Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38953769

ABSTRACT

Several hundred ciliate species live in animals' guts as a part of their microbiome. Among them, Muniziella cunhai (Trichostomatia, Pycnotrichidae), the largest described ciliate, is found exclusively associated with Hydrochoerus hydrochaeris (capybara), the largest known rodent reaching up to 90 kg. Here, we present the sequence, structural and functional annotation of this giant microeukaryote macronuclear genome and discuss its phylogenetic placement. The 85 Mb genome is highly AT rich (GC content 25.71 %) and encodes a total of 11 397 protein-coding genes, of which 2793 could have their functions predicted with automated functional assignments. Functional annotation showed that M. cunhai can digest recalcitrant structural carbohydrates, non-structural carbohydrates, and microbial cell walls, suggesting a role in diet metabolization and in microbial population control in the capybara's intestine. Moreover, the phylogenetic placement of M. cunhai provides insights on the origins of gigantism in the subclass Trichostomatia.


Subject(s)
Ciliophora , Phylogeny , Animals , Ciliophora/genetics , Ciliophora/classification , Rodentia/microbiology , Genome, Protozoan , Base Composition , Molecular Sequence Annotation
2.
J Eukaryot Microbiol ; : e13037, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946328

ABSTRACT

This paper highlights and honors the connectivity among protistan researchers, using my own research journey as a backdrop, with attention to the supply chain of ideas, supporters, and other influencers who helped to shape and guide my career by sharing their ideas, protocols, skills, and enthusiasm. In looking back at the journey, the supply chain in my career has also included changes in the conceptual framework for my research studies, converging with a continuous flow of ideas and support from colleagues and mentors. To illustrate the complex map of ideas and supporters, this paper will examine technological advances, paradigm shifts in ecological constructs, geographical considerations, breakthroughs in peritrich biology, and the importance of an integrated perspective as we navigate the changing realities of today's scientific challenges.

3.
Microb Ecol ; 87(1): 89, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955821

ABSTRACT

We investigated the food-dependent growth and thermal response of the freshwater ciliate Colpidium kleini using numerical response (NR) experiments. This bacterivorous ciliate occurs in lotic water and the pelagial of lakes and ponds. The C. kleini strain used in this work was isolated from a small alpine lake and identified by combining detailed morphological inspections with molecular phylogeny. Specific growth rates (rmax) were measured from 5 to 21 °C. The ciliate did not survive at 22 °C. The threshold bacterial food levels (0.3 - 2.2 × 106 bacterial cells mL-1) matched the bacterial abundance in the alpine lake from which C. kleini was isolated. The food threshold was notably lower than previously reported for C. kleini and two other Colpidium species. The threshold was similar to levels reported for oligotrich and choreotrich ciliates if expressed in terms of bacterial biomass (0.05 - 0.43 mg C L-1). From the NR results, we calculated physiological mortality rates at zero food concentration. The mean mortality (0.55 ± 0.17 d-1) of C. kleini was close to the mean estimate obtained for other planktonic ciliates that do not encyst. We used the data obtained by the NR experiments to fit a thermal performance curve (TPC). The TPC yielded a temperature optimum at 17.3 °C for C. kleini, a maximum upper thermal tolerance limit of 21.9 °C, and a thermal safety margin of 4.6 °C. We demonstrated that combining NR with TPC analysis is a powerful tool to predict better a species' fitness in response to temperature and food.


Subject(s)
Ciliophora , Ciliophora/physiology , Ciliophora/growth & development , Ciliophora/classification , Ciliophora/isolation & purification , Lakes/microbiology , Lakes/parasitology , Temperature , Phylogeny , Extinction, Biological , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
4.
Eur J Protistol ; 95: 126093, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38897098

ABSTRACT

The subclass Trichostomatia (Ciliophora, Litostomatea) constitutes a well-supported monophyletic group, which includes ciliates exclusively found as symbionts of vertebrates, primarily herbivorous mammals. Recent molecular analyses reinforce the subclass monophyly, though almost all orders, suborders, families, and genera are found to be non-monophyletic. Here, we reconstructed the evolutionary history of the subclass Trichostomatia using a phylogenomic approach and discussed some systematic inconsistencies. We propose a new Ophryoscolecidae genus, Dagostonium, to include Diplodinium polygonale. Monoposthium cynodontum is transferred to the genus Cycloposthium.

