Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Expert Opin Drug Metab Toxicol ; 20(6): 503-517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753451

ABSTRACT

INTRODUCTION: The 24-hour variations in drug absorption, distribution, metabolism, and elimination, collectively known as pharmacokinetics, are fundamentally influenced by rhythmic physiological processes regulated by the molecular clock. Recent advances have elucidated the intricacies of the circadian timing system and the molecular interplay between biological clocks, enzymes and transporters in preclinical level. AREA COVERED: Circadian rhythm of the drug metabolizing enzymes and carrier efflux functions possess a major role for drug metabolism and detoxification. The efflux and metabolism function of intestines and liver seems important. The investigations revealed that the ABC and SLC transporter families, along with cytochrome p-450 systems in the intestine, liver, and kidney, play a dominant role in the circadian detoxification of drugs. Additionally, the circadian control of efflux by the blood-brain barrier is also discussed. EXPERT OPINION: The influence of the circadian timing system on drug pharmacokinetics significantly impacts the efficacy, adverse effects, and toxicity profiles of various drugs. Moreover, the emergence of sex-related circadian changes in the metabolism and detoxification processes has underscored the importance of considering gender-specific differences in drug tolerability and pharmacology. A better understanding of coupling between central clock and circadian metabolism/transport contributes to the development of more rational drug utilization and the implementation of chronotherapy applications.


Subject(s)
Circadian Rhythm , Inactivation, Metabolic , Humans , Circadian Rhythm/physiology , Animals , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Circadian Clocks/physiology , Blood-Brain Barrier/metabolism , Female , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Drug Chronotherapy , Male , Sex Factors
2.
Biochem Biophys Res Commun ; 708: 149813, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38522403

ABSTRACT

The chemotherapeutic agent tegafur, a prodrug that prolongs the half-life of fluorouracil (5-FU), exerts antitumor effects against various cancers. Since tegafur is metabolized to 5-FU by CYP2A6 in the liver, the expression of CYP2A6 determines the effect of tegafur. Here, we report that the expression rhythm of Cyp2a5, a homolog of human CYP2A6, in female mice causes dosing time-dependent differences in tegafur metabolism. In the livers of female mice, CYP2A5 expression showed a circadian rhythm, peaking during the dark period. This rhythm is regulated by RORA, a core clock component, and abrogation of the CYP2A5 activity abolished the time-dependent difference in the rate of tegafur metabolism in female mice. Furthermore, administration of tegafur to mice transplanted with 4T1 breast cancer cells during the dark period suppressed increases in tumor size compared to female mice treated during the light period. Our findings reveal a novel relationship between 5-FU prodrugs and circadian clock machinery, potentially influencing antitumor effects, and contributing to the development of time-aware chemotherapy regimens for breast cancer.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Breast Neoplasms , Female , Humans , Animals , Mice , Tegafur/metabolism , Breast Neoplasms/drug therapy , Fluorouracil/pharmacology , Fluorouracil/metabolism , Circadian Rhythm
3.
Expert Rev Clin Pharmacol ; 17(2): 119-130, 2024.
Article in English | MEDLINE | ID: mdl-38197151

ABSTRACT

INTRODUCTION: Clinical hypertension trials typically rely on homeostatic principles, including single time-of-day office blood pressure (BP) measurements (OBPM), rather than circadian chronopharmacological principles, including ambulatory monitoring (ABPM) done around-the-clock to derive the asleep systolic BP (SBP) mean and sleep-time relative SBP decline - jointly the strongest prognosticators of cardiovascular disease (CVD) risk and true definition of hypertension - to qualify participants and assess outcomes. AREAS COVERED: Eight chronopharmacological elements are indispensable for design and conduct of hypertension medication trials, mainly those on ingestion-time differences in effects, and also a means of rating quality of investigations. Accordingly, we highlight the findings and shortcomings of: (i) 155 such ingestion-time trials, 83.9% finding at-bedtime/evening treatment more beneficial than conventional upon-awakening/morning treatment; (ii) HOPE and ONTARGET CVD outcomes investigations assessing in the former add-on ramipril at-bedtime and in the latter telmisartan, ramipril, or both in combination in the morning; and (iii) pragmatic TIME CVD outcomes trial. EXPERT OPINION: Failure to incorporate chronopharmacological principals - including ABPM to derive asleep SBP and SBP dipping to qualify subjects as hypertensive and assess CVD risk - results in deficient study design, dubious findings, and unnecessary medical controversy at the expense of advances in patient care.


