting chromosome damage and that the persistence of translocations can be useful for both retrospective biodosimetry and for monitoring chromosome instability in the lymphocytes of radioiodine exposed individuals.


Subject(s)
Iodine Radioisotopes , Translocation, Genetic , Humans , Male , Follow-Up Studies , Iodine Radioisotopes/adverse effects , Retrospective Studies , Cytogenetic Analysis/methods
3.
Cytogenet Genome Res ; 162(1-2): 64-75, 2022.
Article in English | MEDLINE | ID: mdl-35500552

ABSTRACT

Anadoras is a thorny catfish genus widespread through the Amazon and Paraguay river basins. It includes 2 nominal species, A. grypus and A. weddellii, plus Anadoras sp. "araguaia," an undescribed species only recognized morphologically. Since Anadoras occupies a basal position within the Astrodoradinae phylogeny, it is crucial to identify its cytogenetic features to comprehend the mechanisms involved in the chromosomal diversification of this subfamily. Therefore, we performed a comparative cytogenetic analysis including all species of Anadoras. Furthermore, we applied a species delimitation analysis based on 600 bp of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene to investigate the taxonomic status of the species. Cytogenetic markers revealed a high degree of similarity among Anadoras weddellii and Anadoras sp. "araguaia," both have 2n = 56 chromosomes (24m + 10sm + 22st/a), single NOR sites on acrocentric pair 28, and 5S rDNA sites on submetacentric pair 15. A. grypus has the most divergent chromosomal characteristics because, even though it also has 2n = 56 chromosomes, it exhibits several differences in the chromosome formula, heterochromatin distribution, and number/position of the rDNA sites. In sum, we believe that the chromosome diversification of Anadoras is due to 4 mechanisms: centric fusion, pericentric/paracentric inversions, nonreciprocal translocations, and activity of transposable elements. Additionally, our phylogenetic tree revealed well-supported clades and, by barcode species delimitation analysis, confirmed the existence of 3 molecular operational taxonomic units, including the putative new species Anadoras sp. "araguaia."


Subject(s)
Catfishes , Animals , Catfishes/genetics , Chromosome Inversion , DNA, Ribosomal/genetics , Evolution, Molecular , Heterochromatin/genetics , Karyotype , Phylogeny
4.
Mol Cell ; 81(19): 3965-3978.e5, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34352205

ABSTRACT

PIWI proteins and their guiding Piwi-interacting small RNAs (piRNAs) are crucial for fertility and transposon defense in the animal germline. In most species, the majority of piRNAs are produced from distinct large genomic loci, called piRNA clusters. It is assumed that germline-expressed piRNA clusters, particularly in Drosophila, act as principal regulators to control transposons dispersed across the genome. Here, using synteny analysis, we show that large clusters are evolutionarily labile, arise at loci characterized by recurrent chromosomal rearrangements, and are mostly species-specific across the Drosophila genus. By engineering chromosomal deletions in D. melanogaster, we demonstrate that the three largest germline clusters, which account for the accumulation of >40% of all transposon-targeting piRNAs in ovaries, are neither required for fertility nor for transposon regulation in trans. We provide further evidence that dispersed elements, rather than the regulatory action of large Drosophila germline clusters in trans, may be central for transposon defense.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Evolution, Molecular , Fertility/genetics , Multigene Family , Ovary/physiology , RNA Stability , RNA, Small Interfering/genetics , Animals , Animals, Genetically Modified , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Chromosome Deletion , Chromosomes, Insect , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation, Developmental , Ovary/metabolism , RNA, Small Interfering/metabolism
5.
Cytogenet Genome Res ; 159(4): 169-181, 2019.
Article in English | MEDLINE | ID: mdl-31846971

ABSTRACT

Here, we report the findings of a 25-year cytogenetic follow-up study on a male patient who received 2 rounds of radioiodine treatment within a span of 26 months (1.78 GBq in 1992 and 14.5 GBq in 1994). The patient was 34 years old with a body mass index of 25 at the time of the first radioiodine treatment. Multicolor FISH and multicolor banding (mBAND) techniques performed on the patient detected inter- and intrachromosomal exchanges. Although the frequency of chromosome translocations remained essentially the same as reported in our earlier study (0.09/cell), the percentage of reciprocal (balanced) translocations increased from 54.38 to 80.30% in the current study. In addition to simple chromosome translocations, complex exchanges (0.29%) involving more than 2 chromosomes were detected for the first time in this patient. Strikingly, a clonal translocation involving chromosomes 14 and 15, t(14p;15q), was found in 7 of the 677 cells examined (1.03%). The presence of complex and clonal translocations indicates the onset of chromosomal instability induced by internal radioiodine exposure. mBAND analysis using probes specific for chromosomes 1, 2, 4, 5, and 10 revealed 5 inversions in a total of 717 cells (0.69%), and this inversion frequency is several-fold higher than the baseline frequency reported in healthy individuals using the classical G-banding technique. Collectively, our study suggests that stable chromosome aberrations such as translocations and inversions can be useful not only for retrospective biodosimetry but also for long-term monitoring of chromosomal instability caused by past radioiodine exposure.