5.
J Hazard Mater ; 474: 134762, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823099

ABSTRACT

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.


Subject(s)
Biodegradation, Environmental , Cadmium , Ciliophora , Metallothionein , Soil Pollutants , Cadmium/toxicity , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Ciliophora/drug effects , Ciliophora/metabolism , Metallothionein/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
6.
Mar Life Sci Technol ; 6(2): 212-235, 2024 May.
Article in English | MEDLINE | ID: mdl-38827127

ABSTRACT

Species of the ciliate genera Myxophyllum and Conchophthirus are found as endocommensals of terrestrial and freshwater mollusks, respectively. So far, there have been few studies of these genera and morphological data for most members are often incomplete. In the present work, two new species, Myxophyllum weishanense sp. nov. and Conchophthirus paracurtus sp. nov., and a known species, Conchophthirus lamellidens, were isolated from hosts in Lake Weishan Wetland, China. Taxonomic studies indicate that M. weishanense sp. nov. can be recognized mainly by the combination of about 60 somatic kineties on both ventral and dorsal sides and the presence of caudal cilia. Conchophthirus paracurtus sp. nov. differs from congeners in its body shape and size, having a glabrous area on the posterior right side, and having fewer somatic kineties. In addition, differences in their ITS2 (Internally Transcribed Spacer 2) secondary structures support the discrimination of the two new species from their highly similar congeners. An improved diagnosis for the poorly known species, C. lamellidens is also provided. Phylogenetic analyses reveal that members of the genus Myxophyllum belong to a fully supported clade that is sister to a large, poorly supported clade consisting of Hemispeiridae, Ancistridae, and several lineages of the nonmonophyletic Cyclidiidae. The Myxophyllum clade also includes Protophyra ovicola JQ956552, a possible misidentification. Sequences of the two new Conchophthirus species cluster with other congeners in a fully supported clade that is unrelated to either the 'typical' thigmotrichs or to pleuronematids, thus conflicting with the traditional classification, and may represent an orphan scuticociliate lineage. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00230-4.

7.
ISME J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916437

ABSTRACT

As unicellular predators, ciliates engage in close associations with diverse microbes, laying the foundation for the establishment of endosymbiosis. Originally heterotrophic, ciliates demonstrate the ability to acquire phototrophy by phagocytizing unicellular algae or by sequestering algal plastids. This adaptation enables them to gain photosynthate and develop resistance to unfavorable environmental conditions. The integration of acquired phototrophy with intrinsic phagotrophy results in a trophic mode known as mixotrophy. Additionally, ciliates can harbor thousands of bacteria in various intracellular regions, including the cytoplasm and nucleus, exhibiting species specificity. Under prolonged and specific selective pressure within hosts, bacterial endosymbionts evolve unique lifestyles and undergo particular reductions in metabolic activities. Investigating the research advancements in various endosymbiotic cases within ciliates will contribute to elucidate patterns in cellular interaction and unravel the evolutionary origins of complex traits.