Subject(s)
Cardiovascular Agents , Hypertension , Humans , Antihypertensive Agents/adverse effects , Circadian Rhythm , Ramipril/pharmacology , Ramipril/therapeutic use , Risk Factors , Blood Pressure Monitoring, Ambulatory , Clinical Trials as Topic , Hypertension/drug therapy , Blood Pressure
4.
Annu Rev Pharmacol Toxicol ; 64: 89-114, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37722720

ABSTRACT

Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.


Subject(s)
Circadian Clocks , Neoplasms , Male , Female , Humans , Circadian Rhythm , Chronotherapy , Neoplasms/drug therapy , Pharmaceutical Preparations
5.
J Control Release ; 364: 490-507, 2023 12.
Article in English | MEDLINE | ID: mdl-37918485

ABSTRACT

Mammalians' circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN). SCN control biological rhythms such as the sleep-wake rhythm and homeostatic functions of steroid hormones and their receptors. Alterations in these biological rhythms are implicated in the outcomes of pathogenic conditions such as depression, diabetes, and cancer. Chronotherapy is about optimizing treatment to combat risks and intensity of the disease symptoms that vary depending on the time of day. Thus, conditions/diseases such as allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease, prone to manifest severe symptoms depending on the time of day, would be benefited from chronotherapy. Monitoring rhythm, overcoming rhythm disruption, and manipulating the rhythms from the viewpoints of underlying molecular clocks are essential to enhanced chronopharmacotherapy. New drugs focused on molecular clocks are being developed to improve therapeutics. In this review, we provide a critical summary of literature reports concerning (a) the rationale/mechanisms for time-dependent dosing differences in therapeutic outcomes and safety of antitumor drugs, (b) the molecular pathways underlying biological rhythms, and (c) the possibility of pharmacotherapy based on the intra- and inter-individual variabilities from the viewpoints of the clock genes.


Subject(s)
Antineoplastic Agents , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Biological Clocks/genetics , Chronotherapy , Antineoplastic Agents/pharmacology , Homeostasis , Mammals
6.
Am J Cancer Res ; 13(9): 4277-4287, 2023.
Article in English | MEDLINE | ID: mdl-37818045

ABSTRACT

This work focused on the clinical efficacy of chrono-chemotherapy and conventional chemotherapy on patients with non-small cell lung cancer (NSCLC), providing a theoretical basis for the clinical promotion of chrono-chemotherapy. 60 NSCLS patients in our hospital were randomly enrolled into a chrono-chemotherapy group and a conventional chemotherapy group, with 30 cases in each. Patients were treated with the standardized first-line treatment TP regimen (paclitaxel + cisplatin). After two cycles of chemotherapy, the clinical efficacy and adverse reactions of patients receiving various methods were observed. After the chemotherapy, CD3+, CD4+, and CD28+ increased while NK cells, B cells, and CD28- decreased in the conventional chemotherapy group (P<0.05); CD3+, CD4+, CD4+CD8+, B cells, and CD28+ increased while CD8+, NK cells, and CD28- decreased in chrono-chemotherapy group (P<0.05). The progression-free survival (PFS) of patients in the chrono-chemotherapy group (3.29 ± 0.46 years vs 2.56 ± 0.35 years) was longer (P<0.05). The quality of life (QOL) score in the chrono-chemotherapy group was higher (64.83 ± 1.54 points vs 51.72 ± 1.89 points) (P<0.05). The incidences of leukopenia (63.33%) and nausea and vomiting (53.33%) in the conventional chemotherapy group were higher than those in the chrono-chemotherapy group (30.00% and 30.00, respectively) (P<0.05). The chrono-chemotherapy could improve the cellular immune function of NSCLS patients, prolong their survival period, elevate the QOL, and reduce the side effects.