Subject(s)
Chromosomes/genetics , Chromosomes/radiation effects , Iodine Radioisotopes/adverse effects , Translocation, Genetic/genetics , Translocation, Genetic/radiation effects , Adult , Chromosome Aberrations/radiation effects , Chromosome Banding/methods , Chromosome Inversion/genetics , Chromosome Inversion/radiation effects , Cytogenetics/methods , Follow-Up Studies , Humans , Male
6.
Curr Biol ; 28(18): 2984-2990.e3, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30174188

ABSTRACT

Crossovers (COs) are formed during meiosis by the repair of programmed DNA double-strand breaks (DSBs) and are required for the proper segregation of chromosomes. More DSBs are made than COs, and the remaining DSBs are repaired as noncrossovers (NCOs). The distribution of recombination events along a chromosome occurs in a stereotyped pattern that is shaped by CO-promoting and CO-suppressing forces, collectively referred to as crossover patterning mechanisms. Chromosome inversions are structural aberrations that, when heterozygous, disrupt the recombination landscape by suppressing crossing over. In Drosophila species, the local suppression of COs by heterozygous inversions triggers an increase in crossing over on freely recombining chromosomes termed the interchromosomal (IC) effect [1, 2]. The molecular mechanism(s) by which heterozygous inversions suppress COs, whether noncrossover gene conversions (NCOGCs) are similarly affected, and what mediates the increase in COs in the rest of the genome remain open questions. By sequencing whole genomes of individual offspring from mothers containing heterozygous inversions, we show that, although COs are suppressed by inversions, NCOGCs occur throughout inversions at higher than wild-type frequencies. We confirm that CO frequency increases on the freely recombining chromosomes, yet CO interference remains intact. Intriguingly, NCOGCs do not increase in frequency on the freely recombining chromosomes and the total number of DSBs is approximately the same per genome. Together, our data show that heterozygous inversions change the recombination landscape by altering the relative proportions of COs and NCOGCs and suggest that DSB fate may be plastic until a CO assurance checkpoint has been satisfied.


Subject(s)
Chromosome Inversion , Drosophila melanogaster/genetics , Genome, Insect , Recombination, Genetic , Animals , Crossing Over, Genetic , DNA Breaks, Double-Stranded , Heterozygote , Meiosis/genetics
7.
Evolution ; 71(3): 686-701, 2017 03.
Article in English | MEDLINE | ID: mdl-28071788

ABSTRACT

Chromosome inversions have fascinated the scientific community, mainly because of their role in the rapid adaption of different taxa to changing environments. However, the ecological traits linked to chromosome inversions have been poorly studied. Here, we investigated the roles played by 23 chromosome inversions in the adaptation of the four major African malaria mosquitoes to local environments in Africa. We studied their distribution patterns by using spatially explicit modeling and characterized the ecogeographical determinants of each inversion range. We then performed hierarchical clustering and constrained ordination analyses to assess the spatial and ecological similarities among inversions. Our results show that most inversions are environmentally structured, suggesting that they are actively involved in processes of local adaptation. Some inversions exhibited similar geographical patterns and ecological requirements among the four mosquito species, providing evidence for parallel evolution. Conversely, common inversion polymorphisms between sibling species displayed divergent ecological patterns, suggesting that they might have a different adaptive role in each species. These results are in agreement with the finding that chromosomal inversions play a role in Anopheles ecotypic adaptation. This study establishes a strong ecological basis for future genome-based analyses to elucidate the genetic mechanisms of local adaptation in these four mosquitoes.


Subject(s)
Anopheles/genetics , Chromosome Inversion , Mosquito Vectors/genetics , Polymorphism, Genetic , Africa, Central , Africa, Western , Animals , Environment , Evolution, Molecular , Female , Karyotype , Malaria , Models, Genetic
8.
Mem. Inst. Oswaldo Cruz ; 111(5): 335-346, May 2016. tab, graf
Article in English | LILACS | ID: lil-782048

ABSTRACT

Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies.


Subject(s)
Animals , Anopheles/genetics , Chromosome Inversion/genetics , Insect Vectors/genetics , Polytene Chromosomes/genetics , Salivary Glands , Anopheles/classification , Brazil , Chromosome Mapping , Insect Vectors/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...