8.
BMC Biol ; 22(1): 107, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715037

ABSTRACT

BACKGROUND: Predation is a fundamental mechanism for organisms to acquire energy, and various species have evolved diverse tools to enhance their hunting abilities. Among protozoan predators, raptorial Haptorian ciliates are particularly fascinating as they possess offensive extrusomes known as toxicysts, which are rapidly discharged upon prey contact. However, our understanding of the genetic processes and specific toxins involved in toxicyst formation and discharge is still limited. RESULTS: In this study, we investigated the predation strategies and subcellular structures of seven Haptoria ciliate species and obtained their genome sequences using single-cell sequencing technology. Comparative genomic analysis revealed distinct gene duplications related to membrane transport proteins and hydrolytic enzymes in Haptoria, which play a crucial role in the production and discharge of toxicysts. Transcriptomic analysis further confirmed the abundant expression of genes related to membrane transporters and cellular toxins in Haptoria compared to Trichostomatia. Notably, polyketide synthases (PKS) and L-amino acid oxidases (LAAO) were identified as potentially toxin genes that underwent extensive duplication events in Haptoria. CONCLUSIONS: Our results shed light on the evolutionary and genomic adaptations of Haptorian ciliates for their predation strategies in evolution and provide insights into their toxic mechanisms.


Subject(s)
Ciliophora , Ciliophora/physiology , Ciliophora/genetics , Genomics , Genome, Protozoan , Transcriptome
9.
Environ Sci Pollut Res Int ; 31(25): 37326-37336, 2024 May.
Article in English | MEDLINE | ID: mdl-38771538

ABSTRACT

In order to evaluate the influence of global warming on the ecosystem processes in marine environments, the changes in colonization dynamics of periphytic microbiota were studied using the periphytic ciliate communities as the test organism fauna under a continuous warming gradient of 22℃ (control), 25℃, 28℃, 31℃, and 34 ℃. The results demonstrated that (1) the test ciliate communities generally showed a similar temporal pattern in within the colonization process under the water temperatures from 22 up to 28℃; however, (2) the colonization dynamics were significantly changed, and the fitness of colonization curves to the MacArthur-Wilson model equation was failed under the temperature increased by 6 ℃, and (3) the loading or assimilative capacity of the test aquatic ecosystem was decreased with the increase of water temperature. Therefore, this study suggests that continuous warming may significantly drive the colonization dynamics of periphytic ciliates in marine ecosystems.


Subject(s)
Ciliophora , Ecosystem , Global Warming , Ciliophora/physiology , Temperature
10.
Eur J Protistol ; 94: 126088, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744183

ABSTRACT

The morphology and morphogenesis of Lamtostyla paravitiphila nov. spec., a novel soil hypotrichous ciliate collected from eastern China, were investigated based on live observations and protargol-stained specimens. The new species is morphologically characterized as follows: seven to twelve macronuclear nodules, cortical granules absent, 19-26 adoral membranelles, three or four frontoventral cirri, the amphisiellid median cirral row extends to about mid-body and composed of 12-18 cirri, two or three transverse cirri, 27-39 left and 30-41 right marginal cirri, three almost bipolar dorsal kineties. Morphogenetically, it is characterized by the initial formation of six frontal-ventral-transverse cirral anlagen as primary primordia. Notably, the amphisiellid median cirral row and the posterior frontoventral cirrus (or cirri) contribute to the development of the frontal-ventral-transverse cirral anlagen, while the buccal cirrus may not participate in this process. Phylogenetic analyses based on small subunit ribosomal DNA sequence data indicate that the Lamtostyla species with available molecular data do not form a monophyletic group.


Subject(s)
Hypotrichida , Morphogenesis , Phylogeny , Soil , Species Specificity , Soil/parasitology , Hypotrichida/genetics , Hypotrichida/classification , Hypotrichida/cytology , China , RNA, Ribosomal, 18S/genetics , Ciliophora/classification , Ciliophora/genetics , Ciliophora/cytology
11.
Biochem Biophys Rep ; 38: 101720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38711548