7.
Front Neurol ; 14: 1153975, 2023.
Article in English | MEDLINE | ID: mdl-37638185

ABSTRACT

Approximately one-third of patients with epilepsy are drug-refractory, necessitating novel treatment approaches. Chronopharmacology, which adjusts pharmacological treatment to physiological variations in seizure susceptibility and drug responsiveness, offers a promising strategy to enhance efficacy and tolerance. This narrative review provides an overview of the biological foundations for rhythms in seizure activity, clinical implications of seizure patterns through case reports, and the potential of chronopharmacological strategies to improve treatment. Biological rhythms, including circadian and infradian rhythms, play an important role in epilepsy. Understanding seizure patterns may help individualize treatment decisions and optimize therapeutic outcomes. Altering drug concentrations based on seizure risk periods, adjusting administration times, and exploring hormone therapy are potential strategies. Large-scale randomized controlled trials are needed to evaluate the efficacy and safety of differential and intermittent treatment approaches. By tailoring treatment to individual seizure patterns and pharmacological properties, chronopharmacology offers a personalized approach to improve outcomes in patients with epilepsy.

9.
Expert Rev Clin Pharmacol ; 16(7): 655-668, 2023.
Article in English | MEDLINE | ID: mdl-37403790

ABSTRACT

INTRODUCTION: Circadian rhythm influences the pharmacokinetics and pharmacodynamics of a number of drugs and affects their therapeutic efficacy and toxicity depending on the time of day they are administered. Chronopharmacology is a method for incorporating knowledge about circadian rhythm into pharmacotherapy. Chronotherapy, which is the clinical application of chronopharmacology, is particularly relevant when the risk and/or severity of symptoms of a disease change in a predictable manner over time. Chronotherapy has potential benefits in the treatment of many diseases. AREAS COVERED: Although a considerable amount of knowledge about chronopharmacology and chronotherapy has been accumulated, its therapeutic application in clinical practice remains limited in terms of therapy optimization. Resolution of these issues will improve our ability to deliver adequate drug treatment. EXPERT OPINION: We propose four approaches for promoting chronotherapy-based drug treatment in clinical practice: targeting drug development and regulatory authorities; education about chronotherapy; drug information for both health professionals and consumers; and a chronotherapy network.


Subject(s)
Chronotherapy , Circadian Rhythm , Humans , Chronotherapy/methods
10.
Expert Opin Drug Discov ; 18(8): 893-901, 2023.
Article in English | MEDLINE | ID: mdl-37300813

ABSTRACT

INTRODUCTION: Most mammalian physiology is orchestrated by the circadian clock, including drug transport and metabolism. As a result, efficacy and toxicity of many drugs are influenced by the timing of their administration, which has led to the establishment of the field of chronopharmacology. AREAS COVERED: In this review, the authors provide an overview of the current knowledge about the time-of-day dependent aspects of drug metabolism and the importance of chronopharmacological strategies for drug development. They also discuss the factors influencing rhythmic drug pharmacokinetic including sex, metabolic diseases, feeding rhythms, and microbiota, that are often overlooked in the context of chronopharmacology. This article summarizes the involved molecular mechanisms and functions and explains why these parameters should be considered in the process of drug discovery. EXPERT OPINION: Although chronomodulated treatments have shown promising results, particularly for cancer, the practice is still underdeveloped due to the associated high cost and time investments. However, implementing this strategy at the preclinical stage could offer a new opportunity to translate preclinical discoveries into successful clinical treatments.