ABSTRACT

We performed single-cell RNA sequencing (scRNA-seq) on a population of 5,000 Tetrahymena thermophila, using the 10x Genomics 3' gene expression analysis, to investigate gene expression variability within this clonal population. Initially, we estimated the 3'-untranslated regions (3' UTRs), which were absent in existing annotation files but are crucial for the 10x Genomics 3' gene expression analysis, using the peaks2utr method. This allowed us to create a modified annotation file, which was then utilized in our scRNA-seq analysis. Our analysis revealed significant gene expression variability within the population, even after removing the effect of cell phase-related features. This variability predominantly appeared in six distinct clusters. Through gene ontology and KEGG pathway enrichment analyses, we identified that these were primarily associated with ribosomal proteins, proteins specific to mitochondria, proteins involved in peroxisome-specific carbon metabolism, cytoskeletal proteins, motor proteins, and immobilized antigens.

12.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585751

ABSTRACT

Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from rhodophyte red algae and glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.

13.
BMC Ecol Evol ; 24(1): 47, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632521

ABSTRACT

BACKGROUND: Over the past decade, theory and observations have suggested intraspecific variation, trait-based differences within species, as a buffer against biodiversity loss from multiple environmental changes. This buffering effect can only occur when different populations of the same species respond differently to environmental change. More specifically, variation of demographic responses fosters buffering of demography, while variation of trait responses fosters buffering of functioning. Understanding how both responses are related is important for predicting biodiversity loss and its consequences. In this study, we aimed to empirically assess whether population-level trait responses to multiple environmental change drivers are related to the demographic response to these drivers. To this end, we measured demographic and trait responses in microcosm experiments with two species of ciliated protists. For three clonal strains of each species, we measured responses to two environmental change drivers (climate change and pollution) and their combination. We also examined if relationships between demographic and trait responses existed across treatments and strains. RESULTS: We found different demographic responses across strains of the same species but hardly any interactive effects between the two environmental change drivers. Also, trait responses (summarized in a survival strategy index) varied among strains within a species, again with no driver interactions. Demographic and trait responses were related across all strains of both species tested in this study: Increasing intrinsic growth and self-limitation were associated with a shift in survival strategy from sit-and-wait towards flee. CONCLUSIONS: Our results support the existence of a link between a population's demographic and trait responses to environmental change drivers in two species of ciliate. Future work could dive deeper into the specifics of phenotypical trait values, and changes therein, related to specific life strategies in different species of ciliate and other zooplankton grazers.


Subject(s)
Biodiversity , Climate Change , Phenotype , Demography
14.
Ecol Evol ; 14(4): e11232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38606340

ABSTRACT

Protist diversity studies are frequently conducted using DNA metabarcoding methods. Currently, most studies have utilized short read sequences to assess protist diversity. One limitation of using short read sequences is the low resolution of the markers. For better taxonomic resolution longer sequences of the 18S rDNA are required because the full-length has both conserved and hypervariable regions. In this study, a new primer pair combination was used to amplify the full-length 18S rDNA and its efficacy was validated with a test community and then validated with field samples. Full-length sequences obtained with the Nanopore MinION for protist diversity from field samples were compared with Illumina MiSeq V4 and V8-V9 short reads. Sequences generated from the high-throughput sequencers are Amplicon Sequence Variants (ASVs). Metabarcoding results show high congruency among the long reads and short reads in taxonomic annotation at the major taxonomic group level; however, not all taxa could be successfully detected from sequences. Based on the criteria of ≥95% similarity and ≥1000 bp query length, 298 genera were identified by all markers in the field samples, 250 (84%) were detected by 18S, while only 226 (76%) by V4 and 213 (71%) by V8-V9. Of the total 85 dinoflagellate genera observed, 19 genera were not defined by 18S dinoflagellate ASVs compared to only three among the total 52 diatom genera. The discrepancy in this resolution is due to the lack of taxonomically available 18S reference sequences in particular for dinoflagellates. Overall, this preliminary investigation demonstrates that application of the full-length 18S rDNA approach can be successful in field studies.

15.
Environ Res ; 252(Pt 2): 118821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615793

ABSTRACT

How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.8 and 1.8 folds higher than in nDBS, respectively. Aloricate ciliates were singled out in both DBS and nDBS, whilst their average abundance and biomass of large size-fraction (>50 µm) in former were 4.5-5.6 folds higher than in latter. Regarding tintinnids, high abundance of Ptychocylis acuta (Bering Strait species) mainly occurred at DBS, coupled with distribution of co-occurring Pacific-origin species Salpingella sp.1, collectively suggested a strong intrusion of Pacific Inflow during summer 2023. Additionally, presence of high abundance of Acanthostomella norvegica and genus Parafavella in nDBS might indicate the trajectory of the Transpolar Drift. Alternatively, tintinnids can serve as credible bioindicators for either monitoring currents or evaluating microzooplankton Borealization. Average abundance of total ciliate within 15-135 µm body-size spectrum in DBS was higher than nDBS. Moreover, spearman's rank correlation between biotic and abiotic analysis revealed that temperature and dissolved oxygen at DBS determined tintinnid species richness and ciliate total abundance, respectively. The results clearly demonstrate that remarkable divergences in large size-fraction of ciliate abundance between DBS and nDBS validate their irreplaceable role in controlling phytoplankton outbreak and associated biological processes in polar seas.


Subject(s)
Ciliophora , Diatoms , Arctic Regions , Ciliophora/physiology , Diatoms/physiology , Eutrophication , Zooplankton/physiology , Animals , Oceans and Seas , Body Size , Seawater/chemistry
16.
FEMS Microbes ; 5: xtae003, 2024.
Article in English | MEDLINE | ID: mdl-38450097

ABSTRACT

The freshwater bodies of India are highly biodiverse but still understudied, especially concerning ciliates. Ciliates constitute a significant portion of eukaryotic diversity and play crucial roles in microbial loops, nutrient recycling, and ecosystem maintenance. The present study aimed to elucidate ciliate diversity in three freshwater sites in the Delhi region of India: Okhla Bird Sanctuary (OBS), Sanjay Lake (SL), and Raj Ghat pond (RJ). This study represents the first investigation into the taxonomic diversity and richness of freshwater ciliates in India using a high-throughput DNA metabarcoding approach. For the analysis, total environmental DNA was extracted from the three freshwater samples, followed by sequencing of the 18S V4 barcode region and subsequent phylogenetic analyses. Operational taxonomic units (OTU) analyses revealed maximum species diversity in OBS (106), followed by SL (104) and RJ (99) sites. Ciliates from the classes Oligohymenophorea, Prostomatea, and Spirotrichea were dominant in the three sites. The study discusses the ability of the metabarcoding approach to uncover unknown and rare species. The study highlights the need for refined reference databases and cautious interpretation of the high-throughput sequencing-generated data while emphasizing the complementary nature of molecular and morphological approaches in studying ciliate diversity.

17.
Mar Life Sci Technol ; 6(1): 31-49, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38433968

ABSTRACT

Genomes are incredibly dynamic within diverse eukaryotes and programmed genome rearrangements (PGR) play important roles in generating genomic diversity. However, genomes and chromosomes in metazoans are usually large in size which prevents our understanding of the origin and evolution of PGR. To expand our knowledge of genomic diversity and the evolutionary origin of complex genome rearrangements, we focus on ciliated protists (ciliates). Ciliates are single-celled eukaryotes with highly fragmented somatic chromosomes and massively scrambled germline genomes. PGR in ciliates occurs extensively by removing massive amounts of repetitive and selfish DNA elements found in the silent germline genome during development of the somatic genome. We report the partial germline genomes of two spirotrich ciliate species, namely Strombidium cf. sulcatum and Halteria grandinella, along with the most compact and highly fragmented somatic genome for S. cf. sulcatum. We provide the first insights into the genome rearrangements of these two species and compare these features with those of other ciliates. Our analyses reveal: (1) DNA sequence loss through evolution and during PGR in S. cf. sulcatum has combined to produce the most compact and efficient nanochromosomes observed to date; (2) the compact, transcriptome-like somatic genome in both species results from extensive removal of a relatively large number of shorter germline-specific DNA sequences; (3) long chromosome breakage site motifs are duplicated and retained in the somatic genome, revealing a complex model of chromosome fragmentation in spirotrichs; (4) gene scrambling and alternative processing are found throughout the core spirotrichs, offering unique opportunities to increase genetic diversity and regulation in this group. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00213-x.