Subject(s)
Circadian Clocks , Neoplasms , Animals , Humans , Circadian Clocks/physiology , Pharmaceutical Preparations/metabolism , Drug Discovery , Mammals/metabolism
11.
Endocr Rev ; 44(6): 975-1011, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37253115

ABSTRACT

It is estimated that 2% to 3% of the population are currently prescribed systemic or topical glucocorticoid treatment. The potent anti-inflammatory action of glucocorticoids to deliver therapeutic benefit is not in doubt. However, the side effects associated with their use, including central weight gain, hypertension, insulin resistance, type 2 diabetes (T2D), and osteoporosis, often collectively termed iatrogenic Cushing's syndrome, are associated with a significant health and economic burden. The precise cellular mechanisms underpinning the differential action of glucocorticoids to drive the desirable and undesirable effects are still not completely understood. Faced with the unmet clinical need to limit glucocorticoid-induced adverse effects alongside ensuring the preservation of anti-inflammatory actions, several strategies have been pursued. The coprescription of existing licensed drugs to treat incident adverse effects can be effective, but data examining the prevention of adverse effects are limited. Novel selective glucocorticoid receptor agonists and selective glucocorticoid receptor modulators have been designed that aim to specifically and selectively activate anti-inflammatory responses based upon their interaction with the glucocorticoid receptor. Several of these compounds are currently in clinical trials to evaluate their efficacy. More recently, strategies exploiting tissue-specific glucocorticoid metabolism through the isoforms of 11ß-hydroxysteroid dehydrogenase has shown early potential, although data from clinical trials are limited. The aim of any treatment is to maximize benefit while minimizing risk, and within this review we define the adverse effect profile associated with glucocorticoid use and evaluate current and developing strategies that aim to limit side effects but preserve desirable therapeutic efficacy.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Receptors, Glucocorticoid , Diabetes Mellitus, Type 2/drug therapy , Anti-Inflammatory Agents/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism
13.
Chronobiol Int ; 40(6): 769-782, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37161366

ABSTRACT

The circadian clock is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), and the target pathways of many NASH candidate drugs are controlled by the circadian clock. However, the application of chronopharmacology in NASH is little considered currently. Here, the time-dependent effect of REV-ERBα agonist SR9009 on diet-induced NASH and microbiota was investigated. C57BL/6J mice were fed a high-cholesterol and high-fat diet (CL) for 12 weeks to induce NASH and then treated with SR9009 either at Zeitgeber time 0 (ZT0) or ZT12 for another 6 weeks. Pharmacological activation of REV-ERBα by SR9009 alleviated hepatic steatosis, insulin resistance, liver inflammation, and fibrosis in CL diet-induced NASH mice. These effects were accompanied by improved gut barrier function and altered microbial composition and function in NASH mice, and the effect tended to be stronger when SR9009 was injected at ZT0. Moreover, SR9009 treatment at different time points resulted in a marked difference in the composition of the microbiota, with a stronger effect on the enrichment of beneficial bacteria and the diminishment of harmful bacteria when SR9009 was administrated at ZT0. Therefore, the time-dependent effect of REV-ERBα agonist on NASH was partly associated with the microbiota, highlighting the potential role of microbiota in the chronopharmacology of NASH and the possibility of discovering new therapeutic strategies for NASH.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Circadian Rhythm , Mice, Inbred C57BL , Diet, High-Fat
14.
Diabetologia ; 66(6): 1024-1034, 2023 06.
Article in English | MEDLINE | ID: mdl-36930251

ABSTRACT

AIMS/HYPOTHESIS: The objective was to investigate if metformin pharmacokinetics is modulated by time-of-day in humans using empirical and mechanistic pharmacokinetic modelling techniques on a large clinical dataset. This study also aimed to generate and test hypotheses on the underlying mechanisms, including evidence for chronotype-dependent interindividual differences in metformin plasma and efficacy-related tissue concentrations. METHODS: A large clinical dataset consisting of individual metformin plasma and urine measurements was analysed using a newly developed empirical pharmacokinetic model. Causes of daily variation of metformin pharmacokinetics and interindividual variability were further investigated by a literature-informed mechanistic modelling analysis. RESULTS: A significant effect of time-of-day on metformin pharmacokinetics was found. Daily rhythms of gastrointestinal, hepatic and renal processes are described in the literature, possibly affecting drug pharmacokinetics. Observed metformin plasma levels were best described by a combination of a rhythm in GFR, renal plasma flow (RPF) and organic cation transporter (OCT) 2 activity. Furthermore, the large interindividual differences in measured metformin concentrations were best explained by individual chronotypes affecting metformin clearance, with impact on plasma and tissue concentrations that may have implications for metformin efficacy. CONCLUSIONS/INTERPRETATION: Metformin's pharmacology significantly depends on time-of-day in humans, determined with the help of empirical and mechanistic pharmacokinetic modelling, and rhythmic GFR, RPF and OCT2 were found to govern intraday variation. Interindividual variation was found to be partly dependent on individual chronotype, suggesting diurnal preference as an interesting, but so-far underappreciated, topic with regard to future personalised chronomodulated therapy in people with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Metformin/pharmacokinetics , Diabetes Mellitus, Type 2/drug therapy , Organic Cation Transport Proteins , Kidney , Liver , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacokinetics
15.
Front Endocrinol (Lausanne) ; 14: 1110459, 2023.
Article in English | MEDLINE | ID: mdl-36967780