18.
Eur J Protistol ; 93: 126067, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447247

ABSTRACT

During a survey of Korean marine ciliates, Trochilia sigmoides, the type species of the genus Trochilia, was collected and examined using in vivo observation and protargol impregnation. Moreover, scanning electron microscopy and 18S rRNA gene sequencing have been applied for the first time to study this species. Morphologically, T. sigmoides is characterized by the small body size, the oval body outline, and the spiral dorsal ridges. The Korean population of T. sigmoides shows only minute differences to other populations reported in the literature, mainly in body size and the number of dorsal ridges. Phylogenetic analyses based on 18S rRNA gene sequences show that T. sigmoides and T. petrani are placed together with two members of the family Kyaroikeidae, causing the family Dysteriidae to be non-monophyletic. The present new data increase the knowledge about the morphology and phylogeny of the genus Trochilia and would assist in understanding the phylogenetic relationship between the free-living Dysteriidae and the parasitic Kyaroikeidae.


Subject(s)
Ciliophora , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 18S/genetics , Republic of Korea , Ciliophora/genetics
19.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38547127

ABSTRACT

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


Subject(s)
DNA Cleavage , Paramecium , Paramecium/genetics , Paramecium/metabolism , DNA Breaks, Double-Stranded , Genome, Protozoan , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , DNA Repair , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , DNA End-Joining Repair
20.
Environ Pollut ; 348: 123843, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552770

ABSTRACT

Micro/nano-plastics (MPs/NPs) represent an emerging contaminant, posing a significant threat to oceanic halobios. While the adverse effects of joint pollutants on marine organisms are well-documented, the potential biological impacts on the food chain transmission resulting from combinations of MPs/NPs and heavy metals (HMs) remain largely unexplored. This study exposed the microbial loop to combined contaminants (MPs/NPs + HMs) for 48h, bacteria and contaminants are washed away before feeding to the traditional food chain, employing microscopic observation, biochemical detection, and transcriptome analysis to elucidate the toxicological mechanisms of the top predator. The findings revealed that MPs/NPs combined with Cd2+ could traverse both the microbial loop and classical food chain. Acute exposure significantly affected the carbon biomass of the top predator Tigriopus japonicus (75.8% lower). Elevated antioxidant enzyme activity led to lipid peroxidation, manifesting in increased malondialdehyde levels. Transcriptome sequencing showed substantial differential gene expression levels in T. japonicus under various treatments. The upregulation of genes associated with apoptosis and inflammatory responses, highlighting the impact of co-exposure on oxidative damage and necroptosis within cells. Notably, NPs-Cd exhibited stronger toxicity than MPs-Cd. NPs-Cd led to a greater decrease in the biomass of top predators, accompanied by lower activities of GSH, SOD, CAT, and GSH-PX, resulting in increased production of lipid peroxidation product MDA and higher oxidative stress levels. This investigation provides novel insights into the potential threats of MPs/NPs combined with Cd2+ on the microbial loop across traditional food chain, contributing to a more comprehensive assessment of the ecological risks associated with micro/nano-plastics and heavy metals.


Subject(s)
Transcriptome , Water Pollutants, Chemical , Cadmium/toxicity , Polystyrenes , Food Chain , Microplastics , Gene Expression Profiling , Seawater , Plastics , Antioxidants , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...