ABSTRACT

Chronopharmacology of arterial hypertension impacts the long-term cardiovascular risk of hypertensive subjects. Therefore, clinical and computational studies have proposed optimizing antihypertensive medications' dosing time (Ta). However, the causes and mechanisms underlying the Ta-dependency antihypertensive effect have not been elucidated. Here we propose using a Ta- dependent effect model to understand and predict the antihypertensive effect of valsartan and aspirin throughout the day in subjects with grade I or II essential hypertension. The model based on physiological regulation mechanisms includes a periodic function for each parameter that changes significantly after treatment. Circadian variations of parameters depending on the dosing time allowed the determination of regulation mechanisms dependent on the circadian rhythm that were most relevant for the action of each drug. In the case of valsartan, it is the regulation of vasodilation and systemic vascular resistance. In the case of aspirin, the antithrombotic effect generates changes in the sensitivity of systemic vascular resistance and heart rate to changes in physical activity. Dosing time-dependent models predict a more significant effect on systemic vascular resistance and blood pressure when administering valsartan or aspirin at bedtime. However, circadian dependence on the regulation mechanisms showed different sensitivity of their circadian parameters and shapes of functions, presenting different phase shifts and amplitude. Therefore, different mechanisms of action and pharmacokinetic properties of each drug can generate different profiles of Ta-dependence of antihypertensive effect and optimal dosing times.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Valsartan , Aspirin/therapeutic use , Tetrazoles/pharmacology , Valine/pharmacology , Valine/therapeutic use , Hypertension/drug therapy
16.
Annu Rev Pathol ; 18: 439-466, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693201

ABSTRACT

Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.


Subject(s)
Liver , Non-alcoholic Fatty Liver Disease , Humans , Hepatocytes , Homeostasis
17.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187555

ABSTRACT

Circadian time of intake determines the cardioprotective outcome of glucocorticoids in normal and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) is genetically required to preserve normal heart function in the long-term. The GR co-factor KLF15 is a pleiotropic regulator of cardiac metabolism. However, the cardiomyocyte-autonomous metabolic targets of the GR-KLF15 concerted epigenetic action remain undefined. Here we report that circadian time of intake determines the activation of a transcriptional and functional glucose oxidation program in heart by the glucocorticoid prednisone with comparable magnitude between sexes. We overlayed transcriptomics, epigenomics and cardiomyocyte-specific inducible ablation of either GR or KLF15. Downstream of a light-phase prednisone stimulation in mice, we found that both factors are non-redundantly required in heart to transactivate the adiponectin receptor expression (Adipor1) and promote insulin-stimulated glucose uptake, as well as transactivate the mitochondrial pyruvate complex expression (Mpc1/2) and promote pyruvate oxidation. We then challenged this time-specific drug effect in obese diabetic db/db mice, where the heart shows insulin resistance and defective glucose oxidation. Opposite to dark-phase dosing, light-phase prednisone rescued glucose oxidation in db/db cardiomyocytes and diastolic function in db/db hearts towards control-like levels with sex-independent magnitude of effect. In summary, our study identifies novel cardiomyocyte-autonomous metabolic targets of the GR-KLF15 concerted program mediating the time-specific cardioprotective effects of glucocorticoids on cardiomyocyte glucose utilization.

18.
Front Pharmacol ; 13: 1053210, 2022.
Article in English | MEDLINE | ID: mdl-36532766

ABSTRACT

Caffeine is the globally consumed psychoactive substance and the drug of choice for the treatment of apnea of prematurity (AOP), but its therapeutic effects are highly variable among preterm infants. Many of the molecular underpinnings of the marked individual response have remained elusive yet. Interestingly, the significant association between Clock gene polymorphisms and the response to caffeine therapy offers an opportunity to advance our understanding of potential mechanistic pathways. In this review, we delineate the functions and mechanisms of human circadian rhythms. An up-to-date advance of the formation and ontogeny of human circadian rhythms during the perinatal period are concisely discussed. Specially, we summarize and discuss the characteristics of circadian rhythms in preterm infants. Second, we discuss the role of caffeine consumption on the circadian rhythms in animal models and human, especially in neonates and preterm infants. Finally, we postulate how circadian-based therapeutic initiatives could open new possibilities to promote precision caffeine therapy for the AOP management in preterm infants.

19.
Front Pharmacol ; 13: 1046406, 2022.
Article in English | MEDLINE | ID: mdl-36339576

ABSTRACT

Drug repurposing is an attractive, pragmatic approach to drug discovery that has yielded success across medical fields over the years. The use of existing medicines for novel indications enables dramatically reduced development costs and timescales compared with de novo drug discovery and is therefore a promising strategy in cardiovascular disease, where new drug approvals lag significantly behind that of other fields. Extensive evidence from pre-clinical and clinical studies show that chronic inflammation is a driver of pathology in cardiovascular disease, and many efforts have been made to target cardiovascular inflammation therapeutically. This approach has been met with significant challenges however, namely off-target effects associated with broad-spectrum immunosuppression, particularly in long-term conditions such as cardiovascular disease. Nevertheless, multiple anti-inflammatory medicines have been assessed for efficacy in cardiovascular clinical trials, with most of these being repurposed from their original indications in autoimmune conditions like rheumatoid arthritis. In this review, we discuss the mixed successes of clinical trials investigating anti-inflammatory drugs in cardiovascular disease, with examples such as anti-cytokine monoclonal antibodies, colchicine, and methotrexate. Looking to the future, we highlight potential new directions for drug repurposing in cardiovascular inflammation, including the emerging concepts of drug re-engineering and chrono-pharmacology.

20.
Allergol Int ; 71(4): 437-447, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35850747

ABSTRACT

Clock genes, circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN), control various circadian rhythms in many biological processes such as physiology and behavior. Clock gene regulates many diseases such as cancer, immunological dysfunction, metabolic syndrome and sleep disorders etc. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predicably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Dosing time influences the effectiveness and toxicity of many drugs. The pharmacodynamics of medications as well as pharmacokinetics influences chronopharmacological phenomena. To escape from host immunity in the tumor microenvironment, cancer cells have acquired several pathways. Immune checkpoint therapy targeting programmed death 1 (PD-1) and its ligand (PD-L1) interaction had been approved for the treatment of patients with several types of cancers. Circadian expression of PD-1 is identified on tumor associated macrophages (TAMs), which is rationale for selecting the most appropriate time of day for administration of PD-1/PD-L1 inhibitors. The therapies for chronic kidney disease (CKD) are urgently needed because of a global health problem. The mechanism of the cardiac complications in mice with CKD had been related the GRP68 in circulating monocytes and serum accumulation of retinol. Development of a strategy to suppress retinol accumulation will be useful to prevent the cardiac complications of CKD. Therefore, we introduce an overview of the dosing time-dependent changes in therapeutic outcome and safety of drug for immune-related diseases.


Subject(s)
B7-H1 Antigen , Renal Insufficiency, Chronic , Animals , Immune Checkpoint Inhibitors , Ligands , Mice , Pharmaceutical Preparations/metabolism , Programmed Cell Death 1 Receptor , Vitamin A
SELECTION OF CITATIONS
SEARCH DETAIL
...